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WHAT IS POLAR DECOMPOSITION?

Z & (CX can be decomposed uniquelyas 2 — 7°U Where T > O, ‘U| — 1

[TER>02R, uESlJ

g < (7 :Lie group can be decomposed uniquely as
)
VeR : contractible

Similarly,

g — VU where

U & KG . maximal compact




POLAR DECOMPOSITION OF A MATRIX

We focus on G=GL(n,R): the group of real nxn-invertible matrices

V: positive definite <& x"™Vx>0 for any x # 0

A= VU  where V - S P D(n) . symmetric positive definite matrix
U e O(n) . orthogonal matrix




PROPERTIES OF THE ORTHOGONAL COMPONENT

AB € GL(n,R) ABY — VVUU :Polar decomposition

Theorem

A—UB|p <|A—UB|p<|A+UB|p, YU €O(n)




PROOF

* It is enough to look at the case when B=E.

T Letsminimise ) 4 _ U2 = tr(A - U)(A-U) wder UUT = E

 plug in a Lagrange multiplier A, which we can take as symmetric
) tr((A—U)A-U)" + AUU" — E))

* By differentiating by U, —2(A—U)+2AU =0

*andso A= (E+A)U

-V =F e /A is SPD since it is the second derivative of (3%)

* Assertion follows from the uniqueness of the polar decomposition




PROPERTIES OF THE SPD COMPONENT

* The eigenvalues of V are the singular values of A A=VU V € SPD(n) :
o UeO(n):

- V =vAAT

. V2= AAT

is called the covariance matrix (up to a scalar depending on the convention)

when the mean of columns is zero

It is important in data analysis as the matrix amalgamates correlation among rows




TWO REMARKS




REMARK: FOR SINGULAR/NON-SQUARE MATRICES

* First, apply the QR-decomposition (Gram-Schmidt) to obtain
A=A"N
where A’ is a regular upper-triangular matrix

and N a matrix with orthonormal rows.

* Then, for the polar decomposition A’=VU,
we obtain A =V(UN),

which we regard as the polar decomposition of A




REMARK: LEFT AND RIGHT POLAR DECOMPOSITIONS

* The order of the two factors matter:

A=VU=U0V" V.V eSPD(n),U € O(n)
[

* the O(n) componentis same

* but SPD(n) components may differ
* Alis normal < V=V’




APPLICATIONS IN DATA ANALYSIS




WHITENING

* A€ R™ :data (each column represents a sample and each row a random variable)
* Correlation between variables is amalgamated in A AT

* Whitening is a linear transform (change of basis) W such that the rows of WA have no
correlation (white noise); that is, (WA) (WA)T = E

* [f A=VU is the polar decomposition,

(VAW =V ATV L = B




DATA ALIGNMENT

Orignal After translation
1 | Given two shapes (vector data sets),
: | align them using scaling and rotation.
After scaling After aligning
02 02 | An important pre-process for coordinate free data analysis

-04 02 0 02 04 -04 02 1] 0.2 0.4




DATA ALIGNMENT (PROCRUSTES PROBLEM)

A, B e R"™

We want to find U € O(n) and ¢ € R such that |A - cU B|gis minimised

4 N

Thm First, translate P and Q so that the means of the row vectors become zero.

Decompose ABT — VU

Then, Uand C = tr(V)/tr(BBT) gives the solution




DISTANCE BETWEEN POINT CLOUDS

Measure how different two data sets (indexed and of a fixed size)

A and B are up to scaling and rotation.

A, B e R"™
mi(}a\A—cUB\F

serves as a good distance between point clouds.
It can be computed by the previous theorem.




SINGULAR VALUE DECOMPOSITION (SVD)

.svDofA A = PYQ! P,Q € O(n)
M gz\é Z . diag(0-17 . 7O-TL)

0,>0 singular values

— @ A= (PEP")(PQ")

is the polar decomposition




APPLICATIONS OF SVD 4 _ PZQT

* pseudo inverse lR— PZ+QT

Ax=b => A%bis the least norm solution when there is a solution
x=A*b minimises |Ax-b|?> when there is no solution
(least square solution)

* matrix approximation by low rank matrix: (equivalent to PCA)
setting lower singular values to zero, one obtains the best approximation
: : AQ=Pz gives the
in terms of the Frobenius norm
components




PRINCIPAL COMPONENT ANALYSIS (PCA)

Dimension reduction technique

“Find a linear subspace of dim=n such that
the projected data loses as little as possible information”




COMPUTATION OF POLAR DECOMPOSITION




BY SVD

csvoofA A = PYQT P,.Q c O(n)
Y, = diag(oq,...,0n)

“ A= (PEPT)(PQT) is the polar decomposition

* PROS: numerically stable (many good algorithms for SVD)
* CONS: SVD is expensive and not always available




DIAGONALISATION

V:\/AAT A:VU VESPD(n):

UeOn):
can be computed by diagonalising the symmetric matrix A AT: ()

