
Kana Shimizu

Department of Computer Science and Engineering

Waseda University

準同型暗号による
生命情報の秘匿検索

Dec 19, 2016 ＠情報セキュリティにおける数学的方法とその実践

Outline

•Background

•Additively homomorphic encryption

•Beacon search by Oblivious transfer

•Genome sequence search
• Overview of the proposed method
• Recursive oblivious transfer
• Burrows Wheeler Transform

• Results

•Conclusion

DNA sequence

•DNA is a molecule that carries genetic information.

• It consists of four nucleotides (Adenine, Guanine,
Cytosine, Thymine), thus it is represented as a
sequence of four letters.

•Analyzing DNA sequences is one of the most important
approaches in current biology.

GGCATGAAAGTCAGGGCAGAGCCATCTATTGC

TTACATTTGCTTCTGACACAACTGTGTTCACTA

GCAACCTCAAACAGACACCATGGTGCACCTGA

CTCCTGAGGAGAAGTCTGCCGTTACTGCCCTG

TGGGGCAAGGTGAACGTGGATGAAGTTGGTG

GTGAGGCCCTGGGCAGGTTGGTATCAAGGTTA

CAAGACAGGTTTAAGGAGACCAATAGAAACTG

GGCATGTGGAGACAGAGAAGACTCTTGGGTTT

CTGATAGGCACTGACTCTCTCTGCCTATTGGT

Next Generation Sequencer

•Recently, the technology for determining DNA sequence
has been dramatically improved.

•The instrument that determines DNA sequence based on
the new technology is called NGS.

GGCATGAA

AGTCAGGG

CAGAGCCA

TCTATTGCT

TACATTTG

CTTCTGAC

ACAACTGT

G T T C A C

http://www.pacb.com
/

http://jp.illumina.com/https://www.thermofisher.com/

Genome “Big Data”

Human
Genome
Project
（1990～

2003）

NGS is
introduced to

market.

Sanger sequencer

High-throughput
sequencer

Length of HG: 3・10^9
http://www.genome.gov/sequencingcosts/

$1K$3B

Growth of personal genome data

•The huge cost down has encouraged
sequencing of individual’s genome.
• Large scale cohort studies such as..
• ToMMo will recruit 150K participants from 2013 to

2017, in Japan
• Genomics England aims to sequence 100K

individuals’ genome, in UK.
•Direct-to-consumer genetic testing
• 23andMe has sequenced more than 1M customers’

DNA.
• openSNP: Web site of collecting DTC results
≒2700 genotypes (June, 2016)

• It also poses privacy risks.

Variation of Genome

• The feature of an individual’s genome is described by a
difference between the genome and the reference genome.

• Sequence variants are considered to associate with
phenotype (observable traits of the individual.)

• Num. of. Known SNP is around 3M
• SNP: single mutation observed more than 1% of a population.

• One of the important topics of bioinformatics is to
find association between phenotypes and genotypes.

• Some of such associations are already known.
• BRCA: breast cancer, ADH4: alcohol metabolizing, etc..

Ref: GGCATGAAAGTCAGGGCAGAGCCATCTATTGC

Individual: GGCATGAAAGTCTGGGCAGAGCCAT-TATTGC

http://time.com/

(P. Claes et al. Forensic Science International: Genetics, 2014)

The privacy problems of personal genome
• Genome can be a personal identifier, while it is strongly associated

with phenotype.

• Lin et al., 2004
• ≒80 SNPs can identify an individual.

• Gymrek et al., Science, 2013
• Surname can be recovered from personal genomes by profiling Y-STRs and

querying genetic genealogy databases.

• Homer et al., 2008
• Statistics of GWAS study leak whether or not a participant belongs to

case/control.

• Legislation is not well prepared
• US: Genetic information nondiscrimination act (GINA)

• Does not apply to life insurance and the military.
• The grand daughter of the cancer patient was rejected for the position in

US army after taking genetic test (Lindor, 2012)

• Japan: None
• Meiji Yasuda Life Insurance Co. is deliberating using people's genetic

information to provide targeted services.

The privacy problems of personal genome

• The privacy problem hinders access to many data resources potentially
useful for a variety of scientific researches.

• Global Alliance for Genomics & Health
• Consortium aims for sharing genetic information for research purposes.

• Established in 2013. 375 institutions has been participated so far.

