Cryptography, Information Security, and Mathematics: Recent Advances

縫田 光司 (Koji NUIDA)

産業技術総合研究所 (AIST) / JST さきがけ (JST PRESTO)

情報セキュリティにおける数学的方法とその実践 2016年12月19日 @北海道大学

- The (extended) deadline for paper submission has passed (almost now, at 10:00)
- Please take a rest before the next talk :-)

- (Rough) scenario of a police TV drama:
 - Victim was a mathematician, he found
 "ultimate property of primes"
 - He decided to delete his result, because it will cause "fatal catastrophe" about cryptography in the whole world
 - (and was killed by his friend who disagreed)

- (Rough) scenario of a police TV drama:
 - Victim was a mathematician, he found "ultimate property of primes"
 - He decided to delete his result, because it will cause "fatal catastrophe" about cryptography in the whole world
 - (and was killed by his friend who disagreed)
- The "catastrophe" is fictional, but this example shows: It has become recognized so widely that primes and cryptography are related (in some unknown way)

- The RSA cryptosystem would have made relation of math. and crypto. so popular, but ...
- RSA is NOT the only such relation
 - (and "RSA and elliptic curve crypto." are not the only, too)

Relation between Mathematics and Cryptography

暗号及び情報セキュリティと数学の相関 ワークショップ (workshop on interaction between CRyptography, Information Security and MATHematics)

- Invited talks on math. & crypto. (and more)
- This year's: Dec. 26th @Tokyo (Odaiba)
 - Organizers: <u>K. Nuida</u>, T. Abe, <u>S. Kaji</u>, H. Kurihara, <u>T. Maeno</u>, <u>Y. Numata</u>
 - (Underlined: Speakers of the current workshop)

linear-algebraic technique in integer factorization; dynamical systems and sensor networks (Z. Arai); algorithmic randomness and quantum key distribution; network codings and sheaf cohomology; algorithmic randomness and random oracles; algebraic-geometrical approach on LLL algorithm; NP vs. P problem; algebraic surfaces and cryptography (K. Akiyama); cryptography from group theory (N.); group rings and NTRU cryptosystem; quantum computation; isogenies for elliptic curves (K. Takashima); Bernoulli numbers and use of FHE (N.)

CRISMATH Workshop: This Year's Talks

- 川合豊「鍵が固定された場合の暗号方式の安 全性について」
- 品川 和雅「カードとシャッフルから見るカー ド暗号プロトコル」
- 白勢 政明「楕円曲線,暗号,素因数分解」
 - On applications of elliptic curves to integer factorization
- Taechan Kim ^r Extended Tower Number Field Sieve J
 - On speed-up for discrete logarithms
- ・縫田 光司「秘密計算で他者に迷惑をかけずに 疑似乱数を使えるか」

• To conceal messages from attackers

-∢ ≣ ≯

- To conceal messages from attackers
- Encryption: message \mapsto ciphertext
 - using **public** encryption key pk

- To conceal messages from attackers
- <u>Encryption</u>: message \mapsto ciphertext

using public encryption key pk

- Decryption: ciphertext \mapsto message
 - using secret decryption key sk

- To conceal messages from attackers
- <u>Encryption</u>: message \mapsto ciphertext

using public encryption key pk

- \bullet Decryption: ciphertext \mapsto message
 - using secret decryption key sk

•
$$\mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{pk}}(m)) = m$$

- To conceal messages from attackers
- <u>Encryption</u>: message \mapsto ciphertext

using public encryption key pk

 $\bullet \ Decryption: \ ciphertext \mapsto message$

using secret decryption key sk

•
$$\mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{pk}}(m)) = m$$

• pk should not yield information on sk

Given "message" $m \in M$ (finite additive group)

• Originally, $M = (\mathbb{F}_2)^n$ (bitwise XOR)

Given "message" $m \in M$ (finite additive group) • Originally, $M = (\mathbb{F}_2)^n$ (bitwise XOR) If $pk = k \in M$ is uniformly random, then ciphertext $c = \text{Enc}_k(m) := m + k$ is independent of m

Given "message" $m \in M$ (finite additive group) • Originally, $M = (\mathbb{F}_2)^n$ (bitwise XOR) If $pk = k \in M$ is uniformly random, then ciphertext $c = \text{Enc}_k(m) := m + k$ is independent of m

• Perfectly hiding, if k is used only once

The RSA Cryptosystem [1977?]

