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DATA UNCERTAINTY IN OPTIMIZATION

♣ Consider a generic optimization problem of the form

min
x

{f (x; ζ) : F (x; ζ) ∈ K}
• x ∈ Rn: decision vector • ζ ∈ RM : data • K ⊂ Rm: closed convex set

♠ More often than not the data ζ is uncertain – not known exactly when
problem is solved.
Sources of data uncertainty:
• part of the data is measured/estimated ⇒ estimation errors
• part of the data (e.g., future demands/prices) does not exist when

problem is solved ⇒ prediction errors
• some components of a solution cannot be implemented exactly as

computed ⇒ implementation errors which in many models can be mim-
icked by appropriate data uncertainty
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Example

Effect of implementation errors



Worst-case chance constraints

Antenna array (Ben-Tal and Nemirovski (2002))

1 We consider an optimization problem with 40 circular antennas.

2 Each antenna has its diagram Di (φ) - a plot of intensity of signal sent
to different directions.

3 The diagram of the set of 40 antennas is the sum of their diagrams .

D(φ) =
n∑

i=1

xiDi (φ)

4 To the i-th antenna we can send a different amount of power xi .

5 Objective: Set the xi ’s in such a way that the diagram has the
desired shape.
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Application - antenna array optimization

Consider a circular antenna:

X

Y

Z

φ

ri

Energy sent in angle φ is
characterized by diagram

Diagram of a single antenna:

Di (φ) =
1

2

2π∫
0

cos

(
2πi

40
cos(φ) cos(θ)

)
dθ

Diagram of n antennas

D(φ) =
n∑

i=1

xiDi (φ)

xi - power assigned to antenna i

Objective: construct D(φ) as close as possible to the desired D∗(φ) using the
antennas available.



Worst-case chance constraints

Desired diagram graphically
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Worst-case chance constraints

Antenna array (Ben-Tal and Nemirovski (2002))

Problem conditions:

for 77◦ < φ ≤ 90◦ the diagram is nearly uniform:

0.9 ≤
n∑

i=1

xiDi (φ) ≤ 1, 77◦ < φ ≤ 90◦

for 70◦ < φ ≤ 77◦ the diagram is bounded:

−1 ≤
n∑

i=1

xiDi (φ) ≤ 1, 70◦ < φ ≤ 77◦

we minimize the maximum absolute diagram value over 0◦ < φ ≤ 70◦:

min max
0◦<φ≤70◦

∣∣∣∣∣
n∑

i=1

xiDi (φ)

∣∣∣∣∣
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Optimization problem to be solved

min τ

s.t. −τ ≤
n∑

i=1

xiDi (φ) ≤ τ, 0 ≤ φ ≤ 70◦

−1 ≤
n∑

i=1

xiDi (φ) ≤ 1, 70◦ ≤ φ ≤ 77◦

0.9 ≤
n∑

i=1

xiDi (φ) ≤ 1, 77◦ ≤ φ ≤ 90◦

Typically, decisions xi suffer from implementation error zi :

xi 7→ x̃i = (1 + zi )xi

We want each constraint to hold with probability at least 1− ε!
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Example

Effect of data inaccuracy









Example

Effect of uncertain predictions







Truss Topology Design
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The simplest TTD problem is

Compliance = 1
2fT x → min

s.t.

[
m∑

i=1

tibib
T
i

]

︸ ︷︷ ︸

A(t)�0

x = f

m∑

i=1

ti ≤ w

t ≥ 0

• Data:

— bi ∈ Rn, n – # of nodal degrees of freedom

(for a 10 × 10 × 10 ground structure, n ≈ 3, 000)

— m – # of tentative bars (for 10 × 10 × 10

ground structure, m ≈ 500, 000)

• Design variables: t ∈ Rm, x ∈ Rn
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Can we trust the truss?

2



04-115

Example: Assume we are designing a planar truss { a
cantilever; the 9� 9 nodal structure and the only load
of interest f� are as shown on the picture:

9� 9 ground structure and the load of interest

The optimal single-load design yields a nice truss as
follows:
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Optimal cantilever (single-load design)
the compliance is 1.000





“NON-ADJUSTABLE” ROBUST OPTIMIZATION:
Robust Counterpart of Uncertain Problem

min
x

{f (x, ζ) : F (x, ζ) ∈ K} (U)

♣ The initial (“Non-Adjustable”) Robust Optimization paradigm (Soys-
ter ’73, B-T&N ’97–, El Ghaoui et al. ’97–, Bertsimas&Sim ’03–,...) is
based on the following tacitly accepted assumptions:

A.1. All decision variables in (U) represent “here and now” decisions
which should get specific numerical values as a result of solving the
problem and before the actual data “reveals itself”.

A.2. The uncertain data are “unknown but bounded”: one can spec-
ify an appropriate (typically, bounded) uncertainty set U ⊂ RM of pos-
sible values of the data. The decision maker is fully responsible for
consequences of the decisions to be made when, and only when, the
actual data is within this set.

A.3. The constraints in (U) are “hard” – we cannot tolerate violations
of constraints, even small ones, when the data is in U .
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min
x

{f (x, ζ) : F (x, ζ) ∈ K}
ζ ∈ U (U)

♠ Conclusions:
• The only meaningful candidate solutions are the robust ones – those

which remain feasible whatever be a realization of the data from the
uncertainty set:

x robust feasible ⇔ F (x, ζ) ∈ K ∀ζ ∈ U
• “Robust optimal” solution to be used is a robust solution with the

smallest possible guaranteed value of the objective, that is, the optimal
solution of the optimization problem

min
x,t

{t : f (x, ζ) ≤ t, F (x, ζ) ∈ K ∀ζ ∈ U} (RC)

called the Robust Counterpart of (U).
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♠ With traditional modelling methodology,
• “large” data uncertainty is modelled in a stochastic fashion and

then processed via Stochastic Programming techniques

Fact: In many cases, it is difficult to specify reliably the distribution of
uncertain data and/or to process the resulting Stochastic Programming
program.

♠ The ultimate goal of Robust Optimization is to take into account data
uncertainty already at the modelling stage in order to “immunize”
solutions against uncertainty.
• In contrast to Stochastic Programming, Robust Optimization does

not assume stochastic nature of the uncertain data (although can uti-
lize, to some extent, this nature, if any).

4





Semi-Infinite Conic Programs

♣ Conic Program:
min

x

{

cTx : Ax − b ∈ K
}

(C)

• (c, A, b) – problem’s data
• closed pointed convex cone K, int K 6= ∅, in a Euclidean space –
problem’s structure
Examples:

• Linear Programming: K = Rn
+

• Conic Quadratic Programming: K is a direct product of Lorentz
cones

Lk = {y ∈ Rk : yk ≥
√

y2
1 + ... + y2

k−1}
• Semidefinite Programming: K = Sn

+ is the cone of positive semidef-
inite matrices in the space Sn of n × n symmetric matrices

♣ Semi-Infinite Conic Program:

min
x

{

cTx : Ax − b ∈ K∀[A, b] ∈ U
}

where U is a given “uncertainty set” (assumed to be convex and com-
pact).

2



min
x

{

cTx : Ax − b ∈ K∀[A, b] ∈ U
}

(S)

♣ The main mathematical question associated with semi-infinite prob-
lem (S) is:

(?) When and how (S) can be reformulated as a “computation-
ally tractable” optimization problem?

The answer to (?) clearly depends on the interplay between the ge-
ometries of the cone K and of the uncertainty set U .
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Intractability

Consider a (nearly linear) constraint:

‖Px− p‖1 ≤ 1 , ∀ p ∈ U (1)

where
U = {p = Bζ : ‖ζ‖∞ ≤ 1}

(a polyhedral set). B º 0 given matrix

Check whether x = 0 is robust feasible, i.e. the validity
of the inequality

‖Bζ‖1 ≤ 1 ∀ ζ : ‖ζ‖∞ ≤ 1 . (2)

Since ‖u‖1 = max{yT u | ‖y‖∞ ≤ 1}, (2) is equivalent to

max
y,ζ

{
yT Bζ | ‖y‖∞ ≤ 1, ‖ζ‖∞ ≤ 1

} ≤ 1 . (3)

Maximum is achieved at y = ζ∗ so (3) is equivalent to

max{yT By | ‖y‖∞ ≤ 1} ≤ 1 .

