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Universal Property of Chaos
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Non-periodic oscillation D\ < N\ U(t) ~ exp(At)
= Turbulence
>

Butterfly Effect

Positive Lyapunov
X Exponent X\ >0

The non-periodic oscillation is regarded as chaos.




Derivation of Lorenz Model

Lorenz modeled weather as
atmospheric convection.

Periodic Structure of Convection
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Deviation From the Thermal Conduction State

Periodic Structure with Time-Dependent Amplitude
u = upX (t) sin(w/d)z sin gx
w = woX(t) cos(m/d)z cos qx
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Fluid Dynamics with Temperature Field
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o0 Partial Differential Equation
a-FV-V@:Rg-v—I—V@ of (r,1)

Ignoring Spatial Variation (r)
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Ordinary Differential Equations
of the Amplitudes




Chaos in Real Convective Systems

Spatial coherence is kept
7 in such small system
z d = i O(1) even in weak turbulence.
!
yl»—»x L Spatial variation can be ignored.

<e.g.> Chaos in an Electroconvective System of Liquid Crystals
Y. Hidaka et al.: J. Phys. Soc. Jpn. 61, 3950 (1992)
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Weak Turbulence
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Weak Turbulence in Spatially-Extended Convective Systems
[' > 1 — Spatiotemporal Chaos

Defect Turbulence

Soft-Mode Turbulence

Spatiotemporal Intermittency

e \What is the universal property for
spatiotemporal chaos?

eHow is spatiotemporal chaos
distinguished from fully-developed
turbulence?

Leonardo da Vinci




Universal Property for Spatiotemporal Chaos

Two-Point Correlation Function
for a Spatial Pattern

C(ry,rz) = (p(r1) - p(ra)),,

ry Homogeneous and Isotropic
C(I‘l,rg) = C(T’), r = |I'1 — I'2|

p(r)

In plausible cases,

C(r) ~ exp(—r/¢)
Monotonous Decay

T

Correlation Length £ : Roughness of the Pattern

What is adopted as p(r)?
Information Reduction




Defect Turbulence
u(z,y) sin a(x, y)

y Complex Demodulation

1 Technique
Z X

u(z,y) = Agexp|i(goz + oz, y))] + c.c.
Wavelength of Original Stripe \g = q0/27r C(T) = <COS AO&(T»

Two-Point Correlation Function of Phase

o(z,y) Phase Aa(r) = a(ry) — a(rz), r=|r; —ro

Ao By analogy with 2D-XY spin model:
e
C(r) ~ exp(—r/¢)

¢ corresponds to the average distance
between neighboring defects.
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Soft-Mode Turbulence

k

u(z, y) p
ko

Y

e

u(z,y) = Ag eXp(iqo : r) + c.c.

r = (z,y) _—
qo(r) = (go cos ¥ (r), qosinep(r)) 2 Y. §
Two-Point Correlation Function of Roll Direction ~ o

C(r) = (cos 2A9(r)) ~ exp(—r/§)
Ap(r) = (r1) —(rz), 7=|r; — 13

corresponds to the average size
f £

of the domain.




Spatiotemporal Intermittency

u(x,y) 0(z,y)
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4,1 t Two-Point Cluster Function C(r), r = |r; —r

8 e it sl Probability of finding both points r; and r
in the same cluster of one phase.

70 > 7 > q Analogy with site percolation model
One phase is put at each site with probability p.
i | C(r) = p" = exp(—1/¢)
u(x,y) = ZAq(x,y) exp(igzx) + c.c. — _1/Inp
q
~ - _
(|4q0| > a) Order £ corresponds to the average size

5(:[7, y) = { (1) of cluster of the phase.

(|Ag| < a) Disorder

§> Ao




Summary

u(z,y)

Information Reduction

p(,y)

sin a(x, y) Y(z,y) 0(z,y)

[Correlation Length & > )y Local Order Sizej

Universal Property of Spatiotemporal Chaos
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Summary & Future Plan

Fully-Developed Turbulence Chaos
L L
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.. L < & - Spatial Coherence

Is it true C(r) ~ exp(—71/&) ?

Modeling by p(r)
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