• *N* = *pq* (distinct primes)

• e, d with $ed \equiv 1 \pmod{(p-1)(q-1)}$

Given message $m \in (\mathbb{Z}/N\mathbb{Z})^{ imes}$,

- $Enc(m) := m^e$ (public key: (N, e))
- $Dec(c) := c^d$ (secret key: d)

• *N* = *pq* (distinct primes)

• e, d with $ed \equiv 1 \pmod{(p-1)(q-1)}$

Given message $m \in (\mathbb{Z}/N\mathbb{Z})^{ imes}$,

- Enc(m) := m^e (public key: (N, e))
- $Dec(c) := c^d$ (secret key: d)

d would be computable if p, q were known

• *N* = *pq* (distinct primes)

• e, d with $ed \equiv 1 \pmod{(p-1)(q-1)}$

Given message $m \in (\mathbb{Z}/N\mathbb{Z})^{ imes}$,

- $Enc(m) := m^e$ (public key: (N, e))
- $Dec(c) := c^d$ (secret key: d)

d would be computable if p, q were known

Drawback: Enc is deterministic ("textbook RSA")

• Improved variant is practically used

In PKE, secret should not be found in "practical" (theoretically, probabilistic polynomial) time

• E.g. "Factoring N is hard" for the RSA

In PKE, secret should not be found in "practical" (theoretically, probabilistic polynomial) time

- E.g. "Factoring N is hard" for the RSA
- Theoretically, just "assumption" (cf. P vs NP)
 - Practically, evaluated by experiments
 - Consensus: "(General) Number Field Sieve" would factorize $N \approx 2^{1024}$ in near future

State-of-the-art method to factoring integers $(\Longrightarrow$ to break the RSA cryptosystem)

- Using number fields
- Complexity: sub-exponential (not polynomial)
- Current status: Recommended to finish using RSA with $N \approx 2^{1024}$ (1024-bit key)

Choose

- $f(t) \in \mathbb{Z}[t]$, irreducible over \mathbb{Q}
- $\alpha \in \mathbb{C}$, with $f(\alpha) = 0$
- $m \in \mathbb{Z}$, with $f(m) \equiv 0 \pmod{N}$, $0 < m \ll N$

and assume the followings: (avoidable, in general)

- $\mathcal{K} = \mathbb{Q}(\alpha)$ has integer ring $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\alpha]$
- \mathcal{O}_K is UFD

(Special) Number Field Sieve (2/3)

$$f(\alpha) = 0, f(m) \equiv 0 \pmod{N}, m \ll N$$

Define $\varphi \colon \mathbb{Z}[\alpha] \xrightarrow{\text{hom.}} \mathbb{Z}/N\mathbb{Z}, \varphi(\alpha) = m$

æ

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

 $f(\alpha) = 0, f(m) \equiv 0 \pmod{N}, m \ll N$ Define $\varphi \colon \mathbb{Z}[\alpha] \xrightarrow{\text{hom.}} \mathbb{Z}/N\mathbb{Z}, \ \varphi(\alpha) = m$ For $a, b \in \mathbb{Z}$, compute $\varphi(a + b\alpha)$ in two ways: • φ (factorization of $a + b\alpha$ in $\mathbb{Z}[\alpha]$) • factorization of $\varphi(a + b\alpha)$ in \mathbb{Z} (\Rightarrow in $\mathbb{Z}/N\mathbb{Z}$) Then get: (\prod of primes) \equiv (\prod of primes) in $\mathbb{Z}/N\mathbb{Z}$

Relations (\prod of primes) \equiv (\prod of primes) in $\mathbb{Z}/N\mathbb{Z}$ for each $a, b \in \mathbb{Z}$

Relations (\prod of primes) \equiv (\prod of primes) in $\mathbb{Z}/N\mathbb{Z}$ for each $a, b \in \mathbb{Z}$

Combine them (by observing exponents) to get

$$x^2 \equiv y^2 \pmod{N}$$

yielding (with high probability)

 $1 < \gcd(x \! + \! y, N) < N \quad \text{or} \quad 1 < \gcd(x \! - \! y, N) < N$