Yes or No

3rd, A?

http://genomicsandhealth.org/

Privacy Preserving Data Mining

•The term PPDM is firstly introduced by the papers
(Agrawal & Srikant, 2000) and (Lindell & Pinkas, 2000)

•The goal: To release aggregate information about the
data without releasing individual information.

•Example:
• Aggregate info: Average salary of employees in the

University
• Individual info: A specific employee’s salary

Two main approaches

•Perturbation approach
• The data or the result of the database search is perturbed

so that a database user is not able to obtain “true”
database contents.

•Cryptographic approach
• The data holder is called “party”. Each party uses

encryption to protect his/her own data. The data are
processed without decryption, and only the result of the
data mining is obtained by specific parties.

• Those two approaches could be complementary.

Cryptographic approach

•Homomorphic Encryption
• Enabling add/mul operations on encrypted data.

• Additive Homomorphic Encryption (Elgamal, 1984), (Paillier, 1999)

• Fully Homomorphic Encryption (Gentry, 2009)

•Garbled Circuit (Yao, 1986)
• Enabling computation of any function while the input

variables are encrypted.

•Secret Sharing
• A data point is divided into k shares. The data point is

recovered only when θ shares are collected. Some
operations can be computed on shares.

Outline

•Background

•Additively homomorphic encryption

•Beacon search by Oblivious transfer

•Genome sequence search
• Overview of the proposed method
• Recursive oblivious transfer
• Burrows Wheeler Transform

• Results

•Conclusion

Homomorphic Encryption

•Homomorphism: A structure-preserving map between
two algebraic structures.

•Additive homomorphic encryption
• Additive op. on the plain text is equivalent to another op. on

the cipher text.

• Lifted ElGamal [Elgamal84], Paillier [Paillier99]

)2()1()21(mEncmEncmmEnc 

),(),(:  HGf

)()()log(

),(),(:log

2121 gfgfgg

RR





)()()(2121 gfgfggf s.t.

Additively Homomorphic cryptosystem

Paillier [Paillier99]

Secret key：

Public key：

Cipher text of m：

is a random value.

),(qpsk 

2mod:)(nrgmEnc nm

pk 

*
2n

Zr

221 mod)21()2()1(nrrgmEncmEnc nmm

pkpk  

),(gnpk 

21))1()1((mmmEncmEncDec pkpksk 

qpn ,

2mod1 nkng 

)1(mEnc
m1

user’s data

server’s data

m2Secret key :
For Decryption only

server’s data

m2

Secure additive operation based on
additive homomorphic encryption

Computing m1 + m2 on the server,
without leaking m1 to the server.

Public key:
For Encryption only

)1(mEnc

Secure additive operation based on additive
homomorphic encryption

server’s data

m2
server’s data

m2

m1
user’s data

Secret key :
For Decryption only

Public key:
For Encryption only

Secure additive operation based on additive
homomorphic encryption

server’s data

m2
server’s data

m2

m1
user’s data

Secret key :
For Decryption only

Public key:
For Encryption only

m1 is invisible
from Server.

)21()2()1(mmEncmEncmEnc 

Secure additive operation based on additive
homomorphic encryption

server’s data

m2
server’s data

m2

m1
user’s data

Secret key :
For Decryption only

Public key:
For Encryption only

m2)2(mEnc

Secure additive operation based on additive
homomorphic encryption

)21(mmEnc 

server’s data

m2
server’s data

m2

m1
user’s data

Secret key :
For Decryption only

Public key:
For Encryption only

m2)2(mEnc

)21(mmEnc 

m1
user’s data

Secure additive operation based on additive
homomorphic encryption

Secret key :
For Decryption only

Public key:
For Encryption only

server’s data

m2
server’s data

m2

21 mm 

Secure additive operation based on additive
homomorphic encryption

server’s data

m2
server’s data

m2

21 mm 

Secure additive operation based on additive
homomorphic encryption

server’s data

m2
server’s data

m2

Additive operation is performed on the server
without leaking client’s value to the server.

Outline

•Background

•Additively homomorphic encryption

•Beacon search by Oblivious transfer

•Genome sequence search
• Overview of the proposed method
• Recursive oblivious transfer
• Burrows Wheeler Transform

• Results

•Conclusion

Can we make secure
beacon search?

