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Richard Hamming
(1915–1998)

Bell Labs, ca. 1950
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Low redundancy

Large differences between codewords

Fast encoding / decoding



Distance function d(x , y) is a metric if:

d(x , y) ≥ 0 with equality iff x = y

d(x , y) = d(y , x)

d(x , y) + d(y , z) ≥ d(x , z)
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Alphabet Q

Length n

Hamming metric on Qn:

d(x , y) = number of positions in which vectors differ

= |{i ∈ [n] : xi 6= yi}|

error-correcting code: C ⊆ Qn
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Linear code: C ⊆ Fn
q subspace of dimension k

Generator matrix: rows generate C

Encoding: mG = c

Parity check matrix: C is kernel of this matrix

HcT = 0
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G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1



H =

 1 1 1 0 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1





Typical problem:

Fix n and k (redundancy), make d as large as possible

Singleton bound: d ≤ n − k + 1

Equality: Maximum Distance Separable (MDS) code
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Reed-Solomon code: pick α1, . . . , αn ∈ Fq

C = {(f (α1), . . . , f (αn)) : f ∈ Fq[x ], deg f < k}

G =


1 1 · · · 1 1
α1 α2 · · · αn−1 αn
...

...
...

...

αk−1
1 αk−1

2 · · · αk−1
n−1 αk−1

n





Reed-Solomon code is MDS

Several fast decoding algorithms known

Needs large alphabet: q > k



Current day applications of error-correcting codes:

I Network coding

Distributed storage

Code-based crypto
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Idea: send (rows of) matrices
instead of vectors



Send: X1, . . . ,Xm ∈ Fn
q

Receive: Y1, . . . ,Ym ∈ Fn
q

No errors: Y = AX

A full rank, known from the network structure

In practice: Y = A′X + Z

A′ rank erasures

Z errors

Decoding possible if rk(A′) not too small and rk(Z ) not too big.

Rank metric: d(X ,Y ) = rk(X − Y )
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Depends on network structure

Well studied (Hui 1951, Delsarte 1978, Gabidulin 1995)

Good codes known



Ralf Kötter
(1963–2009)

Frank Kschischang
(*1962)



a

↓

a

��

a

��

a+b

��

a+b
��

a, a + b

↓

a+b
��

a + b, b

↓

b
↓

b

��

b

��

Better idea: send (bases of)
subspaces instead of matrices

Random linear combinations



Send: basis of m-dim subspace V ⊆ Fn
q

Receive: m vectors in Fn
q

No errors: received vectors are basis of V

(with high probability)

In practice: U = Hk(V )⊕ E

Hk(V ) random k-dim subspace of V

E error-subspace

Decoding possible if k not too small and dim(E ) not too big.

Subspace distance: d(U,V ) = dim(U) + dim(V )− 2 dim(U ∩ V )
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Independent of network structure

Faster transmission

Slower decoding

Few codes known



Current day applications of error-correcting codes:

Network coding

I Distributed storage

Code-based crypto
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Distributed storage demands different things from codes:

Erasures instead of errors

Small size: typically n ≤ 15

Reed-Solomon codes do not preform well



Locality: minimize # nodes accessed during repair

Bandwidth: minimize total download bandwidth

Availability: optimize # repair possibilities
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hot data vs. cold data



Current day applications of error-correcting codes:

Network coding

Distributed storage

I Code-based crypto



Public key cryptography

Everyone can encrypt with public function E

Inverse of E (decryption) is hard to find

Only feasible with extra information about E

Examples: factoring, DLP



Peter Shor
(*1959)

1994: algorithm for fast factoring using quantum computer

→ post-quantum cryptography



Robert J. McEliece
(*1942)

Harald Niederreiter
(*1944)



McEliece crypto system (1978)

Private: Goppa code that can correct t errors

G generator matrix

S base change matrix

P permutation matrix

Public: scrambled generator matrix G ′ = S · G · P

Message m, pick error vector e of weight at most t

Encryption: mG ′ + e

Decryption: decode received vector using S ,P and G
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Code-based crypto demands different things from codes:

Decoding random linear codes

Hidden structure

(Reed-Solomon codes are difficult to scramble)



Current day applications of error-correcting codes:

I Network coding

I Distributed storage

I Code-based crypto



Thank you for your attention.