Prior to RSA — Diffie-Hellman Key Exchange [1976]

Protocol between parties P_1 and P_2

1

Getting a common (random) secret element

Choose $G = \langle g \rangle$ (finite cyclic) in public, then

Getting a common (random) secret element

with no pre-shared secret

1

2

Choose $G = \langle g \rangle$ (finite cyclic) in public, then • P_i sends $h_i := g^{a_i}$, while hiding $a_i \in \mathbb{Z}$

Getting a common (random) secret element

Choose $G = \langle g \rangle$ (finite cyclic) in public, then • P_i sends $h_i := g^{a_i}$, while hiding $a_i \in \mathbb{Z}$ • Given h_{3-i} , P_i computes $K_i := h_{3-i}^{a_i}$

Getting a common (random) secret element

Choose $G = \langle g \rangle$ (finite cyclic) in public, then • P_i sends $h_i := g^{a_i}$, while hiding $a_i \in \mathbb{Z}$ • Given h_{3-i} , P_i computes $K_i := h_{3-i}^{a_i}$ Getting a common (random) secret element

$$K_1 = (g^{a_2})^{a_1} = g^{a_2 a_1} = g^{a_1 a_2} = (g^{a_1})^{a_2} = K_2$$

Choose $G = \langle g \rangle$ (finite cyclic) in public, then P_i sends $h_i := g^{a_i}$, while hiding $a_i \in \mathbb{Z}$ Given h_{3-i} , P_i computes $K_i := h_{3-i}^{a_i}$ Getting a common (random) secret element

$$K_1 = (g^{a_2})^{a_1} = g^{a_2 a_1} = g^{a_1 a_2} = (g^{a_1})^{a_2} = K_2$$

with no pre-shared secret

• Can be converted to PKE [ElGamal 1985]

Public:
$$G = \langle g \rangle$$
 and $h_i \in G$
Secret: a_i with $h_i = g^{a_i}$

3

▶ < 문▶
- Public: $G = \langle g \rangle$ and $h_i \in G$ Secret: a_i with $h_i = g^{a_i}$
- \Rightarrow The discrete logarithm problem (DL) in G must be computationally hard:
- (DL) Given g, h, find x with $h = g^x$ in G
 - Remark: (In)sufficiency is still open

Choice of the Group for Security (1/2)

(c) Koji Nuida December 19, 2016 CRISMATH

∢ ≣⇒

⊡ ▶ < ≣ ▶

Choice of the Group for Security (1/2)

Q1. $x \cdot 7 = 15$ in $\mathbb{Z}/16\mathbb{Z}$? ...

(c) Koji Nuida December 19, 2016 CRISMATH

_∢≣≯

Q1. $x \cdot 7 = 15$ in $\mathbb{Z}/16\mathbb{Z}$? ... x = 9

個 と く ヨ と く ヨ と

Q1. $x \cdot 7 = 15$ in $\mathbb{Z}/16\mathbb{Z}$? ... x = 9Q2. $10^x = 6$ in \mathbb{F}_{17}^{\times} ? ...

Q1. $x \cdot 7 = 15$ in $\mathbb{Z}/16\mathbb{Z}$? ... x = 9Q2. $10^x = 6$ in \mathbb{F}_{17}^{\times} ? ... x = 5

Q1. $x \cdot 7 = 15$ in $\mathbb{Z}/16\mathbb{Z}$? ... x = 9Q2. $10^x = 6$ in \mathbb{F}_{17}^{\times} ? ... x = 5Q2 looks more difficult than Q1, though $\mathbb{Z}/16\mathbb{Z} \simeq \mathbb{F}_{17}^{\times}$ as groups Q1. $x \cdot 7 = 15$ in $\mathbb{Z}/16\mathbb{Z}$? ... x = 9Q2. $10^x = 6$ in \mathbb{F}_{17}^{\times} ? ... x = 5Q2 looks more difficult than Q1, **though** $\mathbb{Z}/16\mathbb{Z} \simeq \mathbb{F}_{17}^{\times}$ as groups \Rightarrow Difficulty of DL **does depend** on a "realization" of the same abstract group *G*!

