生物ネットワークの使われ方

細胞内コンポーネントの相互作用記述

- 代謝ネットワーク
- タンパク質ネットワーク
- 遺伝子ネットワーク

調和振動子

－概日リズム，蔵本モデル
感染症ネットワーク，パーコレーション
－相転移

Visual interaction network

AraNet， 100 million links（for Arabidopsis thaliana）

http：／／www．functionalnet．org／ （Lee et al 2010 Nat Biotech） Movie file
http：／／www．functionalnet．org／aranet／ movie．htm！

Gatteo．．．
http：／／atted．jp／
（Obayashi et al．PCP）
Association link from 1500 gene chips

Variational method

－Maximize entrainability under constant regularity

Omics integration

Literature and others

Sequence information
STRING Database（von Mering 2003
Nature）

本グループの目的

－数学的「ネットワーク」が，生命科学に真に役立っている例の発見。

- ネットワークが適用できそうな生命現象の発見。
- それらを「文章」として残す。
（統数研の提言として，または論文として。）
－1月の会合までに文章のドラフトをつくり，再度相談する。

ネットワークモジュール性を測る

－コミュニティ内の辺密度が高く，コミュティ間の辺が疎であれば良い分割という前提

Functional Category

異なる役割のハブを
見つけることができる

生物の役割の分類ができる

Q値の問題点

- Resolution limit 解像度限界 ${ }^{\text {pnas } 100436(2007)}$
- 小さなコミュニティを見逃してしまうことがある。
- 疎なネットワークな場合がおおよそこれに当てはまる。

何故，圏論？（1／2）

－圏とは
－データ

- 対象の集まり：A, B, C, \ldots
- 射の集まり：$f: A \rightarrow B, g: B \rightarrow C, .$.
- 規則
- 射は合成でき，結合律を満たす
- f：A $\rightarrow B, g: B \rightarrow C$ C1対してgof：$A \rightarrow C$ が定まる
－（hog）$\circ f=h \circ$（ $g \circ f$ ）
－各対象は恒等射を持つ
$-\mathrm{id}_{A}: A \rightarrow A$
－foid $A_{A}=f, \mathrm{id}_{A}$ of $=f$

何故，圏論？（2／2）

- 圏＝有向ネットワーク＋α
- （生物，社会，．．．）システムを圏で表現

しかし，圏の規則（例えば，射が合成できる＝推移性）を満たすような

- シスデムの側面しか扱えない
- 圏＝科学の新しい言語（description）
－Spivak，2014．Category Theory for the Sciences，MIT Pres
＂I intend to show that category theory is incredibly efficient as a
language for experimental design patterns，introducing formality while
remaining flexible＂
－圏＝未知の構造・モデルを発見するための処方箋（prescription） - 「普遍性」
- 圈論を通じて頂点や矢印の意味を考えることでネットワークの新しい構詥を通じでし頂点や矢印の意味を

「動的」在り方の表現における普遍性
表現Mo（変換 Lo）は，「モノを「はたらき」と考える」というアイデアのもっとも単純な表現

> 素朴に考えると どういう意昧で最も単純なのか?インター

しかし，「相互作用は「はたらき」間のインターフェイス」に注目すると．

ネットワークのニつの在り方と圏論的双対性		
在り方	「静的」	「動的」日禺心 ス为
変換		頂点を矢印に変換 $\operatorname{Hom}\left(L_{0}(G), H\right)$
ネットワーク構造	有向経路 ネットワーク上の伝達に関与	側方経路

生物ネットワーク上のトレードオフ関係

ホモロジーグラフ

Metapopulation SIS dynamics：

 deterministic reaction－diffusion equation
Change in states of particles at node $i \quad(1 \leq i, j \leq N)$

$$
\begin{aligned}
\partial_{t} \rho_{\mathrm{S}, i} & =\mu \rho_{\mathrm{I}, i}-\frac{\beta_{i}}{\rho_{i}} \rho_{\mathrm{S}, i} \rho_{\mathrm{I}, i}-D_{\mathrm{S}} \sum_{j} L_{i j} \rho_{\mathrm{S}, j} \\
\partial_{t} \rho_{\mathrm{I}, i} & =-\mu \rho_{\mathrm{I}, i}+\frac{\beta_{i}}{\rho_{i}} \rho_{\mathrm{S}, i} \rho_{\mathrm{I}, i}-D_{\mathrm{I}} \sum_{j} L_{i j} \rho_{\mathrm{I}, j} \\
\text { recovery } & \frac{j \text { infection }}{\text { diffusion }}
\end{aligned}
$$

$\beta_{i} \equiv \beta \rho_{i}^{\gamma}$ ：infection rate at node $i(\gamma \geq 0)$
L ：random－walk Laplacian
$L_{i j}=\left\{\begin{array}{ll}1 & (i=j), \\ -A_{i j} / k_{j} & (i \neq j) .\end{array}\right.$（A：adjacency matrix）