The problem on the lhs (maximizing a nonnegative
quadratic form over the unit box) is known to be
NP-hard. In fact, it is NP-hard to compute this
maximum with an accuracy better than 4%.

∗Suppose (ȳ, ζ̄), ȳ 6= ζ̄ is optimal. Then
(

ȳ+ζ̄
2

, ȳ+ζ̄
2

)
is feasible

and
(

ȳ+ζ̄
2

)T
B

(
ȳ+ζ̄
2

)
> ȳT Bζ̄ which is a contradiction to the

optimality of ȳ, ζ̄.

1



A Short Introduction to Conic Optimization
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Conic optimization program

• Let K ⊂ Rm be a cone defining a good vector inequality ≥K

(i.e., K is a closed pointed cone with a nonempty interior).

A generic conic problem associated with K is an optimiza-

tion program of the form

min
x

{
cTx : Ax− b ≥K 0

}
. (CP)
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Conic Duality Theorem

• A conic problem

min
x

{
eTs : s ∈ [L + f ] ∩K

}

is called strictly feasible, if its feasible plane intersects the

interior of the cone K.

(P): min
x

{
cTx : Ax− b ≥K 0

}

(D): max
y

{
bTy : ATy = c, y ≥K∗ 0

}

• Conic Duality Theorem. Consider a conic problem (P) along

with its dual (D).

1. Symmetry: The duality is symmetric: the problem dual

to dual is (equivalent to) the primal;

2. Weak duality: The value of the dual objective at any

dual feasible solution is ≤ the value of the primal objective

at any primal feasible solution;

3. Strong duality in strictly feasible case: If one of the prob-

lems (P), (D) is strictly feasible and bounded, then the other

problem is solvable, and the optimal values in (P) and (D)

are equal to each other.
If both (P), (D) are strictly feasible, then both problems

are solvable with equal optimal values.
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min
x

{
cTx : Ax− b ≥K 0

}
. (CP)

Examples:

• Linear Programming

min
x

{
cTx : Ax− b ≥ 0

}
(LP )

(K is a nonnegative orthant)

• Conic Quadratic Programming:

min
x

{
cTx : ‖D`x + d`‖2 ≤ eT

` x + f`, ` = 1, ..., k
}

m

min
x





cTx : Ax− b ≡







D1x + d1

eT
1 x + f1




...


Dkx + dk

eT
k x + fk







≥K 0





,

K = Lm1 × ...× Lmk

is a direct product of Lorentz cones

(CQP )

• Semidefinite Programming:

min
x

{
cTx : Ax−B ≡ x1A1 + ... + xnAn −B º 0

}

[
P º Q ⇔ P ≥Sm

+ Q
] (SDP )



Conic Quadratic Problem

Primal

min
x

cTx

‖Dix− di‖2 ≤ pTi x− qi i = 1, . . . , k

Rx = r

Dual

max
v,y;u

rTv +
K∑
i=1

(diyi + qiui)

RTv +
∑

(DT
i yi + piui) = c

‖yi‖ ≤ ui i = 1, . . . , k
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Program dual to an SDP program

min
x



cTx | Ax−B ≡ n∑

j=1
xjAj −B º 0



 (SDPr)

According to our general scheme, the problem dual to (SDPr)

is

max
Y
{〈B, Y 〉 | A∗Y = c, Y º 0} (SDDl)

(recall that Sm
+ is self-dual!).

It is easily seen that the operator A∗ conjugate to A is given

by

A∗Y = (Tr(Y A1), ..., Tr(Y An))T : Sm → Rn.

Consequently, the dual problem is

max
Y
{Tr(BY ) | Tr(Y Ai) = ci, i = 1, ..., n, Y º 0} (SDDl)
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• Example: The problem with nonlinear objective and con-

straints

minimize
n∑

`=1
x2

`

(a) x ≥ 0;

(b) aT
` x ≤ b`, ` = 1, ..., n;

(c) ‖Px− p‖2 ≤ cTx + d;

(d) x
`+1
`

` ≤ eT
` x + f`, ` = 1, ..., n;

(e) x
l

l+3
` x

1
l+3
l+1 ≥ gT

` x + h`, ` = 1, ..., n− 1;

(f ) Det




x1 x2 x3 · · · xn

x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
... ... ... . . . ...

xn xn−1 xn−2 · · · x1




≥ 1;

(g) 1 ≤ n∑
`=1

x` cos(`ω) ≤ 1 + sin2(5ω)∀ω ∈
[
−π

7 , 1.3
]

can be converted, in a systematic way, into an equivalent

problem

min
x

{
cTx : Ax− b º 0

}
,

” º ” being one of our 3 standard vector inequalities, so that

seemingly highly diverse constraints of the original problem

allow for unified treatment.
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• Lemma on Schur Complement. A symmetric block matrix

A =


 P QT

Q R




with positive definite R is positive (semi)definite if and only

if the matrix

P −QTR−1Q

is positive (semi)definite.

Proof. A is º 0 if and only if

inf
v


 u

v




T 
 P QT

Q R





 u

v


 ≥ 0 ∀u. (∗)

When R Â 0, the left hand side inf can be easily computed

and turns to be

uT (P −QTR−1Q)u.

Thus, (∗) is valid if and only if

uT (P −QTR−1Q)u ≥ 0 ∀u,

i.e., if and only if

P −QTR−1Q º 0.



Lecture 2

Robust Solutions of Uncertain 
Linear Optimization Problems



When treating an uncertain linear inequality aT x ≤ b we’ll use

U =

{(
a

b

)

=

(
a0

b0

)

+
∑

ζ`

(
a`

b`

)

| ζ ∈ Z

}

where Z is represented by linear conic inequalities:

Z = {ζ | ∃u : Pζ + Qu + p ∈ K}

where K is closed convex pointed cone.



Efficient Representation of Sets

X̂ ⊂ IRn × IRk represents X ⊂ IRn, if

X = {x ∈ IRn | ∃u ∈ IRk : (x, u) ∈ X̂}

(the projection of X̂ onto the space of the x-variables is exactly X)

Example

X =






x ∈ IRn :

n∑

j=1

|xj | ≤ 1






.

Straightforward representation of X requires the 2n linear inequalities

±x1 ± x2 ± · · · ± xn ≤ 1 .

Alternatively, X can be represented by

X̂ =
{

(x, u) ∈ IRn × IRn :
∑

ui ≤ 1, −uj ≤ xi ≤ uj , ∀ j
}

requiring only 2n + 2 linear inequalities.



The Constraint-wise Nature of the RC

x1 ≥ ζ1

x2 ≥ ζ2






∀

(
ζ1

ζ2

)

∈ U =







(
ζ1

ζ2

)∣
∣
∣
∣

ζ1 ≥ 0

ζ1 + ζ2 ≤ 1







⇔
x1 ≥ max

ζ1∈U
ζ1 = 1

x2 ≥ max
ζ2∈u

ζ2 = 1







Same RC under uncertainty

Û = U1 × U2 Ui = {ζi | 0 ≤ ζi ≤ 1}

Ui = proj. of U on ζi-space.



Conclusion The RC of uncertain linear inequalities under uncertainty

set u is the same when u is extended to the direct product

Û = U1 × U2 · · · × Um

of its projections onto the spaces of the data of respective constraints.

Moreover, each Ui can be replaced by its closed convex hull.



Focus on a single uncertainty-affected linear inequality—a family

{
aT x ≤ b

}

[a;b]∈U

of linear inequalities with the data varying in the uncertainty set

U =

{

[a; b] =
[
a0; b0

]
+

L∑

`=1

ζ`

[
a`; b`

]
; ζ ∈ Z

}

and on “tractable representation” of the RC

aT x ≤ b ∀
(

[a; b] =
[
a0; b0

]
+

L∑

`=1

ζ`

[
a`; b`

]
; ζ ∈ Z

)

(2)

of this uncertain inequality



Tractable Representation of (2): Simple Cases

Example

Z = Box1 ≡
{
ζ ∈ IRL : ‖ζ‖∞ ≤ 1

}
.

