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For SCIS People

The (extended) deadline for paper submission
has passed (almost now, at 10:00)

Please take a rest before the next talk :-)
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A Few Years Ago (Maybe)

(Rough) scenario of a police TV drama:

Victim was a mathematician, he found
“ultimate property of primes”
He decided to delete his result, because it
will cause “fatal catastrophe” about
cryptography in the whole world
(and was killed by his friend who disagreed)

The “catastrophe” is fictional, but this example
shows: It has become recognized so widely that
primes and cryptography are related (in some
unknown way)
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Main Theme of This Talk

The RSA cryptosystem would have made
relation of math. and crypto. so popular, but ...

RSA is NOT the only such relation

(and “RSA and elliptic curve crypto.” are
not the only, too)

(c) Koji Nuida December 19, 2016 CRISMATH 4/41



Relation between Mathematics and Cryptography
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CRISMATH Workshop

暗号及び情報セキュリティと数学の相関
ワークショップ (workshop on interaction between
CRyptography, Information Security and
MATHematics)

Invited talks on math. & crypto. (and more)

This year’s: Dec. 26th @Tokyo (Odaiba)

Organizers: K. Nuida, T. Abe, S. Kaji,
H. Kurihara, T. Maeno, Y. Numata

(Underlined: Speakers of the current
workshop)
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CRISMATH Workshop: Some Math. Topics in the Past

linear-algebraic technique in integer factorization;
dynamical systems and sensor networks (Z. Arai);
algorithmic randomness and quantum key
distribution; network codings and sheaf cohomology;
algorithmic randomness and random oracles;
algebraic-geometrical approach on LLL algorithm;
NP vs. P problem; algebraic surfaces and
cryptography (K. Akiyama); cryptography from
group theory (N.); group rings and NTRU
cryptosystem; quantum computation; isogenies for
elliptic curves (K. Takashima); Bernoulli numbers
and use of FHE (N.)
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CRISMATH Workshop: This Year’s Talks

川合 豊「鍵が固定された場合の暗号方式の安
全性について」
品川 和雅「カードとシャッフルから見るカー
ド暗号プロトコル」
白勢 政明「楕円曲線，暗号，素因数分解」

On applications of elliptic curves to integer
factorization

Taechan Kim「Extended Tower Number Field
Sieve」

On speed-up for discrete logarithms

縫田 光司「秘密計算で他者に迷惑をかけずに
疑似乱数を使えるか」
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Public Key Encryption (PKE)

To conceal messages from attackers

Encryption: message 7→ ciphertext

using public encryption key pk

Decryption: ciphertext 7→ message

using secret decryption key sk

Decsk(Encpk(m)) = m

pk should not yield information on sk
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Before the RSA: “One-Time Pad”

Symmetric key encryption, where pk = sk
should be hidden

Given “message” m ∈ M (finite additive group)

Originally, M = (F2)
n (bitwise XOR)

If pk = k ∈ M is uniformly random, then
ciphertext c = Enck(m) := m + k is
independent of m

Perfectly hiding, if k is used only once
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The RSA Cryptosystem [1977 ?]

N = pq (distinct primes)

e, d with ed ≡ 1 (mod (p − 1)(q − 1))

Given message m ∈ (Z/NZ)×,
Enc(m) := me (public key: (N , e))

Dec(c) := cd (secret key: d)

d would be computable if p, q were known

Drawback: Enc is deterministic (“textbook RSA”)

Improved variant is practically used
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Computational Assumptions

In PKE, secret should not be found in “practical”
(theoretically, probabilistic polynomial) time

E.g. “Factoring N is hard” for the RSA

Theoretically, just “assumption” (cf. P vs NP)

Practically, evaluated by experiments
Consensus: “(General) Number Field Sieve”
would factorize N ≈ 21024 in near future
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The Number Field Sieve [Pollard+1990 ?]

State-of-the-art method to factoring integers
(=⇒ to break the RSA cryptosystem)

Using number fields

Complexity: sub-exponential (not polynomial)

Current status: Recommended to finish using
RSA with N ≈ 21024 (1024-bit key)

(c) Koji Nuida December 19, 2016 CRISMATH 13/41



(Special) Number Field Sieve (1/3)

Choose

f (t) ∈ Z[t], irreducible over Q
α ∈ C, with f (α) = 0

m ∈ Z, with f (m) ≡ 0 (mod N), 0 < m ≪ N

and assume the followings: (avoidable, in general)

K = Q(α) has integer ring OK = Z[α]
OK is UFD
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(Special) Number Field Sieve (2/3)

f (α) = 0, f (m) ≡ 0 (mod N), m ≪ N

Define φ : Z[α] hom.−→ Z/NZ, φ(α) = m

For a, b ∈ Z, compute φ(a + bα) in two ways:

φ(factorization of a + bα in Z[α])
factorization of φ(a + bα) in Z (⇒ in Z/NZ)

Then get: (
∏

of primes) ≡ (
∏

of primes) in Z/NZ
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(Special) Number Field Sieve (3/3)

Relations (
∏

of primes) ≡ (
∏

of primes) in Z/NZ
for each a, b ∈ Z

Combine them (by observing exponents) to get

x2 ≡ y 2 (mod N)

yielding (with high probability)

1 < gcd(x+y ,N) < N or 1 < gcd(x−y ,N) < N
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Prior to RSA — Diffie–Hellman Key Exchange [1976]

Protocol between parties P1 and P2

Choose G = ⟨g⟩ (finite cyclic) in public, then

1 Pi sends hi := g ai , while hiding ai ∈ Z
2 Given h3−i , Pi computes Ki := h3−i

ai

Getting a common (random) secret element

K1 = (g a2)a1 = g a2a1 = g a1a2 = (g a1)a2 = K2

with no pre-shared secret

Can be converted to PKE [ElGamal 1985]
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Is DH Key Exchange Secure?

Public: G = ⟨g⟩ and hi ∈ G
Secret: ai with hi = g ai

⇒ The discrete logarithm problem (DL) in G
must be computationally hard:

(DL) Given g , h, find x with h = g x in G

Remark: (In)sufficiency is still open
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Choice of the Group for Security (1/2)

Q1. x · 7 = 15 in Z/16Z? ... x = 9

Q2. 10x = 6 in F×
17? ... x = 5

Q2 looks more difficult than Q1,
though Z/16Z ≃ F×

17 as groups

⇒ Difficulty of DL does depend on
a “realization” of the same abstract group G !
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Choice of the Group for Security (2/2)

Efficient solution for Q1:
use (Extended) Euclidean Algorithm

which uses integer division (or ordering)

for the DL in additive group Z/nZ!
A lesson: Additional structure for group G makes
the DL easier (⇒ break of DH Key Exchange)

Cf. [Maurer 2005] DL is hard in “generic group”

“Oracle access to multiplication table only”

(c) Koji Nuida December 19, 2016 CRISMATH 20/41
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A New Viewpoint from Cryptography

(Mathematician: more structures, more happiness)
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State-of-the-Art Candidate from Elliptic Curves

(Subgroups of) groups of rational points on
elliptic curves (over finite fields)

Additive group structure

Other structures are not known well
(in comparison to Z/nZ and Fq

×)

Current status: |G | ⪆ 2160

Cf. N ⪆ 21024 for the RSA
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Shor’s Quantum Algorithms

Quantum computer: framework of fast computation
using superimposed quantum states

Not practically implemented so far

[Shor 1994]: Quantum algorithms, implying

integer factoring in polynomial time!

discrete logarithm in polynomial time!

(Cf. [Grover 1996]: Search with quadratic speedup)
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Pinpoint Effect by Shor to Cryptography

Shor’s main applications: integer factoring and DL

Main tools of PKE: integer factoring and DL

Oh, My God!

−→ Importance of “quantum-resistant” PKE

(Believed to be) unbroken by quantum computer

Related to the talks by K. Akiyama and
K. Takashima
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A Major Strategy for PKE
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Multi-Party Computation (MPC): Two-Party Case

Given function f (x , y) (e.g., f (x , y) = δx ,y),

Party P1 has secret input a1

Party P2 has secret input a2

They want to know f (a1, a2) by communication

while hiding information on each input!

(except those trivially implied from f (a1, a2))
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A Tool for MPC: Homomorphic Encryption (HE)

Example: additively-HE

Message set M is additive group

A “practical” operation ⊞ for ciphertexts with

Dec(c1 ⊞ c2) = Dec(c1) + Dec(c2) ∈ M

(called “homomorphic operation”)

“Messages can be added in encrypted form”

Related to the talks by K. Shimizu, H. Arimura
(and K. Akiyama)
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A “Rough Idea” for HE
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Example of (Multiplicative) HE [ElGamal 1985]

Public key: G = ⟨g⟩ (prime order), h ∈ G
Secret key: s ∈ Z with h = g s

Given m ∈ G , Enc(m) := (g r , hrm) ∈ G 2

where r ∈ Z is random

Given c = (c1, c2), Dec(c) := c1
−sc2

“Project to (g 0, gZ) in direction (g 1, g−s)”

Homomorphic operation: multiplication in G 2
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Example of MPC from HE

How to compute δa1,a2 (Notation: [[a]] := Enc(a))

Suppose: additively-HE with M = Fp

1 P1 chooses key, sends public key only

2 P1 generates and sends [[a1]]

3 P2 computes [[a1]]⊞ [[−a2]] = [[a1 − a2]]

4 P2 computes [[r(a1 − a2)]] for random r ̸= 0

by random iteration of ⊞ to [[a1 − a2]]

