An introduction to error-correcting codes and some current day applications

dr. Relinde Jurrius

University of Neuchâtel, Switzerland

December 20, 2016

SWITEELRAND

SWITEELRAND

Redundancy

- $0 \longrightarrow 00000$
- $1 \longrightarrow 11111$

0	\longrightarrow	00000	00000 ?
1	\longrightarrow	11111	01100 ?
			10111 ?

0	\longrightarrow	00000	00000 ?	\longrightarrow	0
1	\longrightarrow	11111	01100 ?		
			10111 ?		

0	\longrightarrow	00000	00000 ?	\longrightarrow	0
1	\longrightarrow	11111	01100 ?	\longrightarrow	0

10111 ? \longrightarrow 1

10111 ? \longrightarrow 1

Redundancy: $\frac{4}{5}$

Richard Hamming (1915–1998)

Bell Labs, ca. 1950

 $1011 \longrightarrow 1011010$

Redundancy: $\frac{3}{7}$

1001001	\longrightarrow	1001 <mark>1</mark> 01
---------	-------------------	------------------------

 $1001101 \longrightarrow 1001$

Low redundancy

Large differences between codewords

Fast encoding / decoding

Distance function d(x, y) is a *metric* if:

$$d(x, y) \ge 0$$
 with equality iff $x = y$
 $d(x, y) = d(y, x)$
 $d(x, y) + d(y, z) \ge d(x, z)$

Alphabet \mathcal{Q}

Length n

Hamming metric on Q^n :

 $d(x, y) = \text{number of positions in which vectors differ} \\ = |\{i \in [n] : x_i \neq y_i\}|$

error-correcting code: $C \subseteq Q^n$

d minimum distance

e error-correcting capacity

$$=\lfloor \frac{d-1}{2} \rfloor$$

Linear code: $C \subseteq \mathbb{F}_a^n$ subspace of dimension k

Generator matrix: rows generate CEncoding: $\mathbf{m}G = \mathbf{c}$

Parity check matrix: C is kernel of this matrix

 $H\mathbf{c}^T = \mathbf{0}$

$$\mathcal{H}=\left(egin{array}{cccccccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array}
ight)$$

Typical problem:

Fix n and k (redundancy), make d as large as possible

Typical problem:

Fix n and k (redundancy), make d as large as possible

Singleton bound: $d \le n - k + 1$

Equality: Maximum Distance Separable (MDS) code

Reed-Solomon code: pick $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$

$$C = \{(f(\alpha_1), \ldots, f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg f < k\}$$

$$G = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} & \alpha_n \\ \vdots & \vdots & & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_{n-1}^{k-1} & \alpha_n^{k-1} \end{pmatrix}$$

Reed-Solomon code is MDS

Several fast decoding algorithms known

Needs large alphabet: q > k

Current day applications of error-correcting codes:

Network coding

Distributed storage

Code-based crypto

Idea: send (rows of) matrices instead of vectors

Send: $X_1, \ldots, X_m \in \mathbb{F}_q^n$ Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: Y = AX

A full rank, known from the network structure

Send: $X_1, \ldots, X_m \in \mathbb{F}_q^n$ Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A'X + ZA' rank erasures Z errors Send: $X_1, \ldots, X_m \in \mathbb{F}_q^n$ Receive: $Y_1, \ldots, Y_m \in \mathbb{F}_q^n$

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A'X + ZA' rank erasures Z errors

Decoding possible if rk(A') not too small and rk(Z) not too big. Rank metric: d(X, Y) = rk(X - Y) Depends on network structure

Well studied (Hui 1951, Delsarte 1978, Gabidulin 1995)

Good codes known

Ralf Kötter (1963–2009)

Frank Kschischang (*1962)

Better idea: send (bases of) subspaces instead of matrices

Random linear combinations

Send: basis of *m*-dim subspace $V \subseteq \mathbb{F}_q^n$ Receive: *m* vectors in \mathbb{F}_q^n

No errors: received vectors are basis of V (with high probability) Send: basis of *m*-dim subspace $V \subseteq \mathbb{F}_q^n$ Receive: *m* vectors in \mathbb{F}_q^n

No errors: received vectors are basis of V (with high probability)

In practice: $U = \mathcal{H}_k(V) \oplus E$ $\mathcal{H}_k(V)$ random k-dim subspace of V E error-subspace Send: basis of *m*-dim subspace $V \subseteq \mathbb{F}_q^n$ Receive: *m* vectors in \mathbb{F}_q^n

No errors: received vectors are basis of V (with high probability)

In practice: $U = \mathcal{H}_k(V) \oplus E$ $\mathcal{H}_k(V)$ random k-dim subspace of V E error-subspace

Decoding possible if k not too small and dim(E) not too big. Subspace distance: $d(U, V) = \dim(U) + \dim(V) - 2\dim(U \cap V)$ Independent of network structure

Faster transmission

Slower decoding

Few codes known

Current day applications of error-correcting codes:

Network coding

Distributed storage

Code-based crypto

facebook

Distributed storage demands different things from codes:

Erasures instead of errors

Small size: typically $n \leq 15$

Reed-Solomon codes do not preform well

Locality: minimize # nodes accessed during repair

Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize # repair possibilities

vs.

cold data

Current day applications of error-correcting codes:

Network coding

Distributed storage

Code-based crypto

Public key cryptography

Everyone can encrypt with public function ${\mathcal E}$

Inverse of \mathcal{E} (decryption) is hard to find

Only feasible with extra information about $\ensuremath{\mathcal{E}}$

Examples: factoring, DLP

Peter Shor (*1959)

1994: algorithm for fast factoring using quantum computer

 \rightarrow post-quantum cryptography

Robert J. McEliece (*1942)

Harald Niederreiter (*1944)

McEliece crypto system (1978)

Private: Goppa code that can correct t errors

G generator matrix

 ${\it S}$ base change matrix

P permutation matrix

Public: scrambled generator matrix $G' = S \cdot G \cdot P$

McEliece crypto system (1978)

Private: Goppa code that can correct t errors

G generator matrix

S base change matrix

P permutation matrix

Public: scrambled generator matrix $G' = S \cdot G \cdot P$

Message \mathbf{m} , pick error vector \mathbf{e} of weight at most t

Encryption: $\mathbf{m}G' + \mathbf{e}$

Decryption: decode received vector using S, P and G

Code-based crypto demands different things from codes:

Decoding random linear codes

Hidden structure

(Reed-Solomon codes are difficult to scramble)

Current day applications of error-correcting codes:

- Network coding
- Distributed storage
- Code-based crypto

Thank you for your attention.