In this case, (2) reads

[a0]T x +
L∑

`=1

ζ`[a
`]T x ≤ b0 +

L∑

`=1

ζ`b
` ∀ (ζ : ‖ζ‖∞ ≤ 1)

⇔
L∑

`=1

ζ`[[a
`]T x − b`] ≤ b0 − [a0]T x ∀ (ζ : |ζ`| ≤ 1, ` = 1, . . . , L)

⇔ max
−1≤ζ`≤1

[
L∑

`=1

ζ`[[a
`]T x − b`]

]

≤ b0 − [a0]T x

The concluding maximum in the chain is clearly
∑L

`=1 |[a`]T x − b`|, so

(2) becomes

[a0]T x +

L∑

`=1

|[a`]T x − b`| ≤ b0,



which in turn admits a representation by a system of linear inequalities:






−u` ≤ [a`]T x − b` ≤ u`, ` = 1, . . . , L,

[a0]T x +
∑L

`=1 u` ≤ b0 .

Example

Z = BallΩ =
{
ζ ∈ IRL : ‖ζ‖2 ≤ Ω

}
.

In this case, (2) reads

[a0]T x +

L∑

`=1

ζ`[a
`]T x ≤ b0 +

L∑

`=1

ζ`b
` ∀ (ζ : ‖ζ‖2 ≤ Ω)

⇔ max
‖ζ‖2≤Ω

[
L∑

`=1

ζ`[[a
`]T x − b`]

]

≤ b0 − [a0]T x

⇔ Ω

√
√
√
√

L∑

`=1

([a`]T x − b`)2 ≤ b0 − [a0]T x,

a conic quadratic constraint.



The RC of a Linear Inequality-General Case

Z = {ζ ∈ IRL : ∃u ∈ IRK : Pζ + Qu + p ∈ K}
↑

closed convex pointed cone in IRN

U =

{(
a

b

)

=

(
ao

bo

)

+
∑

ζ`

(
a`

b`

) ∣
∣
∣
∣

ζ ∈ Z

}

Uncertain linear constraint

aT x ≤ b ∀

(
a

b

)

∈ U

becomes (ao)T x − bo

︸ ︷︷ ︸

d[x]

+

L∑

`=1

ζ` [(a`)T x − b`]
︸ ︷︷ ︸

c`[x]

≤ 0 ∀ ζ ∈ Z

⇔ sup
ζ∈Z

cT [x]ζ + d[x] ≤ 0

⇔ sup
ζ,u

{cT [x]ζ | Pζ + Qu + p ∈ K} ≤ −d[x] . (∗)



Theorem Let the perturbation set Z be given by

Z = {ζ ∈ IRL | ∃u ∈ IRK : Pζ + Qu + p ∈ K}

where K is a closed convex pointed cone in IRN which is either

polyhedral, or is such that

∃ ζ̄, ū : P ζ̄ + Qū + p ∈ int K .

Consider the robust counterpart of a linear inequality:

aT x ≤ b ∀

(
a

b

)

∈ U

where

U =

{(
a

b

)

=

(
ao

bo

)

+

L∑

`=1

ζ`

(
a`

b`

)
∣
∣
∣
∣
∣

ζ ∈ Z

}

.



Then a vector x ∈ IRn is robust feasible if and only if ∃ y ∈ IRL,

which together with x satisfies the following linear/conic inequalities:

pT y + (ao)T x ≤ b0

QT y = 0

(PT y)` + (a`)T x = b`, ` = 1, 2, . . . , L

y ∈ K∗

where K∗ = {y | yT v ≥ 0, ∀ v ∈ K} is the dual cone of K.



Illustration: Single-Period Portfolio Selection

There are 200 assets. Asset #200 (“money in the bank”) has yearly

return r200 = 1.05 and zero variability. The yearly returns r`,

` = 1, . . . , 199 of the remaining assets are independent random variables

taking values in the segments [µ` − σ`, µ` + σ`] with expected values µ`;

here

µ` = 1.05 + 0.3
(200 − `)

199
, σ` = 0.05 + 0.6

(200 − `)

199
, ` = 1, . . . , 199 .

The goal is to distribute $1 between the assets in order to maximize the

return of the resulting portfolio, the required risk level being ε = 0.5%.

We want to solve the uncertain LO problem

max
y,t

{

t :

199∑

t=1

r`y` + r200y200 − t ≥ 0,

200∑

`=0

y` = 1, y` ≥ 0 ∀ `

}

,

where y` is the capital to be invested into asset #`.



The uncertain data are the returns r`, ` = 1, . . . , 199; their natural

parameterization is

r` = µ` + σ`ζ` ,

where ζ`, ` = 1, . . . , 199, are independent random perturbations with

zero mean varying in the segments [−1, 1]. Setting x = [y;−t] ∈ IR201,

the problem becomes






minimize x201

subject to

(a)
[

a0 +
∑199

`=1 ζ`a
`
]T

x −
[

b0 +
∑199

`=1 ζ`b
`
]

≤ 0

(b)
∑200

j=1 x` = 1

(c) x` ≥ 0, ` = 1, . . . , 200

(4)

where

a0 = [−µ1;−µ2; . . . ;−µ199;−r200;−1]; a` = σ` · [0`−1,1; 1; 0201−`,1], ` = 1, . . . , 199;

b` = 0, ` = 0, 1, . . . , 199 .



The only uncertain constraint in the problem is the linear inequality

(a). We consider 3 perturbation sets along with the associated robust

counterparts of problem (4).

1. Box RC which ignores the information on the stochastic nature of

the perturbations affecting the uncertain inequality and uses the

only fact that these perturbations vary in [−1, 1]. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1} ;

2. Ball-Box with the safety parameter Ω =
√

2 ln(1/ε) = 3.255, which

ensures that the optimal solution of the associated RC (a CQ prob.)

satisfies (a) with probability at least 1 − ε = 0.995. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1}, ‖ζ‖2 ≤ 3.255} ;

3. Budgeted uncertainties with the uncertainty budget

γ =
√

2 ln(1/ε)
√

199 = 45.921, which results in the same

probabilistic guarantees as for the Ball-Box RC. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1}, ‖ζ‖1 ≤ 45.921} ;



Results

Box RC. The associated RC is the LP

max
y,t







t :

199∑

`=1

(µ` − σ`)y` + 1.05y200 ≥ t

200∑

`=1

y` = 1, y ≥ 0







;

as it should be expected, this is nothing but the instance of our

uncertain problem corresponding to the worst possible values

r` = µ` − σ`, ` = 1, . . . , 199, of the uncertain returns. Since these

values are less than the guaranteed return for money, the robust

optimal solution prescribes to keep our initial capital in the bank with

guaranteed yearly return 1.05.



Ball-Box RC. The associated RC is the conic quadratic problem

max
y,z,w,t







t :

199∑

`=1

(µ`y` + 1.05y200 −
199∑

`=1

|z`| − 3.255

√
√
√
√

199∑

`=1

w2
` ≥ t

z` + w` = y`, ` = 1, . . . , 199,

200∑

`=1

y` = 1, y ≥ 0







.

The robust optimal value is 1.1200, meaning 12.0% profit with risk as

low as ε = 0.5%.
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Example 1: Synthesis of Antennae array

♣ The diagram of an antenna. Consider a (monochromatic)

antenna placed at the origin. The electric field generated by

the antenna at a remote point rδ (δ is a unit direction) is

E = a(δ)r−1 cos (φ(δ) + tω − 2πr/λ) + o(r−1)

• t: time • ω: frequency • λ: wavelength

• It is convenient to aggregate a(δ) and φ(δ) into a single

complex-valued function – the diagram of the antenna

D(δ) = a(δ)(cos(φ(δ)) + i sin(φ(δ))).