5 P1 decrypts [[r(a1 − a2)]] ⇝ 0 iff a1 = a2

Applications to bioinformatics: Talk by K. Shimizu
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Fully Homomorphic Encryption [2009]

(Additively-)HE: “addition in encrypted form”

Fully homomorphic encryption (FHE):

Any computation in encrypted form

⇔ Ring-HE, when M = Fp (p prime)

→ Use of FHE is related to polynomial
expressions of functions (talk by T. Maeno)
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(Too) Simplified Example [2010] [N. et al. 2015]

Z/ℓZ identified with {0, . . . , ℓ− 1} by “mod”

Choose p′ ≫ p primes, p′ |N

Enc(m) = r ′p′ + rp +m mod N for m ∈ Fp

Dec(c) = (c mod p′) mod p

Decryption works iff r is “not too large”

Ring-homomorphic operations: as usual in Z/NZ
but iteration of operations is limited! (r grows)

“Bootstrapping”: refreshing the ciphertext

possible, but very inefficient
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Towards “Unlimited” Ring-HE

A (hopefully) possible strategy:

1 “Embed” Fp into a (non-commutative) group G

Operations of Fp realized by operations of G

2 Take a lift of G (e.g., G × H for suitable H)

3 “Homomorphically hide” the structure of the lift

⇝ hard-to-compute group hom. φ : G̃ ↠ G

must be easy-to-compute with secret key

Public: G and generators of kerφ (for Enc)
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How to Realize NAND Gate in Simple Groups

NAND(b1, b2) = 0 iff b1 = b2 = 1

[Ostrovsky–Skeith 2008] For any non-commutative
finite simple group G , there exist g0 ̸= g1 ∈ G and
F : G 2 → G with:

F (g1, g1) = g0

F (g0, g0) = F (g0, g1) = F (g1, g0) = g1

F is composed of group operations in G

Proof (sketch):

⟨{[∗, σ1]}⟩ is normal, hence = G

⇒ ∃(compositions of [∗, σ1]±1) = σ1

When σ1 7→ σ0, LHS becomes 1 = σ0
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Towards Homomorphically Hiding the Group

My recent (very rough) idea:

1 Presentation of G × H by generators/relations

2 “Shuffle” presentation by randomly applying
Tietze transformations

3 Apply Knuth-Bendix completion algorithm, to
yield normal form of each group element

Otherwise, Enc is also hard-to-compute

Current problems:

Knuth-Bendix algorithm may not terminate

Is it really secure?
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Other Topics (1) Set Families and Cryptosystems

t-cover-free family: Each set is not covered by
union of any other t sets

Application to “stronger” encryption: (Roughly
speaking) ciphertext is secure even if other t
ciphertexts are decoded by attacker

Idea: A set indicates “set of encryption keys
for a ciphertext”, then at least one key
remains safe even when t ciphertexts are
stolen
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Other Topics (2) Polynomial Interpolation and Secret
Sharing

Fact: Degree-n polynomial is uniquely
determined by n + 1 points

Applicable to secret sharing [Shamir 1979]

Each user holds one point (at outside y -axis)
Sufficient # of users can recover the
polynomial, whose y -intercept is the secret
value
Insufficient # of points have no info. on the
polynomial (y -intercept can be still
arbitrary), hence secret

Related to the talk by Y. Suga
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Other Topics (3) Homomorphic Encryption from Ideal
Class Groups

Additive HE based on ideal class groups of
(non-maximal order of) imaginary quadratic
fields Q(

√
D) (in CT-RSA 2015)

Security under consideration: Efficient algorithm
to (approximately) compute the class number
will break the cryptosystem
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Other Topics (4) Gaussian Quadrature and Content
Protection

Gaussian quadrature: Express integral of
polynomial over interval as a finite weighted sum
of polynomial values (at some specific points)

Such choice of points/weights can be applied to
good parameter choice in some cryptographic
scheme for content protection (digital rights
management) [N. et al. 2007]
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Other Topics (5) abc Conjecture for Cryptographic Study

Recent study by Y. Hashimoto, K. Shinagawa,
N. et al.: Some kind of cryptographic algorithm
by physical cards

A part of result: A lower bound for such
algorithms in certain setting, derived from abc
Conjecture, Prime Number Theorem, König’s
Lemma, etc.

Affimative result also: Application of
“permutations of same type are conjugate to
each other”

To be presented in SCIS 2017
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Conclusion

Q. What kind of math. are useful in crypto.
(and/or other “practical” topics)?

A. Unpredictable!

I am now trying to apply techniques from set
theory, computability theory, ...
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