IEEE-ICCSE 2016

Information Reduction for Chaotic Patterns

Yoshiki HIDAKA¹⁾, Noriko OIKAWA²⁾, Kosuke IJIGAWA¹⁾, Hirotaka OKABE¹⁾, and Kazuhiro HARA¹⁾

- 1) Faculty of Engineering, Kyushu University
- 2) Graduate School of Science and Engineering, Tokyo Metropolitan University

Universal Property of Chaos

Edward N. Lorenz

Lorenz Model

Discover of Chaos

$$\frac{dX}{dt} = p(Y - X)$$

$$\frac{dY}{dt} = -XZ + rX - Y$$

$$\frac{dZ}{dt} = XY - bZ$$

Non-periodic oscillation = Turbulence

Butterfly Effect

Strange Attractor

Non-Integer Fractal Dimension

Positive Lyapunov Exponent $\lambda > 0$

The non-periodic oscillation is regarded as chaos.

Derivation of Lorenz Model

Lorenz modeled weather as atmospheric convection.

Periodic Structure of Convection

$$\begin{aligned} \mathbf{v}(\mathbf{r},t) &= (u,0,w) \\ \theta(\mathbf{r},t) &= T(\mathbf{r},t) - T_0 - \Delta T/2 + (\Delta T/d)z \\ \uparrow \end{aligned}$$
 Deviation From the Thermal Conduction State

Periodic Structure with Time-Dependent Amplitude

$$u = u_0 X(t) \sin(\pi/d) z \sin qx$$

$$w = w_0 X(t) \cos(\pi/d) z \cos qx$$

$$\theta = \theta_1 Y(t) \cos(\pi/d) z \cos qx + \theta_2 Z(t) \sin(2\pi/d) z$$

Fluid Dynamics with Temperature Field

$$p^{-1} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \theta \, \mathbf{g} + \nabla^2 \mathbf{v}$$

$$\nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial \theta}{\partial t} + \mathbf{v} \cdot \nabla \theta = R \, \mathbf{g} \cdot \mathbf{v} + \nabla^2 \theta$$

 $\frac{\partial \theta}{\partial t} + \mathbf{v} \cdot \nabla \theta = R \, \mathbf{g} \cdot \mathbf{v} + \nabla^2 \theta \qquad \text{of } (\mathbf{r}, t)$

Ignoring Spatial Variation (\mathbf{r})

$$\frac{dX}{dt} = p(Y - X)$$

$$\frac{dY}{dt} = -XZ + rX - Y$$

$$\frac{dZ}{dt} = XY - bZ$$

Ordinary Differential Equations of the Amplitudes

Chaos in Real Convective Systems

$$\Gamma = \frac{L}{d} \sim \mathcal{O}(1)$$

Spatial coherence is kept in such small system even in weak turbulence.

Spatial variation can be ignored.

<e.g.> Chaos in an Electroconvective System of Liquid Crystals

Y. Hidaka et al.: J. Phys. Soc. Jpn. 61, 3950 (1992)

$$D = 2.6$$
$$\lambda > 0$$

Weak Turbulence in Spatially-Extended Convective Systems

 $\Gamma \gg 1 \rightarrow \text{Spatiotemporal Chaos}$

Defect Turbulence

Soft-Mode Turbulence

Spatiotemporal Intermittency

- What is the universal property for spatiotemporal chaos?
- How is spatiotemporal chaos distinguished from fully-developed turbulence?

eonardo da Vinci

Universal Property for Spatiotemporal Chaos

Two-Point Correlation Function for a Spatial Pattern

$$C(\mathbf{r}_1, \mathbf{r}_2) = \langle \rho(\mathbf{r}_1) \cdot \rho(\mathbf{r}_2) \rangle_{\mathbf{r}_1}$$

Homogeneous and Isotropic

$$C(\mathbf{r}_1, \mathbf{r}_2) = C(r), \quad r = |\mathbf{r}_1 - \mathbf{r}_2|$$

Correlation Length ξ : Roughness of the Pattern

What is adopted as $\rho(\mathbf{r})$?

Information Reduction

Defect Turbulence

 $\sin \alpha(x,y)$

Complex Demodulation Technique

 $u(x,y) = A_0 \exp[i(q_0x + \alpha(x,y))] + c.c.$

Wavelength of Original Stripe $\lambda_0=q_0/2\pi$

$$\alpha(x,y)$$
 Phase

Two-Point Correlation Function of Phase

$$C(r) = \langle \cos \Delta \alpha(r) \rangle$$

$$\Delta \alpha(r) = \alpha(\mathbf{r}_1) - \alpha(\mathbf{r}_2), \quad r = |\mathbf{r}_1 - \mathbf{r}_2|$$

By analogy with 2D-XY spin model:

$$C(r) \sim \exp(-r/\xi)$$

Soft-Mode Turbulence

$$u(x,y) = A_0 \exp(i\mathbf{q}_0 \cdot \mathbf{r}) + \text{c.c.}$$

 $\mathbf{r} = (x,y)$

$$\mathbf{q}_0(\mathbf{r}) = (q_0 \cos \psi(\mathbf{r}), q_0 \sin \psi(\mathbf{r}))$$

Two-Point Correlation Function of Roll Direction

$$C(r) = \langle \cos 2\Delta \psi(r) \rangle \sim \exp(-r/\xi)$$

$$\Delta \psi(r) = \psi(\mathbf{r}_1) - \psi(\mathbf{r}_2), \quad r = |\mathbf{r}_1 - \mathbf{r}_2|$$

 ξ corresponds to the average size of the domain.

Spatiotemporal Intermittency

$$u(x,y) = \sum_{q} \tilde{A}_q(x,y) \exp(iqx) + c.c.$$

$$\delta(x,y) = \left\{ \begin{array}{ll} 1 & (|\tilde{A}_{q_0}| > a) \text{ Order} \\ 0 & (|\tilde{A}_{q_0}| < a) \text{ Disorder} \end{array} \right.$$

Two-Point Cluster Function C(r), $r = |\mathbf{r}_1 - \mathbf{r}_2|$ Probability of finding both points \mathbf{r}_1 and \mathbf{r}_2 in the same cluster of one phase.

Analogy with site percolation model One phase is put at each site with probability p.

$$C(r) = p^{r} = \exp(-r/\xi)$$
$$\xi \equiv -1/\ln p$$

 $\boldsymbol{\xi}$ corresponds to the average size of cluster of the phase.

Summary

u(x,y)

Information Reduction

 $\rho(x,y)$

 $\sin \alpha(x,y)$

$$\psi(x,y)$$

 $\delta(x,y)$

Correlation Length $\,\xi>\lambda_0\,$ Local Order Size

Universal Property of Spatiotemporal Chaos

Summary & Future Plan

Fully-Developed Turbulence

$$\xi \ll \lambda_0$$

Chaos

$$\Gamma = \frac{L}{d} \sim \frac{L}{\lambda_0} \sim \mathcal{O}(1)$$
$$\xi > \lambda_0$$

 $L < \xi \rightarrow \text{Spatial Coherence}$

Is it true $C(r) \sim \exp(-r/\xi)$?

Modeling by $\rho(\mathbf{r})$