
An introduction to error-correcting codes

and some current day applications

dr. Relinde Jurrius

University of Neuchâtel, Switzerland

December 20, 2016

S W I T E E L R A N D

Redundancy

S W I T E E L R A N D

Redundancy

message // channel // message

noise

OO

message

encodingy
// codeword // channel // received word

decodingy
// message

noise

OO

0 −→ 00000

1 −→ 11111

00000 ?

−→ 0

01100 ?

−→ 0

10111 ?

−→ 1

Redundancy:
4

5

0 −→ 00000

1 −→ 11111

00000 ?

−→ 0

01100 ?

−→ 0

10111 ?

−→ 1

Redundancy:
4

5

0 −→ 00000

1 −→ 11111

00000 ? −→ 0

01100 ?

−→ 0

10111 ?

−→ 1

Redundancy:
4

5

0 −→ 00000

1 −→ 11111

00000 ? −→ 0

01100 ? −→ 0

10111 ?

−→ 1

Redundancy:
4

5

0 −→ 00000

1 −→ 11111

00000 ? −→ 0

01100 ? −→ 0

10111 ? −→ 1

Redundancy:
4

5

0 −→ 00000

1 −→ 11111

00000 ? −→ 0

01100 ? −→ 0

10111 ? −→ 1

Redundancy:
4

5

Richard Hamming
(1915–1998)

Bell Labs, ca. 1950

aa

bb
cc

dd

ee ff

gg

11

1100
11

a b c d e f g
1 0 1 1

1011 −→ 1011010

Redundancy:
3

7

aa

bb
cc

dd

ee ff

gg

11

1100
11

a b c d e f g
1 0 1 1

1011 −→ 1011010

Redundancy:
3

7

aa

bb
cc

dd

ee ff

gg

11

11

00

00
11

00 11

a b c d e f g
1 0 1 1

1011 −→ 1011010

Redundancy:
3

7

aa

bb
cc

dd

ee ff

gg

11

11

00

00
11

00 11

a b c d e f g
1 0 1 1

1011 −→ 1011010

Redundancy:
3

7

aa

bb
cc

dd

ee ff

gg

0011

11
00

00

11

00

a b c d e f g
1 0 0 1 0 0 1

1001001 −→ 1001101

1001101 −→ 1001

aa

bb
cc

dd

ee ff

gg

0011

11
00

00

11

00

a b c d e f g
1 0 0 1 0 0 1

1001001 −→ 1001101

1001101 −→ 1001

aa

bb
cc

dd

ee ff

gg

0011

11
00

00

11

00

a b c d e f g
1 0 0 1 0 0 1

1001001 −→ 1001101

1001101 −→ 1001

aa

bb
cc

dd

ee ff

gg

0011

11
00

00

11

00

a b c d e f g
1 0 0 1 0 0 1

1001001 −→ 1001101

1001101 −→ 1001

Low redundancy

Large differences between codewords

Fast encoding / decoding

Distance function d(x , y) is a metric if:

d(x , y) ≥ 0 with equality iff x = y

d(x , y) = d(y , x)

d(x , y) + d(y , z) ≥ d(x , z)

�
�
�
�
�
��

x

�
�

�
�
�
�	

d(x ,y)

HH
HHHHj

y

HH
H

HH
HY

d(y ,z)

��
���

���
���

�: z������������9
d(x ,z)

Alphabet Q

Length n

Hamming metric on Qn:

d(x , y) = number of positions in which vectors differ

= |{i ∈ [n] : xi 6= yi}|

error-correcting code: C ⊆ Qn

d minimum distance

e error-correcting capacity

= bd − 1

2
c

d minimum distance

e error-correcting capacity

= bd − 1

2
c

Linear code: C ⊆ Fn
q subspace of dimension k

Generator matrix: rows generate C

Encoding: mG = c

Parity check matrix: C is kernel of this matrix

HcT = 0

aa

bb
cc

dd

ee ff

gg

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1



H =

 1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



Typical problem:

Fix n and k (redundancy), make d as large as possible

Singleton bound: d ≤ n − k + 1

Equality: Maximum Distance Separable (MDS) code

Typical problem:

Fix n and k (redundancy), make d as large as possible

Singleton bound: d ≤ n − k + 1

Equality: Maximum Distance Separable (MDS) code

Reed-Solomon code: pick α1, . . . , αn ∈ Fq

C = {(f (α1), . . . , f (αn)) : f ∈ Fq[x], deg f < k}

G =


1 1 · · · 1 1
α1 α2 · · · αn−1 αn
...

...
...

...

αk−1
1 αk−1

2 · · · αk−1
n−1 αk−1

n



Reed-Solomon code is MDS

Several fast decoding algorithms known

Needs large alphabet: q > k

Current day applications of error-correcting codes:

I Network coding

Distributed storage

Code-based crypto

a

↓

a

��

a

��

?