• The directional density of the energy sent by the antenna

is proportional to |D(·)|2
• The diagram D(·) of a complex antenna comprised of sev-

eral antenna elements is the sum of the diagrams Di(·) of

the elements:

D(δ) = D1(δ) + ... + DN(δ)



3 
�4����5� Ù �2�������!� ×³����	�#"� (Y	�� 3 
�4����5�Á��Ï
ØÖÙ ��	'�!#FúU�I$Y+\� ������- �Ñ�;� �

X

Y

Z

θ

í;ü ãþýÅç7� ,2 2.ÿ�?������
�� ��	pÈ
 ����� ãþýÅç ����� ã�
"ç���

4 


¸Èô�	��Ì#����F- ô!�Ñ+\����ô�� 
�� ���!� �Ì����	�����ô!� �F�!#���� ý 
�����$÷½

�



Ø ÿ 7Y�F- +���� �

X

Z

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

9�� �8
����Å���2����	'�Q��	'�!#�� ×Ö	��Ì#����F- �,
°�Û���!� ��	'�!#��
Ø ×³�)��� � 9�� �8
����Å���2����	'� ��	'�!#�� 	'� ���!�����³úB+����F�!� ÒÔ	���� ���!�,���Ìô�	'	È G � G� ? PUõ �  ­õO!$!$!põ���í P�Ò � (��������!#%��� 
 � íÑ! ���Ø ���F��#°� � � ��
 - 	'��	'- 	�.8�Ô���!�Ô- �)7 	'- ��- 
°�\���!� ô�	���#"���Ì- - 
 ô ú
���'��� 	'� ���!� �­�F�!#���� 
°� �!
 	'�2���������5��� íÎì ý6ì ��í�� 
 ���!� �L��	'ô!�8ú
��
�4\� ��� (������

Ü! #"?�$&%'$)(�?+* wwww
� ?ÐG *-, ä G í�ü-, ãþýÅç. /10 2354 %76

wwww����ô!��� ���!� ���Ñ�5����	'�P��	�
����Ó���!�)�
ï � ò � �!� ô�	��Ì#����F- 	'� ���!� �­�F�!#���� 
°� 	'�2���������5��� ���8�Ûì ýÔì 9�í��	'�Î�!�Ñ�F����$ ����	��z
"��- �

���:�éì ýÎì 9­í;�=< íÑ!>9 ì í ãþýÅç¬ì  
ï � òÐ� �!�Qô�	��Ì#����F- 
"������	'ô!�6���!�³�F�!#����Ö
�� 	'�2�����������ø	��ø�!
%� ��
;
���Ì��#°� �

è í ãþýÅç�èÑì  �÷ý�!

¢-?



Worst-case chance constraints

Desired diagram graphically
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How it works? – Antenna Example

min
x,τ



τ : −τ ≤ D∗(θ`)−

10∑

j=1
xjDj(θ`) ≤ τ, ` = 1, ..., L





m
min
x,τ

{τ : Ax + τa + b ≥ 0} (LP)

• The influence of “implementation errors”

xj 7→ (1 + εj)xj

is as if there were no implementation errors, but the part

A of the constraint matrix was uncertain and known “up

to multiplication by a diagonal matrix with diagonal entries

from [0.999, 1.001]”:

Uini = {A = AnomDiag(1 + ε1, ..., 1 + ε10) : |εj| ≤ 0.001} (U)

Note that

As far as a particular constraint is concerned, the uncertainty

is an interval one with δAij = 0.001|Aij|. The remaining coef-

ficients (and the objective) are certain.

♣ To improve reliability of our design, we could replace the

uncertain LP program (LP), (U) with its robust counterpart,

which is nothing but an explicit LP program.

However, to work directly with Uini would be “too conserva-

tive” – we would ignore the fact that the implementation er-

rors are random and independent, so that the probability for

all of them to take simultaneously the “most unfavourable”

values is negligibly small.

Let us try to define the uncertainty set in a smarter way.



Worst-case chance constraints

Nominal solution - dream and reality
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♣ Applying the outlined methodology to our Antenna exam-

ple:

min
x,τ



τ : −τ ≤ D∗(θ`)−

10∑

j=1
xjDj(θ`) ≤ τ, 1 ≤ ` ≤ 120



 (LP)

⇓
min
x,τ

τ

D∗(θ`)− 10∑
j=1

xjDj(θ`) + κσ
√√√√ 10∑

j=1
x2

jD
2
j (θ`) ≤ τ

D∗(θ`)− 10∑
j=1

xjDj(θ`)− κσ
√√√√ 10∑

j=1
x2

jD
2
j (θ`) ≥ −τ

1 ≤ ` ≤ 120

(RC)

[σ = 0.001]

we get a robust design.
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Example 2: NETLIB Case Study: Diagnosis

♣ NETLIB is a collection of about 100 not very large LPs,
mostly of real-world origin. To motivate the methodology
of our “case study”, here is constraint # 372 of the NETLIB
problem PILOT4:

aT x ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830

−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853

−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858

−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871

+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal solution x∗ of
the problem, as reported by CPLEX, are:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

This solution makes (C) an equality within machine precision.

♣Most of the coefficients in (C) are “ugly reals” like -15.79081

or -84.644257. We definitely may believe that these coef-

ficients characterize technological devices/processes, and as

such hardly are known to high accuracy. Thus, “ugly coefficients”

may be assumed to be uncertain and to coincide with the

“true” data within accuracy of 3-4 digits. The only excep-

tion is the coefficient 1 of x880, which perhaps reflects the

structure of the problem and is exact.
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aT x ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830

−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853

−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858

−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871

+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

♣ Assume that the uncertain entries of a are 0.1%-accurate

approximations of unknown entries in the “true” data ã, how

would this uncertainty affect the validity of the constraint

evaluated at the nominal solution x∗?
• The worst case, over all 0.1%-perturbations of uncertain

data, violation of the constraint is as large as 450% of the right

hand side!

• In the case of random and independent 0.1% perturbations

of the uncertain coefficients, the statistics of the “relative

constraint violation”

V =
max[b− ãTx∗, 0]

b
× 100%

also is disastrous:

Prob{V > 0} Prob{V > 150%} Mean(V )

0.50 0.18 125%

Relative violation of constraint # 372 in PILOT4

(1,000-element sample of 0.1% perturbations of the

uncertain data)

♣ We see that quite small (just 0.1%) perturbations of “obviously

uncertain” data coefficients can make the “nominal” optimal solution

x∗ heavily infeasible and thus – practically meaningless.
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♣ In our Case Study, we choose a “perturbation level” ε (tak-

ing values 1%, 0.1%, 0.01%), and, for every one of the NETLIB

problems, measure the “reliability index” of the nominal so-

lution at this perturbation level, specifically, as follows.

1. We compute the optimal solution x∗ of the program by

CPLEX.

2. For every one of the inequality constraints

aTx ≤ b (∗)
• we split the right hand side coefficients aj into “cer-

tain” (rational fractions p/q with |q| ≤ 100) and “uncer-

tain” (all the rest). Let J be the set of all uncertain

coefficients of (∗).
• we define the reliability index of (∗) as

aTx∗ + ε
√ ∑

j∈J
a2

j(x
∗
j)2 − b

max[1, |b|] × 100% (I)

Note that the reliability index is of order of typical viola-

tion (measured in percents of the right hand side) of

the constraint, as evaluated at x∗, under independent random

perturbations, of relative magnitude ε, of the uncertain coeffi-

cients.

3. We treat the nominal solution as unreliable, and the prob-

lem - as bad, the level of perturbations being ε, if the

worst, over the inequality constraints, reliability index is

worse than 5%.
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♣ The results of the Diagnosis phase of our Case Study are

as follows.

From the total of 90 NETLIB problems we have processed,

• in 27 problems the nominal solution turned out to be

unreliable at the largest (ε = 1%) level of uncertainty;

• 19 of these 27 problems are already bad at the 0.01%-

level of uncertainty, and in 13 of these 19 problems, 0.01%

perturbations of the uncertain data can make the nominal

solution more than 50%-infeasible for some of the constraints.

