An introduction to error-correcting codes

 and some current day applicationsdr. Relinde Jurrius

University of Neuchâtel, Switzerland
December 20, 2016

S W I T E E L R A N D

$S \quad W \quad I \quad T \quad E \quad E \quad L \quad R \quad A \quad N \quad D$

Redundancy

回家品品

$0 \longrightarrow 00000$
$1 \longrightarrow 11111$

$$
\begin{array}{lll}
0 & \longrightarrow & 00000 \\
1 & \longrightarrow & 11111 \\
& & 00000 ? \\
& 10111 ? 0
\end{array}
$$

$$
\begin{array}{lll}
0 & \longrightarrow 00000 & 00000 ? \\
1 \longrightarrow 11111 & 01100 ? \\
& & 10111 ?
\end{array}
$$

$$
\begin{array}{lllll}
0 & \longrightarrow & 00000 & 00000 ? & \longrightarrow \\
1 & \longrightarrow & 11111 & 01100 ? & \longrightarrow \\
& & & 0 \\
& & 10111 ? & &
\end{array}
$$

$$
\begin{array}{lllll}
0 & \longrightarrow & 00000 & & 0000 ? \\
1 & \longrightarrow & \longrightarrow & 0 \\
& 01100 ? & \longrightarrow & 0 \\
& 10111 ? & \longrightarrow & 1
\end{array}
$$

Redundancy: $\frac{4}{5}$

Richard Hamming (1915-1998)

Bell Labs, ca. 1950

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g \\
1 & 0 & 1 & 1 & & &
\end{array}
$$

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g \\
1 & 0 & 1 & 1 & & &
\end{array}
$$

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g \\
1 & 0 & 1 & 1 & & &
\end{array}
$$

$1011 \longrightarrow 1011010$

Redundancy: $\frac{3}{7}$

$\begin{array}{lllllll}a & b & c & d & e & f & g\end{array}$
 $1 \begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g \\
1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

$$
\begin{array}{lllllll}
a & b & c & d & e & f & g \\
1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

$1001001 \longrightarrow 1001101$
 $1001101 \longrightarrow 1001$

Low redundancy

Large differences between codewords

Fast encoding / decoding

Distance function $d(x, y)$ is a metric if:

$$
\begin{aligned}
& d(x, y) \geq 0 \text { with equality iff } x=y \\
& d(x, y)=d(y, x) \\
& d(x, y)+d(y, z) \geq d(x, z)
\end{aligned}
$$

Alphabet \mathcal{Q}
Length n
Hamming metric on \mathcal{Q}^{n} :

$$
\begin{aligned}
d(x, y) & =\text { number of positions in which vectors differ } \\
& =\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right| \\
& \text { error-correcting code: } C \subseteq \mathcal{Q}^{n}
\end{aligned}
$$

$$
8
$$

d minimum distance

e error-correcting capacity

$$
=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

Linear code: $C \subseteq \mathbb{F}_{q}^{n}$ subspace of dimension k

Generator matrix: rows generate C
Encoding: $\mathbf{m} G=\mathbf{c}$

Parity check matrix: C is kernel of this matrix

$$
\mathrm{Hc}^{T}=\mathbf{0}
$$

$$
\begin{aligned}
& G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) \\
& H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Typical problem:
Fix n and k (redundancy), make d as large as possible

Typical problem:
Fix n and k (redundancy), make d as large as possible

Singleton bound: $d \leq n-k+1$

Equality: Maximum Distance Separable (MDS) code

Reed-Solomon code: pick $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{q}$

$$
\begin{gathered}
C=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right): f \in \mathbb{F}_{q}[x], \operatorname{deg} f<k\right\} \\
\\
G=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} & \alpha_{n} \\
\vdots & \vdots & & \vdots & \vdots \\
\alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \cdots & \alpha_{n-1}^{k-1} & \alpha_{n}^{k-1}
\end{array}\right)
\end{gathered}
$$

Reed-Solomon code is MDS

Several fast decoding algorithms known

Needs large alphabet: $q>k$

Current day applications of error-correcting codes:

- Network coding

Distributed storage

Code-based crypto

Idea: send (rows of) matrices instead of vectors

Send: $X_{1}, \ldots, X_{m} \in \mathbb{F}_{q}^{n}$
Receive: $Y_{1}, \ldots, Y_{m} \in \mathbb{F}_{q}^{n}$