��

��

↓

��

↓

b
↓

b

��

b

��

a

↓

a

��

a

��

a+b

��

a+b
��

a, a + b

↓

a+b
��

a + b, b

↓

b
↓

b

��

b

��

Idea: send (rows of) matrices
instead of vectors

Send: X1, . . . ,Xm ∈ Fn
q

Receive: Y1, . . . ,Ym ∈ Fn
q

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A′X + Z

A′ rank erasures

Z errors

Decoding possible if rk(A′) not too small and rk(Z) not too big.

Rank metric: d(X ,Y) = rk(X − Y)

Send: X1, . . . ,Xm ∈ Fn
q

Receive: Y1, . . . ,Ym ∈ Fn
q

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A′X + Z

A′ rank erasures

Z errors

Decoding possible if rk(A′) not too small and rk(Z) not too big.

Rank metric: d(X ,Y) = rk(X − Y)

Send: X1, . . . ,Xm ∈ Fn
q

Receive: Y1, . . . ,Ym ∈ Fn
q

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A′X + Z

A′ rank erasures

Z errors

Decoding possible if rk(A′) not too small and rk(Z) not too big.

Rank metric: d(X ,Y) = rk(X − Y)

Depends on network structure

Well studied (Hui 1951, Delsarte 1978, Gabidulin 1995)

Good codes known

Ralf Kötter
(1963–2009)

Frank Kschischang
(*1962)

a

↓

a

��

a

��

a+b

��

a+b
��

a, a + b

↓

a+b
��

a + b, b

↓

b
↓

b

��

b

��

Better idea: send (bases of)
subspaces instead of matrices

Random linear combinations

Send: basis of m-dim subspace V ⊆ Fn
q

Receive: m vectors in Fn
q

No errors: received vectors are basis of V

(with high probability)

In practice: U = Hk(V)⊕ E

Hk(V) random k-dim subspace of V

E error-subspace

Decoding possible if k not too small and dim(E) not too big.

Subspace distance: d(U,V) = dim(U) + dim(V)− 2 dim(U ∩ V)

Send: basis of m-dim subspace V ⊆ Fn
q

Receive: m vectors in Fn
q

No errors: received vectors are basis of V

(with high probability)

In practice: U = Hk(V)⊕ E

Hk(V) random k-dim subspace of V

E error-subspace

Decoding possible if k not too small and dim(E) not too big.

Subspace distance: d(U,V) = dim(U) + dim(V)− 2 dim(U ∩ V)

Send: basis of m-dim subspace V ⊆ Fn
q

Receive: m vectors in Fn
q

No errors: received vectors are basis of V

(with high probability)

In practice: U = Hk(V)⊕ E

Hk(V) random k-dim subspace of V

E error-subspace

Decoding possible if k not too small and dim(E) not too big.

Subspace distance: d(U,V) = dim(U) + dim(V)− 2 dim(U ∩ V)

Independent of network structure

Faster transmission

Slower decoding

Few codes known

Current day applications of error-correcting codes:

Network coding

I Distributed storage

Code-based crypto

a
b
a
b

a
b
a
b

a
b
a
b

a
b
a
b

a
b
a
b

aa bb a+ba+b

Distributed storage demands different things from codes:

Erasures instead of errors

Small size: typically n ≤ 15

Reed-Solomon codes do not preform well

Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize # repair possibilities

Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize # repair possibilities

Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize # repair possibilities

hot data vs. cold data

Current day applications of error-correcting codes:

Network coding

Distributed storage

I Code-based crypto

Public key cryptography

Everyone can encrypt with public function E

Inverse of E (decryption) is hard to find

Only feasible with extra information about E

Examples: factoring, DLP

Peter Shor
(*1959)

1994: algorithm for fast factoring using quantum computer

→ post-quantum cryptography

Robert J. McEliece
(*1942)

Harald Niederreiter
(*1944)

McEliece crypto system (1978)

Private: Goppa code that can correct t errors

G generator matrix

S base change matrix

P permutation matrix

Public: scrambled generator matrix G ′ = S · G · P

Message m, pick error vector e of weight at most t

Encryption: mG ′ + e

Decryption: decode received vector using S ,P and G

McEliece crypto system (1978)

Private: Goppa code that can correct t errors

G generator matrix

S base change matrix

P permutation matrix

Public: scrambled generator matrix G ′ = S · G · P

Message m, pick error vector e of weight at most t

Encryption: mG ′ + e

Decryption: decode received vector using S ,P and G

Code-based crypto demands different things from codes:

Decoding random linear codes

Hidden structure

(Reed-Solomon codes are difficult to scramble)

Current day applications of error-correcting codes:

I Network coding

I Distributed storage

I Code-based crypto

Thank you for your attention.