Query: (2, ‘A’)

Beacon Index Yes: 1
No: 0

1, ‘A’ 1 1

1, ‘T’ 2 0

1, ‘G’ 3 0

1, ‘C’ 4 1

2, ‘A’ 5 0

… … …

3000000000, ‘A’ 11999999997 1

Public Private

Enc(5)

Enc(0)

What is necessary?

•The user needs to obtain t-th element of the server’s
look-up table (vector) v without leaking t to the server.

•The problem is conventionally called Oblivious Transfer.

t

][tv
),,(1 Nvvv 

The server does not learn t.

How do we implement OT?

(1 out of N) Oblivious Transfer by AHE

Secret key

(for decryption)

Public key

(for encryption)

 )Enc(,),Enc(1 Nqq 

[Step 1] Key setup

[Step 2] Query entry

),,(1 Nvvv 






0

1
iq

)(

)(

ti

ti





 )0Enc(,),1Enc(,),0Enc(

t-th cyphertext

(1 out of N) Oblivious Transfer by AHE

   







])[Enc()Enc(][

)Enc(][)Enc(]1[

])[Enc(

1

ivqivti

qNvqv

tv

i

N





Secret key

(for decryption)

Public key

(for encryption)

 )Enc(,),Enc(1 Nqq 

[Step 1] Key setup

[Step 2] Query entry

[Step 3] Computation of an encrypted result

),,(1 Nvvv 






0

1
iq

)(

)(

ti

ti





)0Enc()Enc(][ iqivti

     )0Enc(][)1Enc(][)0Enc(]1[ Nvtvv 

t-th cyphertext

Enc(0)Enc(0) Enc(v[t])

])[Enc(])[Enc(iqiq 
For i = 1,…,N:

Repeat addition of Enc(q[i]) v[i] times

(1 out of N) Oblivious Transfer by AHE

   







])[Enc()Enc(][

)Enc(][)Enc(]1[

])[Enc(

1

ivqivti

qNvqv

tv

i

N





Secret key

(for decryption)

Public key

(for encryption)

 )Enc(,),Enc(1 Nqq 

])[Enc(tvc 

[Step 1] Key setup

[Step 2] Query entry

[Step 3] Computation of an encrypted result

[Step 4] Decryption of the encrypted result

)Dec(][ctv 
),,(1 Nvvv 






0

1
iq

)(

)(

ti

ti





)0Enc()Enc(][ iqivti

Outline

•Background

•Additively homomorphic encryption

•Beacon search by Oblivious transfer

•Genome sequence search
• Overview of the proposed method
• Recursive oblivious transfer
• Burrows Wheeler Transform

• Results

•Conclusion

Problem Setup

•Our goal is to achieve following requirement:
• A user would like to search a genomic sequence in a database

to know whether or not his query matches to the DB.
• For privacy reasons, the user wants to conceal the query, and

the server wants to return only the result, and do not want to
return any other information.

User DB

Don’t see
my query.

Query is secret

DB contents are

also secret

Don’t
download
whole DB.

Related Works

•Computation of edit distance (Jha+2008, etc)

•Fixed-length keyword match（Blanton+2010）

•Finding similar sequence based on hamming
distance（Baldi+2011, Cristofaro+2013）

•PIR of variable length keyword (Naganuma+2012)

Our goal:
•Search variable length keyword match while

keeping both sides’ privacy.

Adversary Model

• Semi-honest
• Both parties follow the protocol, but an adversarial one attempts to infer

additional information about the other party’s secret input from the legally
obtained information.

• Malicious
• An adversarial party cheats even in the protocol (e.g. by inputting maliciously

chosen invalid values) in order to illegally obtain additional information
about the secret.

Our Approach

• To combine
• An efficient data structure such as (P)BWT

• Cryptographic technique (Recursive Oblivious Transfer)

• (P)BWT stores string information very efficiently and still allows
computations (Ferragina+2005, Durbin2014)

• k-prefix match b/w a query and DB is reported as an interval [fk, gk] on
the data structure.

• An efficient algorithm is known to compute fk+1 from fk and q[k+1].

• Those values are precomputable.