Problem Sizea) ε = 0.01% ε = 0.1% ε = 1%
#badb) Indexc) #bad Index #bad Index

80BAU3B 2263× 9799 37 84 177 842 364 8,420
25FV47 822× 1571 14 16 28 162 35 1,620
ADLITTLE 57× 97 2 6 7 58
AFIRO 28× 32 1 5 2 50
BNL2 2325× 3489 24 34
BRANDY 221× 249 1 5
CAPRI 272× 353 10 39 14 390
CYCLE 1904× 2857 2 110 5 1,100 6 11,000
D2Q06C 2172× 5167 107 1,150 134 11,500 168 115,000
E226 224× 282 2 15
FFFFF800 525× 854 6 8
FINNIS 498× 614 12 10 63 104 97 1,040
GREENBEA 2393× 5405 13 116 30 1,160 37 11,600
KB2 44× 41 5 27 6 268 10 2,680
MAROS 847× 1443 3 6 38 57 73 566
NESM 751× 2923 37 20
PEROLD 626× 1376 6 34 26 339 58 3,390
PILOT 1442× 3652 16 50 185 498 379 4,980
PILOT4 411× 1000 42 210,000 63 2,100,000 75 21,000,000
PILOT87 2031× 4883 86 130 433 1,300 990 13,000
PILOTJA 941× 1988 4 46 20 463 59 4,630
PILOTNOV 976× 2172 4 69 13 694 47 6,940
PILOTWE 723× 2789 61 12,200 69 122,000 69 1,220,000
SCFXM1 331× 457 1 95 3 946 11 9,460
SCFXM2 661× 914 2 95 6 946 21 9,460
SCFXM3 991× 1371 3 95 9 946 32 9,460
SHARE1B 118× 225 1 257 1 2,570 1 25,700

a) # of linear constraints (excluding the box ones) plus 1 and # of variables
b) # of constraints with index > 5%
c) The worst, over the constraints, reliability index, in %
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How it works? NETLIB Case Study

♣We solved the Robust Counterparts of the bad NETLIB prob-

lems, assuming interval uncertainty in “ugly coefficients” of

inequality constraints and no uncertainty in equations. It turns

out that

• Reliable solutions do exist, except for 4 cases correspond-

ing to the highest (ε = 1%) perturbation level.

• The “price of immunization” in terms of the objective

value is surprisingly low: when ε ≤ 0.1%, it never exceeds

1% and it is less than 0.1% in 13 of 23 cases. Thus, passing

to the robust solutions, we gain a lot in the ability of the solu-

tion to withstand data uncertainty, while losing nearly nothing in

optimality.



Lecture 3

Robust Conic Quadratic 
Problems



Theorem [S-Lemma] Let A, B be symmetric n × n matrices, and

assume that the quadratic inequality

xT Ax ≥ 0 (1)

is strictly feasible: there exists x̄T Ax̄ > 0. then the quadratic inequality

xT Bx ≥ 0 (2)

is a consequence of (1) if and only if it is a linear consequence of (1),

i.e., if and only if there exists a nonnegative λ such that

B � λA .



The RC of a Quadratically Constrained Problem

min
x∈IRn

{
γT x : xT AT Ax ≤ 2bT x + c, ∀ (A, b, c) ∈ U

}
, (UQ)

with single ellipsoid uncertainty, namely

U =

{

(A, b, c) = (A0, b0, c0) +

L∑

`=1

u`(A
`, b`, c`) : ‖u‖2 ≤ 1

}

. (1)

Theorem 1 A robust counterpart of (UQ) with the uncertainty set U
given by (1) is equivalent to the SDP problem

min
(x,λ)∈IRn

×IR
γT x

s.t.













c0 + 2xT b0 − λ 1
2c1 + xT b1 · · · 1

2cL + xT bL (A0x)T

1
2c1 + xT b1 λ (A1x)T

...
. . .

...
1
2cL + xT bL λ (ALx)T

A0x A1x · · · ALx Im













� 0 , (RUQ)

user
Note







Theorem 4 The set Rρ of (x, λ) satisfying λ ≥ 0 and

SDP (ρ)


c[x]−

∑K
k=1 λk (−bρ[x]− dρ)T a[x]T

−bρ[x]− dρ
∑K

k=1 λkQk −Aρ[x]T

a[x] −Aρ[x] IM

 � 0

is an approximate robust counterpart of the set Xρ of robust feasible solutions

of (UQC), i.e. (12) holds:

uTQku ≤ 1 , k = 1, . . . , K ⇒ (12)

uTAρ[x]TAρ[x]u+ 2uT (Aρ[x]Ta[x]− bρ[x]− dρ) ≤ c[x]− a[x]Ta[x].

The level of conservativeness of Xρ is

Ω ≤ 9.19
√

logK (K is the number of ellipsoids)

i.e.

opt(ρ) ≤ SDP (ρ) ≤ opt(Ωρ) .

For box uncertainty set ‖u‖∞| ≤ |

Ω ≤ π

2
.



Robust Semidefinite Optimization



Uncertain Semidefinite Programming

• For an Uncertain Semidefinite problem

(USD):


min

x



cT x : A[x] ≡ A0 +

n∑

j=1

xjAj º 0



 : [A0, . . . , An] ∈ U





the RC can be NP-hard already in the simplest
cases when U is a box or an ellipsoid.

• The strongest generic result on tight
computationally tractable approximations of
Uncertain Semidefinite constraints deals with the
case of structured norm-bounded perturbations

U =




A[x] = An[x] +

L∑

`=1

[LT
` ∆`R`[x] + RT

` [x]∆T
` L`] :

∆` ∈ IRd`×d` , ‖∆`‖ ≤ ρ , ∆` = δ`Id`
, ` ∈ IS





– An[x]: symmetric m×m matrix affinely depending
on x

– R`[x] : d` ×m matrix affinely depending on x



(RC):


An[x] +

L∑

`=1

[LT
` ∆`R`[x] + RT

` [x]∆T
` L`] º 0

∀{∆`}L
`=1 : ∆` ∈ IRd`×d` , ‖∆`‖ ≤ ρ, ∆` = δ`Id`

, ` ∈ IS





Theorem 1 (Ben-Tal, Nemirovski, Roos ’02) The
Robust Counterpart (RC) of an Uncertain LMI with
structured norm-bounded perturbations admits a
ϑ-tight approximation which is an explicit semidefinite
program. The tightness factor ϑ depends solely on the
maximum of sizes d` of scalar perturbation blocks

µ = max{d` : ` ∈ IS}

specifically,

ϑ ≤ π
√

µ

2
.

If there are no scalar perturbation blocks (IS = φ), or
all scalar perturbation blocks are of size 1 (d` = 1), then

ϑ =
π

2
.

In the case of a single perturbation block (L = 1),
ϑ = 1, i.e. (RC) is equivalent to an explicit single LMI.



Unstructured Norm-Bounded
Perturbations

Definition 1 We say that uncertain LMI

Aζ(y) ≡ An(y) +
L∑

`=1

ζ`A`(y) º 0 , (1)

is with unstructured norm-bounded perturbations, if

1. The perturbation set Z is the set of all p× q

matrices ζ with the usual matrix norma ‖ · ‖2,2 not
exceeding 1;

2. Aζ(y) can be represented as

Aζ(y) ≡ An(y) +
[
LT (y)ζR(y) + RT (y)ζT L(y)

]
,

(2)
where both L(·), R(·) are affine and at least one of
these matrix-valued functions is independent of y.

1



We have proved the following statement:

Theorem: 1 The RC

An(y)+LT (y)ζR+RT ζT L(y) º 0, ∀ (ζ ∈ IRp×q : ‖ζ‖2,2 ≤ ρ)
(3)

of uncertain LMI (1) with unstructured norm-bounded
uncertainty (2) (where, w.l.o.g., we assume that R 6= 0
and R is independent of y) and uncertainty level ρ can
be represented equivalently by the LMI


 λIp ρL(y)

ρLT (y) An(y)− λRT R


 º 0 (4)

in variables y, λ.

3



Example: Truss Topology Design

A truss is a mechanical construction, like railroad
bridge, electric mast or Eiffel Tower, comprised of thin
elastic bars linked with each other at nodes. Some of
the nodes are partially or completely fixed. An external
load is a collection of external forces acting at the
nodes; under such a load, the nodes slightly move, thus
causing elongations and compressions in bars, until the
construction achieves an equilibrium, where the
tensions caused in the bars as a result of their
deformations compensate the external forces. The
compliance is the potential energy capacitated in the
truss at the equilibrium as a result of deformations of
the bars.