Efficient solution for Q1: use (Extended) Euclidean Algorithm

Efficient solution for Q1: use (Extended) Euclidean Algorithm

• which uses integer division (or ordering)

Efficient solution for Q1:

use (Extended) Euclidean Algorithm

- which uses integer division (or ordering)
- for the DL in **additive group** $\mathbb{Z}/n\mathbb{Z}!$

Efficient solution for Q1:

use (Extended) Euclidean Algorithm

- which uses integer division (or ordering)
- for the DL in **additive group** $\mathbb{Z}/n\mathbb{Z}!$

A lesson: Additional structure for group G makes the DL easier (\Rightarrow break of DH Key Exchange)

- Cf. [Maurer 2005] DL is hard in "generic group"
 - "Oracle access to multiplication table only"

A New Viewpoint from Cryptography

(Mathematician: more structures, more happiness)

Additive group structure

- Additive group structure
- Other structures are not known well (in comparison to Z/nZ and F_q[×])

- Additive group structure
- Other structures are not known well (in comparison to $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{F}_q^{\times})

Current status: $|G| \gtrsim 2^{160}$

• Cf. $N \gtrsim 2^{1024}$ for the RSA

Quantum computer: framework of fast computation using superimposed quantum states

• Not practically implemented so far

Quantum computer: framework of fast computation using superimposed quantum states

- Not practically implemented so far
- [Shor 1994]: Quantum algorithms, implying

Quantum computer: framework of fast computation using superimposed quantum states

 Not practically implemented so far [Shor 1994]: Quantum algorithms, implying

- integer factoring in polynomial time!
- discrete logarithm in polynomial time!
- (Cf. [Grover 1996]: Search with quadratic speedup)

Shor's main applications: integer factoring and DL

Shor's main applications: integer factoring and DLMain tools of PKE: integer factoring and DLOh, My God!

Shor's main applications: integer factoring and DLMain tools of PKE: integer factoring and DLOh, My God!

- \longrightarrow Importance of "quantum-resistant" PKE
 - (Believed to be) unbroken by quantum computer
 - Related to the talks by <u>K. Akiyama</u> and <u>K. Takashima</u>

A Major Strategy for PKE

Given function f(x, y) (e.g., $f(x, y) = \delta_{x,y}$),

- Party P_1 has secret input a_1
- Party P_2 has secret input a_2
- They want to know $f(a_1, a_2)$ by communication

Given function f(x, y) (e.g., $f(x, y) = \delta_{x,y}$),

- Party P_1 has secret input a_1
- Party P_2 has secret input a_2
- They want to know $f(a_1, a_2)$ by communication
- while hiding information on each input!
 - (except those trivially implied from $f(a_1, a_2)$)

A Tool for MPC: Homomorphic Encryption (HE)

Example: additively-HE

A Tool for MPC: Homomorphic Encryption (HE)

Example: additively-HE

 ${\scriptstyle \bullet}$ Message set ${\cal M}$ is additive group

Example: additively-HE

- ${\scriptstyle \bullet}$ Message set ${\cal M}$ is additive group
- A "practical" operation \boxplus for ciphertexts with

 $\mathsf{Dec}(c_1 \boxplus c_2) = \mathsf{Dec}(c_1) + \mathsf{Dec}(c_2) \in \mathcal{M}$

(called "homomorphic operation")

Example: additively-HE

- ${\scriptstyle \bullet}$ Message set ${\cal M}$ is additive group
- A "practical" operation \boxplus for ciphertexts with

 $\mathsf{Dec}(c_1 \boxplus c_2) = \mathsf{Dec}(c_1) + \mathsf{Dec}(c_2) \in \mathcal{M}$

(called "homomorphic operation")

• "Messages can be added in encrypted form"

Example: additively-HE

- ${\scriptstyle \bullet}$ Message set ${\cal M}$ is additive group
- ${\scriptstyle \bullet}$ A "practical" operation \boxplus for ciphertexts with

 $\mathsf{Dec}(c_1 \boxplus c_2) = \mathsf{Dec}(c_1) + \mathsf{Dec}(c_2) \in \mathcal{M}$

(called "homomorphic operation")

• "Messages can be added in encrypted form" Related to the talks by <u>K. Shimizu</u>, <u>H. Arimura</u> (and K. Akiyama)