No errors: $Y=A X$
A full rank, known from the network structure

Send: $X_{1}, \ldots, X_{m} \in \mathbb{F}_{q}^{n}$
Receive: $Y_{1}, \ldots, Y_{m} \in \mathbb{F}_{q}^{n}$

No errors: $Y=A X$
A full rank, known from the network structure

In practice: $Y=A^{\prime} X+Z$
A^{\prime} rank erasures
Z errors

Send: $X_{1}, \ldots, X_{m} \in \mathbb{F}_{q}^{n}$
Receive: $Y_{1}, \ldots, Y_{m} \in \mathbb{F}_{q}^{n}$

No errors: $Y=A X$
A full rank, known from the network structure

In practice: $Y=A^{\prime} X+Z$
A^{\prime} rank erasures
Z errors

Decoding possible if $\mathrm{rk}\left(A^{\prime}\right)$ not too small and $\mathrm{rk}(Z)$ not too big.
Rank metric: $d(X, Y)=\operatorname{rk}(X-Y)$

Depends on network structure

Well studied (Hui 1951, Delsarte 1978, Gabidulin 1995)

Good codes known

Ralf Kötter (1963-2009)

Frank Kschischang
(*1962)

Better idea: send (bases of) subspaces instead of matrices

Random linear combinations

Send: basis of m-dim subspace $V \subseteq \mathbb{F}_{q}^{n}$
Receive: m vectors in \mathbb{F}_{q}^{n}

No errors: received vectors are basis of V
(with high probability)

Send: basis of m-dim subspace $V \subseteq \mathbb{F}_{q}^{n}$
Receive: m vectors in \mathbb{F}_{q}^{n}

No errors: received vectors are basis of V (with high probability)

In practice: $U=\mathcal{H}_{k}(V) \oplus E$ $\mathcal{H}_{k}(V)$ random k-dim subspace of V
E error-subspace

Send: basis of m-dim subspace $V \subseteq \mathbb{F}_{q}^{n}$
Receive: m vectors in \mathbb{F}_{q}^{n}

No errors: received vectors are basis of V (with high probability)

In practice: $U=\mathcal{H}_{k}(V) \oplus E$
$\mathcal{H}_{k}(V)$ random k-dim subspace of V
E error-subspace

Decoding possible if k not too small and $\operatorname{dim}(E)$ not too big.
Subspace distance: $d(U, V)=\operatorname{dim}(U)+\operatorname{dim}(V)-2 \operatorname{dim}(U \cap V)$

Independent of network structure

Faster transmission

Slower decoding

Few codes known

Current day applications of error-correcting codes:

Network coding

- Distributed storage

Code-based crypto

Google

facebook

Distributed storage demands different things from codes:

Erasures instead of errors

Small size: typically $n \leq 15$

Reed-Solomon codes do not preform well

Locality: minimize \# nodes accessed during repair

Locality: minimize \# nodes accessed during repair

Bandwidth: minimize total download bandwidth

Locality: minimize \# nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize \# repair possibilities

hot data
vs.

cold data

Current day applications of error-correcting codes:

Network coding

Distributed storage

- Code-based crypto

Public key cryptography

Everyone can encrypt with public function \mathcal{E}
 Inverse of \mathcal{E} (decryption) is hard to find

Only feasible with extra information about \mathcal{E}

Examples: factoring, DLP

Peter Shor (*1959)

1994: algorithm for fast factoring using quantum computer
\rightarrow post-quantum cryptography

Robert J. McEliece (*1942)

Harald Niederreiter
(*1944)

McEliece crypto system (1978)

Private: Goppa code that can correct t errors
G generator matrix
S base change matrix
P permutation matrix
Public: scrambled generator matrix $G^{\prime}=S \cdot G \cdot P$

McEliece crypto system (1978)

Private: Goppa code that can correct t errors
G generator matrix
S base change matrix
P permutation matrix
Public: scrambled generator matrix $G^{\prime}=S \cdot G \cdot P$

Message m, pick error vector \mathbf{e} of weight at most t
Encryption: $\mathbf{m} G^{\prime}+\mathbf{e}$
Decryption: decode received vector using S, P and G

Code-based crypto demands different things from codes:

Decoding random linear codes

Hidden structure
(Reed-Solomon codes are difficult to scramble)

Current day applications of error-correcting codes:

- Network coding
- Distributed storage
- Code-based crypto

Thank you for your attention.