1 0 0

x0 1 0 0 1 0 1 0 …

x1 1 1 0 1 0 0 1 …

x2 1 0 0 0 0 0 1 …

x3 0 0 0 0 1 1 1 …

x4 1 0 1 1 1 1 0 …

f1

g1

f2

g2

f3

g3

query =
x3 x3 x3 x3 x2 x2 …

x0 x0 x0 x2 x0 x1 …

x1 x2 x2 x0 x1 x0 …

x2 x4 x1 x1 x3 x3 …

x4 x1 x4 x4 x4 x4 …

(a) Genotype matrix X (b) Positional prefix arrays A (c) PBWT matrix P

0 0 0 1 0 1 …

0 0 1 0 1 1 …

1 0 0 0 0 0 …

0 1 1 0 1 1 …

0 0 1 1 1 0 …

Searching (P)BWT by Lookup tables

• The updates can be written in
the form of referring a large,
static look-up table v. 00 ,

0]1[

gf

q 

][],[0000 gvfv

][

][

1]2[

001

001

gvg

fvf

q







1st iteration:

2nd iteration:

…][],[1111 gvfv

11,

1][





kk gf

kq

K-th iteration:

][],[1111  kk gvfv

,...)11,11,10,10(

,...)2,1,1,0(

1

0





v

v

,...)0,1,1,0(q

][

][

1

1

KcK

KcK

gvg

fvf









111   KK fg
•Match is obtained by:

OT is used to update f, g

Suffix Array (Manber91)
• Sorted array of all suffixes of a string.

S1 ATGAATGCGA$

S2 TGAATGCGA$

S3 GAATGCGA$

S4 AATGCGA$

S5 ATGCGA$

S6 TGCGA$

S7 GCGA$

S8 CGA$

S9 GA$

S10 A$

S11 $

S="ATGAATGCGA$"

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

11

10

4

1

5

8

9

3

7

2

6

SA

Searching on SA
• Conduct binary search.

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

(Example) Search “ATG”.

Greater than “ATG”?

Searching on SA
• Conduct binary search.

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

(Example) Search “ATG”.

Greater than “ATG”?

Searching on SA
• Conduct binary search.

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

(Example) Search “ATG”.

Greater than “ATG”?

Searching on SA
• Conduct binary search.

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

(Example) Search “ATG”.

Greater than “ATG”?

Searching on SA
• Conduct binary search.

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

(Example) Search “ATG”.

Greater than “ATG”?

Time: O(|S| log N)
An efficient construction of SA (Nong+09):
O(N) time, O(N(log N+log|Σ|))space

Searching on SA
• Conduct binary search.

S11 $

S10 A$

S4 AATGCGA$

S1 ATGAATGCGA$

S5 ATGCGA$

S8 CGA$

S9 GA$

S3 GAATGCGA$

S7 GCGA$

S2 TGAATGCGA$

S6 TGCGA$

(Example) Search “ATG”.

Greater than “ATG”?

11

10

4

1

5

8

9

3

7

2

6

SA

Finding SA interval [4, 5]

How do we find each SA interval with O(1)? → FM-index

Preparation
• i-th character of a string S is denoted by S[i].

• Rank dictionary:

}1,][|{),(Rank tjcjSjtSC 





cr

rc NSS),(Rank)(CF

i:123456789

S:ATGCTAGCT

(Example)

1)3,(Rank

2)6,(Rank

T

A





S

S

6)(CF

0)(CF

T

A





S

S

Preparation
• i-th character of a string S is denoted by S[i].

• Rank dictionary:

}1,][|{),(Rank tjcjSjtSC 





cr

rc NSS),(Rank)(CF

i:123456789

S:ATGCTAGCT

(Example)

1)3,(Rank

2)6,(Rank

T

A





S

S

6)(CF

0)(CF

T

A





S

S

Wavelet tree(Grossi+03):
Time: O(log|Σ|)
Space: O(n log |Σ|)

Burrows-Wheeler Transform (Burrows+94)

• B[i] = S[SA[i]-1]

A

G

G

$

A

G

C

T

T

A

A

S="ATGAATGCGA$"

$

A$

AATGCGA$

ATGAATGCGA$

ATGCGA$

CGA$

GA$

GAATGCGA$

GCGA$

TGAATGCGA$

TGCGA$

Burrows-Wheeler Transform
(Burrows+94)

• B is Reversible transformation of S
• No need to store additional data.

• Searchable (FM-index)

• Good fit to compression
• Identical characters tends to be located near.