A mathematical model of the outlined situation is as
follows.

4



TTD




min
x∈IRM , t∈IRN

fT x

A(t)x = f

t ∈ T




where

A(t) =
N∑

i=1

tibib
T
i

is the stiffness matrix of the truss;
bi is a vector given in terms of the material property of
bar i (Young modulus) and the “nominal” (i.e. in the
unloaded truss) position of the nodes.

T =
{

t ∈ IRN : t ≥ 0,
∑

tj ≤ w
}

ti represent volume of bar i.

fT x is the compliance — the potential energy
capacitated in the truss at the equilibrium due to
external force f ∈ IRM acting on the nodes.

An equivalent formulation of a TTD problem is as
follows:

5



Complf (A) = min
x

{
1
2
fT x | A(t)x = f

}

= max
x

{
fT x− 1

2
xT A(t)x

}

(TTD) is equivalent to

min
t∈T

Complf (A) = min
t∈T

max
x

{
fT x− 1

2
xT A(t)x

}

⇔ min
t∈T
τ∈R

τ

fT x− 1
2

xT A(t)x ¹ τ ∀x

⇔ min
t,τ
{τ | 2τs2 − 2s fT (sx) +

1
2
(xs)T A(t)(sx) º 0

∀x, s}

⇔ min
t,τ
{τ | 2τs2 − 2s fT v +

1
2
vT A(t)v º 0, ∀ v, s}

⇔ min
t,τ



τ |


 2τ −fT

−f A


 º 0





⇔ min
t∈T



τ |


 2τ f

f A


 º 0



 (SDP)

6





By Theorem 1, (5) is equivalent to the single LMI


 λI ρL

ρLT AN − λRT R


 º 0 (6)

which here becomes




λI 0 ρBT

0 2τ − λ fT
N

ρB fN A(t)


 º 0 (7)

8
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Example: Assume we are designing a planar truss { a
cantilever; the 9� 9 nodal structure and the only load
of interest f� are as shown on the picture:

9� 9 ground structure and the load of interest

The optimal single-load design yields a nice truss as
follows:
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Optimal cantilever (single-load design)
the compliance is 1.000





A Guide to Deriving Robust Counterparts



Consider the uncertain constraint

f(a, x) ≤ 0 , (5)

where x ∈ IRn is the optimization variable, f(., x) is concave for all x ∈ IRn,

and a ∈ IRm is an uncertain vector, which is only known to reside in a set U .

The robust counterpart of (5) is then

(RC) f(a, x) ≤ 0 , ∀ a ∈ U , (6)

where the uncertainty set U is modeled as follows:

U = {a = a0 + Aζ | ζ ∈ Z ⊂ IRL} .

Here a0 ∈ IRm is the so-called “nominal value”, the matrix A is given column

wise: A = (a1a2, . . . , aL) ∈ IRm×L, ζ is called the vector of “primitive uncer-

tainties”, and Z is a given nonempty, convex and compact set, with 0 ∈ ri(Z).

With this formulation, it is required to determine the value of x before the actual

realization of a is available (“here and now” decisions).

Definition 1 The nominal vector a0 is called regular if a0 ∈ ri(dom f(., x)),

∀x.

Note that when a0 is regular and since 0 ∈ ri(Z), then the following holds:

ri(U) ∩ ri(dom f)(., x)) 6= ∅ , ∀x . (7)



The robust inequality (RC) can be rewritten as

max
a∈U

f(a, x) ≤ 0 . (8)

A General Principle

The dual of the optimization problem in (8) has the general form

min{g(b, x) | b ∈ Z(x)} . (9)

Under suitable convexity and regularity conditions on f(., x) andU (such as (7))

strong duality holds between the maximization problem in (8) and (9); hence, x

is robust feasible if and only if

min{g(b, x) | b ∈ Z(x)} ≤ 0 . (10)

So finally, x is robust feasible for (6) if and only if x and b solve the system
g(b, x) ≤ 0

b ∈ Z(x) .

(11)

In case strong duality does not hold, we still have (by weak duality) that (10)

implies (9). Hence, whenever x and some b solve (11), then x satisfies (6), i.e.,

it is robust feasible.



Fenchel Duality

The primal problem is given as follows:

(P ) inf{f(x)− g(x)|x ∈ dom(f) ∩ dom(g)} .

The Fenchel dual of (P ) is given by:

(D) sup{g∗(y)− f ∗(y)|y ∈ dom(g∗) ∩ dom(f ∗)} .

The Fenchel duality theorem is stated next.

Theorem 5 If ri(dom(f)) ∩ ri(dom(g)) 6= ∅ then the optimal values of (P )

and (D) are equal and the maximal value of (D) is attained.

If ri(dom(g∗)) ∩ ri(domf ∗)) 6= ∅ then the optimal values of (P ) and (D) are

equal and the minimum value of (P ) is attained. 2

Note that since f ∗∗ = f and g∗∗ = g, we have that the dual of (D) is (P ).



The next basic result gives an equivalent reformulation for (RC) which can be

used extensively to derive tractable RCs.

Theorem 2 Let a0 be regular. Then the vector x ∈ IRn satisfies (RC) if and

only if x ∈ IRn, v ∈ IRm satisfy the single inequality

(FRC) (a0)Tv + δ∗(ATv|Z)− f∗(v, x) ≤ 0 , (12)

in which the support function δ∗ and the partial concave conjugate function f∗

are defined in (3) and (1), respectively.

Proof Using the definition of indicator functions (2) and using Fenchel duality,

we have

F (x) := max
a∈U

f(a, x) (13)

= max
a∈Rm
{f(a, x)− δ(a|U)} (14)

= min
v∈Rm
{δ∗(v|U)− f∗(v, x) , (15)

(strong duality holds by regularity) where

f∗(v, x) = inf
a∈IRm
{aTv − f(a, x)} ,

and

δ∗(v|U) = sup
ζ∈Z
{aTv | a = a0 + Aζ} (16)

= (a0)Tv + sup
ζ∈Z

vTAζ (17)

= (a0)Tv + δ∗(ATv|Z) . (18)

By (18) and (15), F (x) ≤ 0 is exactly condition (12).



Remarks

1. In (FRC), the computation involving f are completely independent from

those involving Z.

2. To derive (FRC) we did not assume f(a, x) to be convex in x. However, if

f(a, x) is convex in x, ∀ a ∈ U , then f∗(v, x) is concave in (v, x), so then

(FRC) is a convex inequality in (v, x).

3. It is interesting to observe that robustifying a nonlinear constraint may have

a “convexification effect”. This is illustrated in the next nominal constraint

which is nonconvex, but whose robust counterpart is convex. We consider

the following robust counterpart:

f(a, x) :=
m∑
i=1

aifi(x) ≤ b ∀ a ∈ U ,

where U = {a ∈ IRm|‖a− a0‖∞ ≤ ρ}, and let ρ+ a0i ≥ 0, i = 1, . . . ,m.

We assume that fi(x), i = 1, . . . ,m, are convex and fi(x) ≥ 0, ∀x. Sup-

pose (some of) the nominal values a0i are negative, which means that the

nominal inequality
m∑
i=1

a0ifi(x) ≤ b

may not be convex. However, in this case the (FRC)

m∑
i=1

(a0i + ρ)fi(x) ≤ b

is indeed a convex inequality.



Conjugate Functions, Support Functions and Fenchel Duality

We outline some basic results on conjugate functions, support functions and

Fenchel duality.

We start with some well-known results on conjugate functions. First, note that

f ∗ is closed convex, and g∗ is closed concave; moreover, f ∗∗ = f and g∗∗ = g.

It is well-known that for a > 0

(af)∗(y) = af ∗
(y
a

)
and for f̃(x) = f(ax), a > 0, we have f̃ ∗(y) = f ∗

(y
a

)
and for f̃(x) = f(x− a) we have f̃ ∗(y) = f ∗(y) + ay .

