POLAR DECOMPOSITION OF SQUARE MATRICES

SHIZUO KAJI (YAMAGUCHI UNIVERSITY / JST PRESTO)

「情報セキュリティにおける数学的方法とその実践」 2016年12月21日 北海道大学

WHAT IS POLAR DECOMPOSITION?

 $z \in \mathbb{C}^{\times}$ can be decomposed uniquely as z = ru where r > 0, |u| = 1Similarly, $g \in G$: Lie group can be decomposed uniquely as g = VU where $U \in K_G$: maximal compact

POLAR DECOMPOSITION OF A MATRIX

We focus on G=GL(n, R): the group of real nxn-invertible matrices

V: positive definite $\Leftrightarrow x^T V x > 0$ for any $x \neq 0$

A=VU where $V\in SPD(n)$: symmetric positive definite matrix $U\in O(n)$: orthogonal matrix

PROPERTIES OF THE ORTHOGONAL COMPONENT

A,B \in GL(n,R) $AB^T = VU$: Polar decomposition

Theorem

$$|A - UB|_F \le |A - U'B|_F \le |A + UB|_F, \quad \forall U' \in O(n)$$

where
$$|C|_F := \sqrt{\operatorname{tr}(CC^T)} = \sqrt{\sum_{i,j} c_{i,j}^2}$$
 is the Frobenius norm

The U is the best approximating orthogonal transform

PROOF

- It is enough to look at the case when B=E.
- Let's minimise $|A U|_F^2 = \operatorname{tr}(A U)(A U)^T$ under $UU^T = E$
- plug in a Lagrange multiplier Λ , which we can take as symmetric

$$\Rightarrow \quad \operatorname{tr}\left((A-U)(A-U)^T + \Lambda(UU^T - E)\right)$$

• By differentiating by U,

$$-2(A-U) + 2\Lambda U = 0$$

- and so $A = (E + \Lambda)U$
- $V=E+\Lambda\,$ is SPD since it is the second derivative of (A)
- Assertion follows from the uniqueness of the polar decomposition

PROPERTIES OF THE SPD COMPONENT

- The eigenvalues of V are the singular values of A
- $V = \sqrt{AA^T}$

• $V^2 = A A^T$

 $A = VU^{V \in SPD(n):}_{U \in O(n):}$

- is called the covariance matrix (up to a scalar depending on the convention) when the mean of columns is zero
 - It is important in data analysis as the matrix amalgamates correlation among rows

TWO REMARKS

REMARK: FOR SINGULAR/NON-SQUARE MATRICES

• First, apply the QR-decomposition (Gram-Schmidt) to obtain A = A' N

where A' is a regular upper-triangular matrix and N a matrix with orthonormal rows.

• Then, for the polar decomposition A'=VU, we obtain A = V(UN),

which we regard as the polar decomposition of A

REMARK: LEFT AND RIGHT POLAR DECOMPOSITIONS

• The order of the two factors matter:

$$= VU = UV'$$
 $V, V' \in SPD(n), U \in O(n)$

- the O(n) component is same
- but SPD(n) components may differ
- A is normal ⇔ V=V'

APPLICATIONS IN DATA ANALYSIS

WHITENING

- $A \in \mathbb{R}^{n \times m}$: data (each column represents a sample and each row a random variable)
- Correlation between variables is amalgamated in A A^T
- Whitening is a linear transform (change of basis) W such that the rows of WA have no correlation (white noise); that is, (WA) (WA)^T = E
- If A=VU is the polar decomposition,

$$(V^{-1}A)(V^{-1}A)^T = V^{-1}AA^TV^{-1} = E$$

DATA ALIGNMENT

Given two shapes (vector data sets), align them using scaling and rotation.