Let’s start from an extreme case

S="bfcgahejid$"

$

ahejid$

bfcgahejid$

cgahejid$

d$

ejid$

fcgahejid$

gahejid$

hejid$

id$

jid$

d

g

$

f

i

h

b

c

a

j

e

B[i] = S[SA[i]-1]

B[1] = S[11-1]

S[SA[1]=11]

Let’s start from an extreme case

S="bfcgahejid$"

$

ahejid$

bfcgahejid$

cgahejid$

d$

ejid$

fcgahejid$

gahejid$

hejid$

id$

jid$

d

g

$

f

i

h

b

c

a

j

e

B[i] = S[SA[i]-1]

Let’s start from an extreme case

S="bfcgahejid$"

$

ahejid$

bfcgahejid$

cgahejid$

d$

ejid$

fcgahejid$

gahejid$

hejid$

id$

jid$

d

g

$

f

i

h

b

c

a

j

e

B[i] = S[SA[i]-1]

Let’s start from an extreme case

S="bfcgahejid$"

$

ahejid$

bfcgahejid$

cgahejid$

d$

ejid$

fcgahejid$

gahejid$

hejid$

id$

jid$

d

g

$

f

i

h

b

c

a

j

e

B[i] = S[SA[i]-1]

What about identical characters?

A

G

G

$

A

G

C

T

T

A

A

$

A$

AATGCGA$

ATGAATGCGA$

ATGCGA$

CGA$

GA$

GAATGCGA$

GCGA$

TGAATGCGA$

TGCGA$

S="ATGAATGCGA$"

What about identical characters?

A1
G

G

$

A2
G

C

T

T

A3
A4

$

A1$

A2ATGCGA$

A3TGAATGCGA$

A4TGCGA$

C1GA$

G1A$

G1AATGCGA$

G1CGA$

T1GAATGCGA$

T1GCGA$

S="ATGAATGCGA$"

The position of the same ‘A’ is determined by the same substring.

What about identical characters?

A1
G

G

$

A2
G

C

T

T

A3
A4

$

A1$

A2ATGCGA$

A3TGAATGCGA$

A4TGCGA$

C1GA$

G1A$

G1AATGCGA$

G1CGA$

T1GAATGCGA$

T1GCGA$

S="ATGAATGCGA$"

The position of the same ‘A’ is determined by the same substring.

What about identical characters?

A1
G1
G2
$

A2
G3
C

T

T

A3
A4

$

A1$

A2ATGCGA$

A3TGAATGCGA$

A4TGCGA$

C1GA$

G1A$

G2AATGCGA$

G3CGA$

T1GAATGCGA$

T1GCGA$

S="ATGAATGCGA$"

The position of the same ‘A’ is determined by the same substring.

LF-Mapping:

),B(Rank(B)CF:)LF(]B[]B[ii ii 

P = 1

for i = 1 to N

S[N-i] = B[p]

p = LF(p)

end for

FM-index (Ferragina+00)

• Searching on BWT
• Using a rank dictionary on BWT of S

• Backward search
• Searching from the last character and extend the match

one by one, in a similar way to LF-mapping.

• Time complexity
• O(1) by naïve dictionary, O(Log |Σ|) by Wavelet tree

),B(Rank(B)CF

1)1,B(Rank(B)CF

gg

ff

CC

CC





FM-index (Ferragina+00)

A1
G1
G2
$

A2
G3
C

T1
T2
A3
A4

$

A1$

A2ATGCGA$

A3TGAATGCGA$

A4TGCGA$

C1GA$

G1A$

G2AATGCGA$

G3CGA$

T1GAATGCGA$

T2GCGA$

S="ATGAATGCGA$"

f =1, g =11 → f’ =2, g’ =5
Finding substring ending
with ‘A’.

i = |q|

f=1, g=N

While f<=g

c = q[i--]

end for

),B(Rank(B)CF

1)1,B(Rank(B)CF

gg

ff

CC

CC





11

10

4

1

5

8

9

3

7

2

6

SA

FM-index (Ferragina+00)

A1
G1
G2
$

A2
G3
C1
T1
T2
A3
A4

$

A1$

A2ATGCGA$

A3TGAATGCGA$

A4TGCGA$

C1GA$

G1A$

G2AATGCGA$

G3CGA$

T1GAATGCGA$

T2GCGA$

S="ATGAATGCGA$"

f =2, g =5 → f’ =7, g’ =8
Extending the match by ‘G’
from ‘A’.