Procedure of analysis

Goal

Derive the endemic threshold β_{c}（or its upper bound）

Method

Disease－free equilibrium：the fixed point of the reaction－diffusion equations

$$
\left(\rho_{\mathrm{S}, i}^{*}, \rho_{\mathrm{I}, i}^{*}\right)=\left(\frac{k_{i}}{\langle k\rangle} \rho, 0\right) \quad\left(1 \leq{ }^{\forall} i \leq N\right)
$$

This fixed point is（linearly）unstable \Leftrightarrow endemic equilibrium arises

$$
\Leftrightarrow \lambda_{\max }(\beta, \mu, \ldots)>0
$$

$$
\lambda_{\max }=0 \text { is solvable in terms of } \beta \rightarrow \beta_{c}=\cdots \text { (exact threshold) }
$$

Otherwise $\rightarrow \beta_{c}<\cdots$（upper bound）

Summary

－Metapopulation network＋SIS epidemic dynamics
－Target：endemic threshold β_{c} for arbitrary networks
－Upper bound of β_{c} based on HMF approximation：$\beta_{c}<\left(\mu+D_{\mathrm{I}}\right)\left(\frac{k_{\max }}{\langle k\rangle}\right)$
\rightarrow valid for arbitrary networks
－An improvement of upper bound：$\beta_{c}<\min _{k_{c}}\left\{\left[\mu+\left(1-\frac{2 E_{c}}{K_{c}}\right) D_{D_{1}}\right]\left(\frac{k_{c}}{\langle k\rangle}\right)^{-\gamma}\right\}$
\rightarrow rich－club networks：smaller upper bound of β_{c}
－Considerable improvement with realistic population－dependency γ

Journal reference：

Taro Takaguchi and Renaud Lambiotte，
＂Sufficient conditions of endemic threshold on metapopulation networks＂ Journal of Theoretical Biology 380，134－143（2015）．

Full－text available upon request：t＿takaguchi＠nii．ac．jp

Linear stability of a fixed point

Original equation
$\frac{d}{d t} x=f(x) \quad x \in \mathbb{R}^{N} \quad f: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$
Linearized equation at $x=x_{0}$
$\frac{d}{d t} \delta x=J\left(x_{0}\right) \delta x \quad\left(J\left(x_{0}\right)\right)_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x=x_{0}}$

Formal solution
$\delta x(t)=\exp \left(t J\left(x_{0}\right)\right) \delta x_{0}=\sum_{i} c_{i} e^{\lambda_{i} t} u_{i}$
Fixed point $x=x_{0}$ is linearly unstable $\Leftrightarrow \max _{1<i<N} \operatorname{Re} \lambda_{i}\left(J\left(x_{0}\right)\right)>0$

An improved upper bound

Let $x_{i}= \begin{cases}0 & \left(k_{i}<k_{c}\right), \quad K_{c} \equiv \sum_{j: k_{j} \geq k_{c}} k_{j} \\ \sqrt{k_{i} / K_{c}} & \left(k_{i} \geq k_{c}\right) .\end{cases}$
total number of links between nodes with $k_{i} \geq k_{c}$
$\lambda_{\max }\left(J^{(2)}\right) \geq \max _{k_{c}}\left[\beta\left(\frac{k_{c}}{\langle k\rangle} \rho\right)^{\gamma}+D_{\mathrm{I}} \frac{2 E_{c}}{K_{c}}\right]-\left(\mu+D_{\mathrm{I}}\right)$
$\Rightarrow \beta_{c}<\min _{k_{c}}\left\{\left[\mu+\left(1-\frac{2 E_{c}}{K_{c}}\right) D_{\mathrm{I}}\right]\left(\frac{k_{c}}{\langle k\rangle} \rho\right)^{-\gamma}\right\}$

Implication

More links between large－degree nodes \rightarrow smaller upper bound of β_{c}

しばしば突き当たること・••

- community，centrality の＂良さ＂をどう主張するか？
- ネットワーク全体を取り込む意義？
（e．g．，次数で OK？）
- temporal net ならではの解析とは？
- 固有値 etc の解析 \rightarrow 構造の言葉へ還元できるのか？

アリの順位行動ネットワーク

Directed Acyclic Graph（DAG）

Shimoji，Abe，Tsuij，Masuda（2014）

Directed Acyclic Graph（DAG）

因果検出

Granger causality（Granger，1969）

- 線形な系に適用
- 予測の良さに基づくので擬似相関も出る

CCM（Convergent Cross Mapping） －非線形な系に適用 －擬似相関も区別

Detecting Causality in
Complex Ecosystems

CCM

2 つの時系列 X, Y
Y から X に因果がある場合
$x(t)=(X(t), X(t-1), X(t-2))$
の最近傍点を
$x(u)=(X(u), X(u-1), X(u-2))$ とすると
$y(t)$ と $y(u)$ は近傍（似ている）
い
$Y(t)$ と $Y(u)$ の相関係数を計算

アトラクターの再構成に使う時系列の長さ

CCMの結果の例

まとめ

- ネットワークから生命の理論がつくれるか？
- 機能•適応性•進化可能性•頑健性
- ネットワークからしかわからない現象はあるか？
- ダイナミクスとどう絡めるか？
- 解析する手法も出てきたが