An important pre-process for coordinate free data analysis

DATA ALIGNMENT (PROCRUSTES PROBLEM)

 $A, B \in \mathbb{R}^{n \times m}$

We want to find $U \in O(n)$ and $c \in R$ such that $|A - cUB|_F$ is minimised

Thm First, translate P and Q so that the means of the row vectors become zero. Decompose
$$AB^T = VU$$

Then, U and $c = tr(V)/tr(BB^T)$ gives the solution

DISTANCE BETWEEN POINT CLOUDS

Measure how different two data sets (indexed and of a fixed size) A and B are up to scaling and rotation.

$$A, B \in \mathbb{R}^{n \times m}$$
$$\min_{c, U} |A - cUB|_{F}$$

serves as a good distance between point clouds. It can be computed by the previous theorem.

SINGULAR VALUE DECOMPOSITION (SVD)

APPLICATIONS OF SVD
$$A = P \Sigma Q^T$$

• pseudo inverse
$$\ A^+ = P \Sigma^+ Q^T$$

 $Ax=b => A^+b$ is the least norm solution when there is a solution $x=A^+b$ minimises $|Ax-b|^2$ when there is no solution (least square solution)

 matrix approximation by low rank matrix: (equivalent to PCA) setting lower singular values to zero, one obtains the best approximation in terms of the Frobenius norm

 $AQ=P\Sigma$ gives the

components

PRINCIPAL COMPONENT ANALYSIS (PCA)

Dimension reduction technique

"Find a linear subspace of dim=n such that the projected data loses as little as possible information"

COMPUTATION OF POLAR DECOMPOSITION

BY SVD

• SVD of A
$$A = P \Sigma Q^T$$
 $P, Q \in O(n)$
 $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$

$$A = (P \Sigma P^T) (P Q^T)$$
 is the polar decomposition

- PROS: numerically stable (many good algorithms for SVD)
- CONS: SVD is expensive and not always available

DIAGONALISATION

$$V = \sqrt{AA^7}$$

can be computed by diagonalising the symmetric matrix A A^T:

$$AA^T = Q\Sigma Q^T$$

All the diagonal entries of Σ (singular values) are positive, so take their square roots to have

$$V = \sqrt{AA^T} = Q\sqrt{\Sigma}Q^T, \quad U = V^{-1}A$$
 diagonalisation is expensive

$$A = VU^{V \in SPD(n):}_{U \in O(n):}$$

HIGHAM'S ITERATIVE METHOD

The
$$A_0 = A$$
 compared $A_{k+1} = (A_k + A_k^{-1})/2$ and compared $\lim_{k \to \infty} A_k = U$ (can Then, Y

computes the orthogonal factor of A = UVand converges quadratically. (can be accelerated by scaling) Then $V = A U^T$

Proof: When A is diagonal, the iteration converges to E up to sign. ($x=(x+x^{-1})/2 => x^2=1$) So A=P ΣQ^T converges to PQ^T=U

KAJI-OCHIAI'S METHOD

Recall the Cartan decomposition:

$$z\in \mathbb{C}^{ imes}$$
 can be decomposed as $\ z=e^{s}e^{i heta}$ where

$$s \in \mathbb{R} = L(\mathbb{R}_{>0})$$
$$i\theta \in i\mathbb{R} = L(S^1)$$

Similarly for $A \in GL(n, R)$

 $A = \exp(X) \exp(Y) \quad \text{where X: symmetric$} \\ Y \in \mathfrak{o}(n) := \{Y \mid Y^T = -Y\}$

KAJI-OCHIAI'S METHOD

$$A = \exp(X) \exp(Y)$$

$$A = VU \quad V \in SPD(n) : U \in O(n) :$$

$$V = \exp(X) \quad \text{where } X = \log(AA^T)/2$$

$$U = \exp(-X)A$$

OK, but how can we compute log and exp?

