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Low redundancy
Large differences between codewords

Fast encoding / decoding



Distance function d(x,y) is a metric if:

d(x,y) > 0 with equality iff x =y
d(x,y) =d(y,x)
d(x,y)+d(y,z) > d(x, 2)




Alphabet Q
Length n

Hamming metric on Q":

d(x,y) = number of positions in which vectors differ

= [{i€ln]:x # yi}|

error-correcting code: C C Q"
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Linear code: C C g subspace of dimension k

Generator matrix: rows generate C

Encoding: mG =c

Parity check matrix: C is kernel of this matrix

He™ =0






Typical problem:

Fix n and k (redundancy), make d as large as possible



Typical problem:

Fix n and k (redundancy), make d as large as possible
Singleton bound: d < n—k+1

Equality: Maximum Distance Separable (MDS) code



Reed-Solomon code: pick a,...,a, € Fy

C={(F(o),...,f(an)): f € Fylx],deg f < k}

1 1 1 1
a1 Q2 Qp—1 Qp
G = . . .
k—1 k—1 k—1 k—1
ay Qs Q, 1 Oy



Reed-Solomon code is MDS
Several fast decoding algorithms known

Needs large alphabet: g > k



Current day applications of error-correcting codes:

» Network coding
Distributed storage

Code-based crypto






Idea: send (rows of) matrices
instead of vectors




Send: Xi,..., X, € Fg
Receive: Y1,..., Yy, € Fg

No errors: Y = AX

A full rank, known from the network structure
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Send: Xi,..., X, € Fg
Receive: Y1,..., Yy, € Fg

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = AX +Z7
A’ rank erasures

Z errors

Decoding possible if rk(A’) not too small and rk(Z) not too big.
Rank metric: d(X,Y) =rk(X = Y)



Depends on network structure
Well studied (Hui 1951, Delsarte 1978, Gabidulin 1995)

Good codes known



Ralf Kotter
(1963-2009)

Frank Kschischang
(*1962)




Better idea: send (bases of)
subspaces instead of matrices

Random linear combinations




Send: basis of m-dim subspace V C FFg

Receive: m vectors in IFZ

No errors: received vectors are basis of V

(with high probability)
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Send: basis of m-dim subspace V C FFg

Receive: m vectors in IFZ

No errors: received vectors are basis of V

(with high probability)

In practice: U = H,(V) D E
Hi(V) random k-dim subspace of V

E error-subspace

Decoding possible if k not too small and dim(E) not too big.
Subspace distance: d(U, V) = dim(U) 4 dim(V) — 2dim(U N V)



Independent of network structure
Faster transmission
Slower decoding

Few codes known



Current day applications of error-correcting codes:

Network coding
» Distributed storage

Code-based crypto
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Distributed storage demands different things from codes:

Erasures instead of errors
Small size: typically n < 15

Reed-Solomon codes do not preform well



Locality: minimize # nodes accessed during repair



Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth



Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize # repair possibilities
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Current day applications of error-correcting codes:

Network coding
Distributed storage

» Code-based crypto



Public key cryptography

Everyone can encrypt with public function &
Inverse of £ (decryption) is hard to find

Only feasible with extra information about £

Examples: factoring, DLP



Peter Shor
(*1959)

1994: algorithm for fast factoring using quantum computer

— post-quantum cryptography



Robert J. McEliece
(*1942)

Harald Niederreiter
(*1944)




McEliece crypto system (1978)

Private: Goppa code that can correct t errors
G generator matrix
S base change matrix
P permutation matrix

Public: scrambled generator matrix G' =S -G - P



McEliece crypto system (1978)

Private: Goppa code that can correct t errors
G generator matrix
S base change matrix
P permutation matrix

Public: scrambled generator matrix G' =S -G - P

Message m, pick error vector e of weight at most t
Encryption: mG’ + e

Decryption: decode received vector using S, P and G



Code-based crypto demands different things from codes:

Decoding random linear codes

Hidden structure

(Reed-Solomon codes are difficult to scramble)



Current day applications of error-correcting codes:

» Network coding
» Distributed storage

» Code-based crypto



Thank you for your attention.