i = |q|

f=1, g=N

While f<=g

c = q[i--]

end for

),B(Rank(B)CF

1)1,B(Rank(B)CF

gg

ff

CC

CC





11

10

4

1

5

8

9

3

7

2

6

SA

FM-index (Ferragina+00)

A1
G1
G2
$

A2
G3
C1
T1
T2
A3
A4

$

A1$

A2ATGCGA$

A3TGAATGCGA$

A4TGCGA$

C1GA$

G1A$

G2AATGCGA$

G3CGA$

T1GAATGCGA$

T2GCGA$

S="ATGAATGCGA$"

f =7, g =8 → f’ =10, g’ =10
Extending the match by ‘T’
from “GA”.

i = |q|

f=1, g=N

While f<=g

c = q[i--]

end for

),B(Rank(B)CF

1)1,B(Rank(B)CF

gg

ff

CC

CC





11

10

4

1

5

8

9

3

7

2

6

SA

Searching (P)BWT by Lookup tables

• The updates can be written in
the form of referring a large,
static look-up table v. 00 ,

0]1[

gf

q 

][],[0000 gvfv

][

][

1]2[

001

001

gvg

fvf

q







1st iteration:

2nd iteration:

…][],[1111 gvfv

11,

1][





kk gf

kq

K-th iteration:

][],[1111  kk gvfv

,...)11,11,10,10(

,...)2,1,1,0(

1

0





v

v

,...)0,1,1,0(q

][

][

1

1

KcK

KcK

gvg

fvf









111   KK fg
•Match is obtained by:

OT is used to update f, g

Conceal intermediates

• It is ideal to conceal all the
intermediates for protecting
server’s privacy more rigorously.

00 ,

0]1[

gf

q 

][],[0000 gvfv

][

][

1]2[

001

001

gvg

fvf

q







1st iteration:

2nd iteration:

…][],[1111 gvfv

11,

1][





kk gf

kq

K-th iteration:

][],[1111  kk gvfv

,...)11,11,10,10(

,...)2,1,1,0(

1

0





v

v

,...)0,1,1,0(q

]...]][[[0]1[][]1[1 fvvvf qkqkqk  

How do we achieve this?

]...]][[[0]1[][]1[1 gvvvg qkqkqk  

Recursive Oblivious Transfer

(1 out of N) Recursive OT by AHE

))][Enc((mod Nrtvc 

),,(1 Nvvv 

Add a random value

(1 out of N) Recursive OT by AHE

Secret key

(for decryption)

Public key

(for encryption)

 )Enc(,),Enc(1 Nqq 

[Step 1] Key setup

[Step 2] Query entry

),,(1 Nvvv 

 )0Enc(,),1Enc(,),0Enc(

(v[t] + r)-th cyphertext






0

1
iq

)][(

)][(

rtvi

rtvi





(1 out of N) Recursive OT by AHE

Secret key

(for decryption)

Public key

(for encryption)

 )Enc(,),Enc(1 Nqq 

[Step 1] Key setup

[Step 2] Query entry

[Step 3] Computation of an encrypted result

),,(1 Nvvv 

   )Enc(][)Enc(]1[

]])[[Enc(

Mod_)(Mod_)1(NrNNr qNvqv

tvv

 










0

1
iq

)][(

)][(

rtvi

rtvi





 )0Enc(,),1Enc(,),0Enc(

 )0Enc(,),1Enc(,),0Enc(

Server makes an r-rotated permutation of the query
to recover the correct query.

(v[t] + r)-th

v[t]-th

(1 out of N) Recursive OT by AHE

Secret key

(for decryption)

Public key

(for encryption)

 )Enc(,),Enc(1 Nqq 

]])[[Enc(tvvc 

[Step 1] Key setup

[Step 2] Query entry

[Step 4] Decryption of the encrypted result

)Dec(]][[ctvv 
),,(1 Nvvv 






0

1
iq

)][(

)][(

rtvi

rtvi





[Step 3] Computation of an encrypted result

   )Enc(][)Enc(]1[

]])[[Enc(

Mod_)(Mod_)1(NrNNr qNvqv

tvv

 





The user obtains v[v[t]] w/o knowing v[t]

A communication efficient algorithm

•Sublinear communication OT (Zhang+2013)

• O(√N) communication

•Use 2-dimention representation of t :
• t_0 = t/√N, t_1 = t%√N
• Computing:

v[i×√N + t_1] + (t_0 - i)×r
for i =0 ,…,√N

• (t_0 - i)×r =0 iff. T_0=i

(can leak v[i×√N + t_1]
only t_0-th row.)