We frequently use the following sum-rules for conjugate functions.

Lemma 1 Assume that fi, i = 1, . . . ,m, are convex, and the intersection

of the relative interiors of the domains of fi, i = 1, . . . ,m, is nonempty, i.e.,

∩mi=1ri(dom fi) 6= ∅. Then(
m∑
i=1

fi

)∗
(s) = inf

{vi}mi=1

{
m∑
i=1

f ∗i (v
i)

∣∣∣∣∣
m∑
i=1

vi = s

}
, ,

and the inf is attained for some vi, i = 1, . . . ,m.

In particular, let S1, . . . , Sk be closed convex sets, such that ∩iri(Si) 6= ∅, and

let S = ∩ki=1Si. Then

δ∗(y|S) = min

{
k∑

i=1

δ∗(vi|Si)

∣∣∣∣∣
k∑

i=1

vi = y

}
.

2



We now state three results which are used to derive tractable robust counterparts.

The first lemma relates the conjugate of the adjoint function (f♦(x) = xf
(
1
x

)
,

x > 0) to the conjugate of the original function. Note that f♦(x) is convex

if f(x) is convex. The next proposition can be used in cases where f ∗ is not

available in closed form, but (f♦)∗ is available as such.

Lemma 2 For the conjugate of a function f : IR+ −→ IR and the conjugate of

its adjoint f♦, we have f ∗(s) = inf{y ∈ IR : (f♦)∗(−y) ≤ −s}. 2

The next proposition can be used in cases where f−1 is not available in closed

form, but (f−1)∗ is available as such.

Lemma 3 Let f : IR −→ IR be strictly increasing and concave. Then, for all

y > 0

(f−1)∗(y) = −yf∗
(
1

y

)
= −(f∗)♦(y) . 2

The next proposition gives a useful result related to the conjugate of a function

after linear transformations.

Lemma 4 Let A be a linear transformation from IRn to IRm. Assume there

exists an x such that Ax ∈ ri(dom g). Then, for each convex function g on

IRm, one has

(gA)∗(z) = inf
y
{g∗(y) | ATy = z} .

where for each z the infimum is attained, and where the function gA is defined

by

(gA)(x) = g(Ax) . 2



f(t) f ∗(s) (domain)

t 0 (s = 1)

t2 s2/4 (s ∈ IR)

|t|p/p (p > 1) |s|q/q (s ∈ IR)

−tp/p (t ≥ 0, 0 < p < 1) −(−s)q/q (s ≤ 0)

− log t (t > 0) −1− log(−s) (s < 0)

t log t (t > 0) es−1 (s ∈ IR)

et


s log s− s (s > 0)

0 (s = 0)

log(1 + et)


s log s+ (1− s) log(1− s) (0 < s < 1)

0 (s = 0, 1)

√
1 + t2 −

√
1− s2 (−1 ≤ s ≤ 1)

Some examples for f , with conjugate f ∗. The parameters p and q are related as follows:

1/p+ 1/q = 1.



Example (Transformed uncertainty region). Suppose f(ã, x) = ãTx − β and

the uncertainty region Ũ is defined as follows:

Ũ =
(
ã | h(ã) = h1(ã1), . . . , hm(ãm))T ∈ U

}
,

where hi(·) is convex for each i, and moreover we assume that h−1i exists for all

i. By substituting ã = h−1(a), we obtain for (RC)

h−1(a)Tx ≤ β ∀ a ∈ U .

The corresponding (FRC) becomes:

(a0)Tv + δ∗(ATv|Z) +
n∑
i=1

xi
(
(hi)

−1)
∗ (vi/xi) ≤ β .

Using the result in the conjugate of h−1, we finally get:

(a0)Tv + δ∗(ATv|Z) +
n∑
i=1

vi(hi)
∗(xi/vi) ≤ β .

The result shows that even if we cannot compute a closed form for h−1i , we can

still construct the robust counterpart. As an example, take hi(t) = −(t+ log t).

There is no closed form for h−1i , but there is an explicit formula for the conjugate

of hi:

h∗i (s) = −1− log(−(s+ 1)) . 2

Finally, we give some examples in which f(a, x) cannot be written as f(a)Tg(x),

but still f∗(v, x) can be computed.



Nonconcave uncertainty

So far, it was assumed that f(a, x) is concave in a for each x. If this assumption

does not hold, one may try to reformulate the (RC) problem to regain convexity.

We describe different ways for such a reformulation:

Reparametrizing and computing convex hull. Suppose f(a, x) can be written

as f(a)Tg(x), where f(a) is not necessarily concave and/or g(x) may attain

positive and negative values. Let us, for ease of notation, also assume that

m = L, A = 1, and a0 = 0. By the parametrization b = f(a), (RC) becomes

bTg(x) ≤ 0 ∀ (a, b) ∈ Ū ,

where Ū = {(a, b) | a ∈ U , b = f(a)}. Since the left-hand side of this

constraint is linear in the uncertain parameter b, we may replace Ū by conv(Ū).

Hence, if we can compute conv(Ū), we can apply Theorem 2.

A well-known example is quadratic uncertainty and an ellipsoidal uncertainty

region. For this case, it has been proved that conv(Ū) can be formulated as an

LMI. The resulting robust counterpart is therefore a system of LMIs.



Globalized Robust Optimization



Motivation

Idea Globalized Robust Optimization

inner region

outer region

inner region small constraint
violation allowed

large constraint
violation allowed

constrained
violation

unbounded

Inner uncertainty region: full feasibility as in classical RO
Allow restricted constraint violations for parameters in the outer
uncertainty region
Allowed violation depends on distance to the inner region

Ruud Brekelmans (Tilburg University) Globalized Robust Optimization SIAM OP 2014 4 / 20



Globalized Robust Counterparts

Globalized Robust Counterpart

f (a, x) ≤ min
ã∈U1

φ(a, ã) ∀a ∈ U2 (GRC)

Uncertainty regions

U1: inner uncertainty region (convex and compact)
U2: outer uncertainty region (convex)
Z1 and Z2 corresponding primitive uncertainty regions

Violation measure
φ(a, ã): “distance” between a and ã

nonnegative and jointly convex in both arguments
φ(a,a) = 0 for all a ∈ Rm

Examples:
Norm based: φ(a, ã) = θ · ‖a− ã‖ or φ(a, ã) = θ · ‖a− ã‖2

Phi-divergence distances
Ruud Brekelmans (Tilburg University) Globalized Robust Optimization SIAM OP 2014 12 / 20



Globalized Robust Counterparts

Example: Simple Case

Linear constraint,
violation linear in distance

aT x − b ≤ min
ã∈U1

θ · ‖a− ã‖2 ∀a ∈ U2

with

Ui =
{

a = a0 + Aζ
∣∣ ζ ∈ Zi

}
i = 1,2

Z1 =
{
ζ ∈ RL ∣∣ ‖ζ‖1 ≤ ρ1

}
Z2 =

{
ζ ∈ RL ∣∣ ‖ζ‖∞ ≤ ρ2

}
where 0 < ρ1 < ρ2.

U2

U1a0

Ruud Brekelmans (Tilburg University) Globalized Robust Optimization SIAM OP 2014 14 / 20



Globalized Robust Counterparts

Example: Simple Case (continued)

Original GRC

aT x − b ≤ min
ã∈U1

θ · ‖a− ã‖2 ∀a ∈ U2

GRC theorem

aT
0 (v +w) + δ∗(AT v | Z1) + δ∗(AT w | Z2)− f∗(v + w , x) + φ∗(v ;−v) ≤ 0

Tractable GRC
aT

0 (v + w) + ρ1‖AT v‖∞ + ρ2‖AT w‖1 − b + 0 ≤ 0
v + w = x
‖v‖2 ≤ θ

Ruud Brekelmans (Tilburg University) Globalized Robust Optimization SIAM OP 2014 15 / 20



Theorem 1 Let f(., x) be a concave function in IRm for all x ∈ IRn, and φ :

IRm × IRm → IR a convex and nonnegative function for which f(a, a) = 0

for all a ∈ IRm. Let the set Z1 ⊂ IRL be nonempty, convex, and compact with

0 ∈ ri(Z1), let Z2 be a convex set such that Z1 ⊂ Z2, and let the sets U1 and U2

be defined by

Ui = {a = a0 + Aζ | ζ ∈ Zi} , i = 1, 2,

where a0 ∈ IRm and A ∈ IRm×L.