AAT = Qx0T

All the diagonal entries of Z (singular values) are positive, so take their square roots to have

V=vVAAT =QV¥Q", U=V"14

» diagonalisation is expensive




HIGHAM'S ITERATIVE METHOD

& h

i AO — A computes the orthogonal factor of A = UV
A]{;_|_1 — (Ak —|— Alzl)/Q and converges quadratically.
hm Ak — U ( can be accelerated by scaling )
\ k—oo Then,V =A UT Y

Proof: When A is diagonal, the iteration converges to E up to sign.
( x=(x+x")/2 => x?=|)
So A=P3QT converges to PQT=U




KAJI-OCHIAI'S METHOD

Recall the Cartan decomposition:
S & R S L(R>O)
i0 € iR = L(S')

z & (CX can be decomposed as 2 — eseie where

Similarly for AEGL(n, R)

A= exp(X) exp(Y) where X:symmetric
Ycon)={Y|Y' =-Y}




KAJI-OCHIAI'S METHOD

A=exp(X)exp(Y)  A=VU 00

=)
V=exp(X) e X =log(A47)/2
] = exp(—X)A

OK, but how can we compute log and exp!




KAJI-OCHIAI'S METHOD

* Divide X2
F exp(X) =1+ X - S |

by the characteristic polynomial (Carley-Hamilton) to obtain an (n-1)-degree polynomial f

» The coefficients of f are functions of eigenvalues of X.

- Same is true for log (and any conjugate invariant function)




EXPONENTIAL OF A SYMMETRIC MATRIX

Thm For a symmetric 3x3-matrix X,
(a similar formula holds for any size)

exp(X) = 1] + X + 3 X°

)\1 )\% Cq 6/\1
where 1 Ao )\% Co | = e2
| )\g C3 s A: eigenvalues of X




CFE EXPONENTIAL OF AN ANTI-SYMMETRIC MATRIX

Rodrigues’ theorem For X: 3x3 satisfying X" = -X

inf _  1—cosf 1 0\’
xR xr Iy + sinc(6)X + (sine§) X2

exp(X) =I5 +

0 62

t
where H = \/tr(;(X)

Our argument can be used to prove this famous formula and its generalisation




COMPARISON OF COMPUTATION METHODS

* SVD: Reliable,but slow.

Directly works for non-singular matrices
* Higham: Fast and widely used

* Kaji-Ochiai: Very fast when computing a lot of polar decompositions
of fixed size matrices.

Computes the Cartan decomposition as well.

Numerically unstable for near singular matrices




CODES

MIT licensed C++ codes are available at

https://github.com/shizuo-kaji/AffineLib

which contain all four algorithms and more



https://github.com/shizuo-kaji/AffineLib

APPLICATION IN GRAPHICS

Shape/Motion
* Analysis

*Recognition

* Deformation




SHAPE ANALYSIS

Find “distorted” parts

Piecewise linear map

f:M 2> M,

=> fl+ =VU polar decomp

and use |V-E| as an indicator




SHAPE MATCHING

Very fast “simulation” of an elastic body

M(t) = { x(t)ER3 }: elastic body

» M(t+At)

F(t): external force

geometric constraints




Muller et al.

Meshless Deformations
Based on Shape Matching
SIGGRAPH2005

Video

https://www.youtube.com/watch?v=CClwiC37kks
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* Find U € SO(n) which minimises |[U M(0) - M(t)| by Polar decomp

* Define “elasticity” force at a point x by ¢(U x(0) — x(t)) for some
constant ¢

* Update the speed of x by
X' (t+At) = d(xX’(t) + F(t) + c(U x’(0) — x(t)))
where d < |.0 is the damping coefficient




SHAPE MODELLING

shape + user interaction => deformed shape
aal BN



SHAPE MODELLING

Given a shape M and constraints, find a map f:M = R?

=







FIELD OF TRANSFORMATION

» First, construct a field A:M - GL(3;R) by solving

the Laplace equationsAU =0, AV=0 A=VU

under A(some points) = constraints

* Then,find f which minimises

/ IVf— AlFdM
M

The solution is given by the curl free part of
' the Helmholtz-Hodge decomposition of A




WHY DECOMPOSE!?

Mathematical reason Intuitive/cognitive reason

*  We want an “easy”’ presentation of GL(n; R)
* Let’s use Lie algebra
* The problem is that Lie correspondence
is not surjective since GL(n; R) is not compact
* But decomposed factors are mapped
surjectively by exponential

Rotation doesn’t cost




DEMO WITH LEAP MOTION




DISCRETE DIFFERENTIAL GEOMETRY

DDG discusses how to define A, V, | for discrete objects

and is getting popular in data sciences
Mantra:

* (meaningful) Big data in a high dimensional Euclidean space should lie on a
manifold

(dimension reduction)
* Geometry of the manifold tells a lot (curvature / intrinsic metric)

* Much of geometry is captured by the Laplacian




HARMONIC FIELD — A KNOWS THE GEOMETRY




THANK YOU!