A communication efficient algorithm

•Sublinear communication OT (Zhang+2013)

• O(√N) communication

•Use 2-dimention representation of t :
• t_0 = t/√N, t_1 = t%√N
• Computing:

v[i×√N + t_1] + (t_0 - i)×r
for i =0 ,…,√N

• Use similar technique
to recursive version.

PBWT-sec (shimizu+2016)

•PBWT (Durbin, 2014) + Recursive OT

Algorithm: PBWT-sec

Server creates a look-up table

User initialize [f, g]

for k = 1 ,…, L:

// updating [f, g]

User sends f = f + q[k]×M, g = g + q[k]×M

Server returns V(f, k), V (g, k)

User updates f = V(f, k), g = V(g, k)

User knows # of k-prefix matches by (g – f + 1)

if g – f < 0: then exit;

V

Computing
matches by ROT

Shimizu+, Bioinformatics, 2016
https://github.com/iskana/PBWT-sec

Recursive search data structure
for genomic data
•Our approach is applicable for the data structure

enabling recursive search such as..

•BWT (Burrows+94, Ferragina+00)

• A popular algorithm for NGS read alignment.

• BWA(Li&Durbin10)
• Bowtie(Langmead+09)
• SOAP(Li+08)
etc…

•PBWT (Durbin14)

• BWT like structure for searching aligned sequences.

Searching on aligned sequences

Sequence
k

s1: ATGCA…AGCTA

s2: ATGTC…TATGT

s3: TTGCC…AGCGA

s4: TTGTC…TATGT

s5: GTGCA…GACTA

s6: CTGTC…TATGT

…

sM: CTGTC…TATGT

query: GCA…GAAA

of matches from k-
th SNP for every

prefix

GCA,...,GAAA
from 3rd SNP

Match is computed by the data
structure (pBWT) similar to BWT.

Complexity

 PBWT-sec

 Linear to the query length l

 Standard (exhaustive) approach

 Sending every suffix of a query to check matches

 Exponential to the query length l

※ Alphabet friendly algorithm has been developed (Sudo+, in preparation)

Experimental setup

• Implementation of PBWT-sec
• C++ using AISTCRYPT (Open source C++ library of EC Elgamal).

•2,184 haploid genomes from the chrom. 1 of the 1,000
Genomes Project (phase 1 data release).

•Tested on:
• Laptop

(Intel Core(TM) i7 3.00GHz CPU; total 4 cores with HT)
• A compute node

(Intel Xeon 2.40GHz CPU; total of 32 cores with HT)

Performance on laptop computers

• The observed run time and data transfer size of PBWT-sec is
linear in the query length, while that of the exhaustive
approach is exponential.

Run time

• Combined user’s and server’s run time was 15 sec for searching
on 2,184 genomes by laptop (D=1)

• A compute node took between 7 and 132 seconds depending
on the level of privacy.

Laptop Compute node

Parallel Compute Cores 4 4 8 16
Run time (sec) with D = 1 15 22 15 7
Run time (sec) with D = 5 43 47 39 18
Run time (sec) with D = 10 78 84 68 31
Run time (sec) with D = 20 141 154 113 56
Run time (sec) with D = 50 338 386 260 132

D is a parameter for privacy level of the server.

Conclusion

•We have proposed a novel approach for searching
string in a privacy-preserving manner.

• It achieves high utility and has strong security features
and requires acceptable compute and communication
resources.

•The algorithm can be used to facilitate sharing of
genetic information across institutions and countries
in order to identify large enough cohorts with a similar
genetic backgrounds.

Acknowledgements

•Co-authors
•Koji Nuida (AIST)
•Gunnar Rätsch (ETHZ)
•Hiroki Sudo (Waseda Univ)
•Masanobu Jimbo (Waseda Univ)

•Shigeo Mitsunari (Cybozu) for developing AISTCRYPT.

•Members of Computational Biology Research
Center at AIST