A "Rough Idea" for HE

(c) Koji Nuida December 19, 2016 CRISMATH

< ≣

∰ ▶ € ▶

Public key: $G = \langle g \rangle$ (prime order), $h \in G$ Secret key: $s \in \mathbb{Z}$ with $h = g^s$

Public key: $G = \langle g \rangle$ (prime order), $h \in G$ Secret key: $s \in \mathbb{Z}$ with $h = g^s$

• Given $m \in G$, $Enc(m) := (g^r, h^r m) \in G^2$

• where $r \in \mathbb{Z}$ is random

Public key: $G = \langle g \rangle$ (prime order), $h \in G$ Secret key: $s \in \mathbb{Z}$ with $h = g^s$ • Given $m \in G$, $Enc(m) := (g^r, h^r m) \in G^2$ • where $r \in \mathbb{Z}$ is random • Given $c = (c_1, c_2)$, $Dec(c) := c_1^{-s}c_2$ • "Project to $(g^0, g^{\mathbb{Z}})$ in direction (g^1, g^{-s}) "
Example of (Multiplicative) HE [ElGamal 1985]

Public key: $G = \langle g \rangle$ (prime order), $h \in G$ Secret key: $s \in \mathbb{Z}$ with $h = g^s$ • Given $m \in G$, Enc $(m) := (g^r, h^r m) \in G^2$ • where $r \in \mathbb{Z}$ is random • Given $c = (c_1, c_2)$, $Dec(c) := c_1^{-s}c_2$ • "Project to $(g^0, g^{\mathbb{Z}})$ in direction (g^1, g^{-s}) " • Homomorphic operation: multiplication in G^2

How to compute δ_{a_1,a_2} (Notation: [[a]] := Enc(a)) Suppose: additively-HE with $\mathcal{M} = \mathbb{F}_p$ P_1 chooses key, sends public key only How to compute δ_{a_1,a_2} (Notation: [[a]] := Enc(a))

Suppose: additively-HE with $\mathcal{M} = \mathbb{F}_p$

- P_1 chooses key, sends public key only
- P₁ generates and sends [[a₁]]

- P_1 chooses key, sends public key only
- P₁ generates and sends [[a₁]]
- **3** P_2 computes $[[a_1]] \boxplus [[-a_2]] = [[a_1 a_2]]$

- P_1 chooses key, sends public key only
- P₁ generates and sends [[a₁]]
- **③** P_2 computes $[[a_1]] \boxplus [[-a_2]] = [[a_1 a_2]]$
- P_2 computes $[[r(a_1 a_2)]]$ for random $r \neq 0$

• by random iteration of \boxplus to $[[a_1 - a_2]]$

- P_1 chooses key, sends public key only
- P₁ generates and sends [[a₁]]
- **3** P_2 computes $[[a_1]] \boxplus [[-a_2]] = [[a_1 a_2]]$
- P_2 computes $[[r(a_1 a_2)]]$ for random $r \neq 0$
 - by random iteration of \boxplus to $[[a_1 a_2]]$
- P_1 decrypts $[[r(a_1 a_2)]] \rightsquigarrow 0$ iff $a_1 = a_2$

- P_1 chooses key, sends public key only
- P_1 generates and sends $[[a_1]]$
- **③** P_2 computes $[[a_1]] \boxplus [[-a_2]] = [[a_1 a_2]]$
- P_2 computes $[[r(a_1 a_2)]]$ for random $r \neq 0$
 - by random iteration of \boxplus to $[[a_1 a_2]]$
- P_1 decrypts $[[r(a_1 a_2)]] \rightsquigarrow 0$ iff $a_1 = a_2$ Applications to bioinformatics: Talk by <u>K. Shimizu</u>

· < @ > < 문 > < 문 > _ 문

(Additively-)HE: "addition in encrypted form"

(Additively-)HE: "addition in encrypted form" Fully homomorphic encryption (FHE):

Any computation in encrypted form

(Additively-)HE: "addition in encrypted form" Fully homomorphic encryption (FHE):

Any computation in encrypted form

- \Leftrightarrow Ring-HE, when $\mathcal{M} = \mathbb{F}_p$ (*p* prime)
 - → Use of FHE is related to polynomial expressions of functions (talk by <u>T. Maeno</u>)