KAJI-OCHIAI'S METHOD

• Divide
$$\exp(X) = 1 + X + rac{X^2}{2!} + \cdots$$

by the characteristic polynomial (Carley-Hamilton) to obtain an (n-1)-degree polynomial f

- The coefficients of f are functions of eigenvalues of X.
- Same is true for log (and any conjugate invariant function)

EXPONENTIAL OF A SYMMETRIC MATRIX

Thm For a symmetric 3x3-matrix X, (a similar formula holds for any size)

where
$$\begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 1 & \lambda_2 & \lambda_2^2 \\ 1 & \lambda_3 & \lambda_3^2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} e^{\lambda_1} \\ e^{\lambda_2} \\ e^{\lambda_3} \end{pmatrix}$$

 λ_i : eigenvalues of X

CF. EXPONENTIAL OF AN ANTI-SYMMETRIC MATRIX

Rodrigues' theorem

For X:
$$3x3$$
 satisfying $X^T = -X$

$$\exp(X) = I_3 + \frac{\sin\theta}{\theta}X + \frac{1 - \cos\theta}{\theta^2}X^2 = I_3 + \operatorname{sinc}(\theta)X + \frac{1}{2}\left(\operatorname{sinc}\frac{\theta}{2}\right)^2 X^2$$

where
$$heta=\sqrt{rac{ ext{tr}({}^{t}\!XX)}{2}}$$

Our argument can be used to prove this famous formula and its generalisation

COMPARISON OF COMPUTATION METHODS

• SVD: Reliable, but slow.

Directly works for non-singular matrices

- Higham: Fast and widely used
- Kaji-Ochiai: Very fast when computing a lot of polar decompositions of fixed size matrices.
 Computes the Cartan decomposition as well.
 Numerically unstable for near singular matrices

CODES

MIT licensed C++ codes are available at

https://github.com/shizuo-kaji/AffineLib

which contain all four algorithms and more

APPLICATION IN GRAPHICS

Shape/Motion

Analysis

- Recognition
- Deformation

SHAPE ANALYSIS

Find "distorted" parts

Piecewise linear map

f: $M_1 \rightarrow M_2$ => $f|_T = VU$ polar decomp and use |V-E| as an indicator

SHAPE MATCHING

Very fast "simulation" of an elastic body

 $M(t) = \{ x(t) \in \mathbb{R}^3 \}: \text{ elastic body}$

F(t): external force

geometric constraints

Video https://www.youtube.com/watch?v=CCIwiC37kks

Muller et al. Meshless Deformations Based on Shape Matching SIGGRAPH2005

- Find $U \in SO(n)$ which minimises |U M(0) M(t)| by Polar decomp
- Define "elasticity" force at a point x by c(U x(0) x(t)) for some constant c
- Update the speed of x by

$$x'(t+\Delta t) = d(x'(t) + F(t) + c(U x'(0) - x(t)))$$

where d < 1.0 is the damping coefficient

SHAPE MODELLING

shape + user interaction => deformed shape

SHAPE MODELLING

Given a shape M and constraints, find a map $f: M \rightarrow R^3$

FIELD OF TRANSFORMATION

• First, construct a field A: $M \rightarrow GL(3; R)$ by solving

the Laplace equations $\Delta U = 0$, $\Delta V = 0$ A=VU under A(some points) = constraints

• Then, find f which minimises

$$\int_{M} |\nabla f - A|^2 dM$$

The solution is given by the curl free part of the Helmholtz-Hodge decomposition of A

WHY DECOMPOSE?

Mathematical reason

- We want an "easy" presentation of GL(n; R)
- Let's use Lie algebra
- The problem is that Lie correspondence is not surjective since GL(n; R) is not compact
- But decomposed factors are mapped surjectively by exponential

Intuitive/cognitive reason

Rotation doesn't cost

DEMO WITH LEAP MOTION

DISCRETE DIFFERENTIAL GEOMETRY

DDG discusses how to define Δ , ∇ , \int for discrete objects and is getting popular in data sciences

Mantra:

 (meaningful) Big data in a high dimensional Euclidean space should lie on a manifold

(dimension reduction)

- Geometry of the manifold tells a lot (curvature / intrinsic metric)
- Much of geometry is captured by the Laplacian

HARMONIC FIELD – Δ KNOWS THE GEOMETRY

THANK YOU!