(Too) Simplified Example [2010] [N. et al. 2015]

 $\mathbb{Z}/\ell\mathbb{Z}$ identified with $\{0,\ldots,\ell-1\}$ by "mod" Choose $p'\gg p$ primes, $p'\mid N$

(《圖》 《문》 《문》 - 문

(Too) Simplified Example [2010] [N. et al. 2015]

 $\mathbb{Z}/\ell\mathbb{Z}$ identified with $\{0, \ldots, \ell - 1\}$ by "mod" Choose $p' \gg p$ primes, $p' \mid N$ Enc $(m) = r'p' + rp + m \mod N$ for $m \in \mathbb{F}_p$

(Too) Simplified Example [2010] [N. et al. 2015]

 $\mathbb{Z}/\ell\mathbb{Z}$ identified with $\{0, \ldots, \ell - 1\}$ by "mod" Choose $p' \gg p$ primes, $p' \mid N$ $\operatorname{Enc}(m) = r'p' + rp + m \mod N$ for $m \in \mathbb{F}_p$ $\operatorname{Dec}(c) = (c \mod p') \mod p$ • Decryption works iff r is "not too large" $\mathbb{Z}/\ell\mathbb{Z}$ identified with $\{0,\ldots,\ell-1\}$ by "mod" Choose $p' \gg p$ primes, $p' \mid N$ $Enc(m) = r'p' + rp + m \mod N$ for $m \in \mathbb{F}_p$ $Dec(c) = (c \mod p') \mod p$ • Decryption works iff r is "not too large" Ring-homomorphic operations: as usual in $\mathbb{Z}/N\mathbb{Z}$

• but iteration of operations is limited! (r grows)

 $\mathbb{Z}/\ell\mathbb{Z}$ identified with $\{0, \ldots, \ell - 1\}$ by "mod" Choose $p' \gg p$ primes, $p' \mid N$ Enc $(m) = r'p' + rp + m \mod N$ for $m \in \mathbb{F}_p$ Dec $(c) = (c \mod p') \mod p$

• Decryption works iff r is "not too large" Ring-homomorphic operations: as usual in $\mathbb{Z}/N\mathbb{Z}$

• but iteration of operations is limited! (r grows)

"Bootstrapping": refreshing the ciphertext

• possible, but very inefficient

∢ ≣⇒

- "Embed" \mathbb{F}_p into a (non-commutative) group G
 - Operations of \mathbb{F}_p realized by operations of G

- "Embed" 𝔽_p into a (non-commutative) group G
 Operations of 𝔽_p realized by operations of G
- Take a lift of G (e.g., $G \times H$ for suitable H)

- A (hopefully) possible strategy:
 - "Embed" \mathbb{F}_p into a (non-commutative) group G
 - Operations of \mathbb{F}_p realized by operations of G
 - Take a lift of G (e.g., $G \times H$ for suitable H)
 - "Homomorphically hide" the structure of the lift

- "Embed" \mathbb{F}_p into a (non-commutative) group G
 - Operations of \mathbb{F}_p realized by operations of G
- Take a lift of G (e.g., $G \times H$ for suitable H)
- "Homomorphically hide" the structure of the lift \rightsquigarrow hard-to-compute group hom. $\varphi \colon \widetilde{G} \twoheadrightarrow G$
 - must be easy-to-compute with secret key
 - Public: G and generators of ker φ (for Enc)

 $NAND(b_1, b_2) = 0$ iff $b_1 = b_2 = 1$

個 と く ヨ と く ヨ と

NAND $(b_1, b_2) = 0$ iff $b_1 = b_2 = 1$ [Ostrovsky–Skeith 2008] For any non-commutative finite simple group *G*, there exist $g_0 \neq g_1 \in G$ and $F: G^2 \rightarrow G$ with:

NAND $(b_1, b_2) = 0$ iff $b_1 = b_2 = 1$ [Ostrovsky–Skeith 2008] For any non-commutative finite simple group *G*, there exist $g_0 \neq g_1 \in G$ and $F: G^2 \rightarrow G$ with:

•
$$F(g_1,g_1)=g_0$$

•
$$F(g_0, g_0) = F(g_0, g_1) = F(g_1, g_0) = g_1$$

NAND $(b_1, b_2) = 0$ iff $b_1 = b_2 = 1$ [Ostrovsky–Skeith 2008] For any non-commutative finite simple group *G*, there exist $g_0 \neq g_1 \in G$ and $F: G^2 \rightarrow G$ with:

•
$$F(g_1, g_1) = g_0$$

•
$$F(g_0,g_0) = F(g_0,g_1) = F(g_1,g_0) = g_1$$

• F is composed of group operations in G

NAND $(b_1, b_2) = 0$ iff $b_1 = b_2 = 1$ [Ostrovsky–Skeith 2008] For any non-commutative finite simple group *G*, there exist $g_0 \neq g_1 \in G$ and $F: G^2 \rightarrow G$ with:

•
$$F(g_1,g_1)=g_0$$

•
$$F(g_0,g_0) = F(g_0,g_1) = F(g_1,g_0) = g_1$$

- *F* is composed of group operations in *G* <u>Proof</u> (sketch):
 - $\langle \{[*, \sigma_1]\} \rangle$ is normal, hence = G
 - $\Rightarrow \exists (\text{compositions of } [*, \sigma_1]^{\pm 1}) = \sigma_1$
 - When $\sigma_1\mapsto\sigma_0$, LHS becomes $1=\sigma_0$

Towards Homomorphically Hiding the Group

My recent (very rough) idea:

Towards Homomorphically Hiding the Group

My recent (very rough) idea:

• Presentation of $G \times H$ by generators/relations

Towards Homomorphically Hiding the Group

My recent (very rough) idea:

- Presentation of $G \times H$ by generators/relations
- "Shuffle" presentation by randomly applying Tietze transformations

My recent (very rough) idea:

- Presentation of $G \times H$ by generators/relations
- "Shuffle" presentation by randomly applying Tietze transformations
- Apply Knuth-Bendix completion algorithm, to yield normal form of each group element
 - Otherwise, Enc is also hard-to-compute

My recent (very rough) idea:

- Presentation of $G \times H$ by generators/relations
- "Shuffle" presentation by randomly applying Tietze transformations
- Apply Knuth-Bendix completion algorithm, to yield normal form of each group element
 - Otherwise, Enc is also hard-to-compute

Current problems:

- Knuth-Bendix algorithm may not terminate
- Is it really secure?

Other Topics (1) Set Families and Cryptosystems

- *t*-cover-free family: Each set is not covered by union of any other *t* sets
- Application to "stronger" encryption: (Roughly speaking) ciphertext is secure even if other *t* ciphertexts are decoded by attacker
 - Idea: A set indicates "set of encryption keys for a ciphertext", then at least one key remains safe even when t ciphertexts are stolen

Other Topics (2) Polynomial Interpolation and Secret Sharing

- Fact: Degree-*n* polynomial is uniquely determined by *n* + 1 points
- Applicable to secret sharing [Shamir 1979]
 - Each user holds one point (at outside y-axis)
 - Sufficient # of users can recover the polynomial, whose y-intercept is the secret value
 - Insufficient # of points have no info. on the polynomial (y-intercept can be still arbitrary), hence secret
- Related to the talk by Y. Suga

- Additive HE based on ideal class groups of (non-maximal order of) imaginary quadratic fields $\mathbb{Q}(\sqrt{D})$ (in CT-RSA 2015)
- Security under consideration: Efficient algorithm to (approximately) compute the class number will break the cryptosystem

- Gaussian quadrature: Express integral of polynomial over interval as a finite weighted sum of polynomial values (at some specific points)
- Such choice of points/weights can be applied to good parameter choice in some cryptographic scheme for content protection (digital rights management) [N. et al. 2007]

Other Topics (5) abc Conjecture for Cryptographic Study

- Recent study by Y. Hashimoto, K. Shinagawa, <u>N.</u> et al.: Some kind of cryptographic algorithm by physical cards
- A part of result: A lower bound for such algorithms in certain setting, derived from abc Conjecture, Prime Number Theorem, König's Lemma, etc.
- Affimative result also: Application of "permutations of same type are conjugate to each other"
- To be presented in SCIS 2017
- Q. What kind of math. are useful in crypto. (and/or other "practical" topics)?
- A. Unpredictable!
 - I am now trying to apply techniques from set theory, computability theory, ...