Then the vector x ∈ IRn satisfies the GRC

f(a, x) ≤ min
a′∈U1

φ(a, a′) ∀ a ∈ U2, (1)

if and only if there exist v, w ∈ IRm that satisfy the single inequality

aT0 (v+w)+δ
∗(ATv | Z1)+δ

∗(ATw | Z2)−f∗(v+w, x)+φ∗(v;−v) ≤ 0 . (2)



Simplification of the Robust Counterparts

for Conic Quadratic Optimization
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Inhomogeneous S-lemma
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Lemma 1 Let A, D be symmetric matrices of the same size, and let the quadratic

form zT Az + 2bT z + c be strictly positive at some point. Then the implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

holds true if and only if

∃λ ≥ 0 :

(
D − λA e − λb

eT − λbT f − λc

)

� 0. (3)

�
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However, although theoretically speaking (6) is tractable, computationally speaking it

is not!

Aim: to show that the RC is a conic quadratic programming problem.

Core problem: find a tractable robust counterpart for:

aT Da + 2aT d ≤ γ ∀ a : aT Aa ≤ ρ2.



F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N

Simultaneously diagonalizability
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Definition 2 Real symmetric matrices A and B are called simultaneously

diagonalizable if there exists a nonsingular matrix S such that both ST AS and

ST BS are diagonal.

The following theorem, proved by Uhlig (1972), gives a sufficient condition for

simultaneously diagonalizability.

Theorem 3 Real symmetric matrices A and B can be simultaneously diagonalized if

{x|xT Ax = 0} ∩ {x|xT Bx = 0} = {0}.

Note that if one of the matrices A and B is positive definite, then these two matrices

can be simultaneously diagonalized.
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How to calculate S?

Suppose B is positive definite, then:

1. compute the Cholesky factorization B = GGT

2. compute C = G−1AG−T

3. use symmetric QR-algorithm to compute the Schur decomposition

QT CQ = diag (α1, · · · , αn)

4. set S = G−T Q.

We now have ST BS = I and ST AS = diag (α1, · · · , αn), i.e., matrices A and B

can be diagonalized by S.
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Nonconvex quadratic problems (with one constraint)
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We consider the following optimization problem:

(P )

{
min 1

2zT Dz + eT z

s.t. 1
2zT Az + bT z + c ≤ 0,

where D, A ∈ Rn×n are symmetric, z, b, e ∈ Rn, and c ∈ R. We assume that A

and D can be simultaneously diagonalized: ∃ nonsingular S such that

ST AS = diag (α1, · · · , αn) and ST DS = diag (δ1, · · · , δn).

Using the change of variables z = Sx and change of parameters β = ST b,

ε = ST e, and by setting yi = 1
2x2

i , we can rewrite problem (P ) as follows:

(P1)







min δT y + εT x

s.t. αT y + βT x + c ≤ 0
1
2x2

i − yi = 0, ∀i.
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We consider the following convex relaxation of (P1):

(P2)







min δT y + εT x

s.t. αT y + βT x + c ≤ 0
1
2x2

i − yi ≤ 0 ∀i.

The following theorem shows the equivalence of (P1) and (P2).

Theorem 4 Assume that there exists a strictly feasible solution to (P ). Then, if there

exists an optimal solution to (P2) then there exists an optimal solution to (P1).

Hence, the (probably nonconvex) quadratic problem (P ) can be solved by solving a

convex quadratic optimization problem (P2).
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Example of nonconvex quadratic problems
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.

min−1

2
z2
1 − 1

2
z2
2 − z2 s.t. z2

1 +
1

2
z2
2 + z2 ≤ 1.

The corresponding problem (P2) is:

min−y1 − y2 − x2 s.t. 2y1 + y2 + x2 ≤ 1,
1

2
x2

1 − y1 ≤ 0
1

2
x2

2 − y2 ≤ 0.

The optimal objective value of this problem is −1, and the optimal solution

x∗
1 = 0, x∗

2 = 0, y∗1 = 0, y∗2 = 1, and the KKT multipliers u = 1, µ1 = 1, µ2 = 0.

This solution clearly does not satisfy y∗i = 1
2(x∗

i )
2.

However, such a solution is given by x̄1 = 0, x̄2 = −1 ±
√

3, ȳ1 = 0, ȳ2 = 2 ∓
√

3,

with objective value −1.
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Dual problem of (P2)
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One can even simplify problem (P2)by taking the dual.

Theorem 6 Suppose there exists a strictly feasible solution to (P2). Then the

objective values of (P2) and the following dual problem are equal:

(D2)







maxv∈R −∑

i
(vβi+εi)

2

2(δi+vαi)
+ cv

s.t. δi + vαi ≥ 0, ∀i

v ≥ 0.

Note: the objective of (D2) is concave in v.
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Sharpening the S-lemma in the case of SDG
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We start with the inhomogeneous version of the fundamental S-lemma.

Lemma 7 Let A, D be symmetric matrices of the same size, and let the quadratic

form zT Az + 2bT z + c be strictly positive at some point. Then the implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

holds true if and only if

∃λ ≥ 0 :

(
D − λA e − λb

eT − λbT f − λc

)

� 0. (10)

�

In case that the matrices A and D are simultaneously diagonalizable we can sharpen

the S-lemma, i.e., the LMI can be replaced by a simple convex constraint.
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Lemma 8 Let A, D be symmetric matrices of the same size and simultaneously

diagonalizable by S into diag (α1, ..., αn) and diag (δ1, ..., δn), respectively. Let the

quadratic form zT Az + 2bT z + c be strictly positive at some point. Then the

implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

holds true if and only if there exist v ∈ R such







−∑

i
(vβi−εi)

2

δi−vαi
− cv + f ≥ 0

δi − vαi ≥ 0

v ≥ 0,

in which β = ST b and ε = ST e.
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Applications - General
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■ There are also many examples of optimization problems that are not conic

quadratic, but can be reformulated as such.

■ See the excellent paper by Lobo et al. (2009).

■ Examples: max of norms problems, logarithmic Chebychev approximation,

quadratic/linear fractional problems.

■ The robust counterpart of the original problem and the reformulated conic

quadratic problem are not always equivalent.

E.g., for the sum of norms problem mentioned the reformulation does not allow

you to use implementation error.
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Conclusions
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■ In case of SDG, the S-lemma can be sharpened, and be extended to the case

of three quadratic forms.

■ In case of SDG, a convex quadratic constraint with ellipsoidal uncertainty can be

transformed into a conic quadratic constraint.

■ In case of SDG, a conic quadratic constraint with ellipsoidal uncertainty can be

transformed into a ’nearly’ conic quadratic constraint, with convex level sets.

■ This has many applications!



Robust Optimization and Chance Constraints



Chance Constraints

p(w) ≡ Prob

{
w0 +

d∑
`=1

z`w` ≥ 0

}
≥ 1− ε (C)

• In general, (C) can be difficult to process:

– The feasible set X of (C) can be nonconvex, which makes

it problematic to optimize under the constraint.

– Even when convex,X can be “computationally intractable”:

Let z ∼ Uniform([0.1]d). In this case, X is con-

vex (Lagoa et al., 2005); however, unless P = NP ,

there is no algorithm capable to compute p(w) within

accuracy δ in time polynomial in the size of the (ra-

tional) data w and in ln(1/δ) (L. Khachiyan, 1989).

• When (C) is difficult to process “as it is”, one can look for

a safe tractable approximation of (C) — a computationally

tractable convex set Uε such that Uε ⊂ X ≡ {w : p(w) ≥ ε}.



Probabilistic Guarantees via RO

f0(x) +

d∑
l=1

zlfl(x) ≤ 0 . (1)

Assumption

z1, z2, . . . , zd independent rv’s

zl ∼ Pl ∈ Pl (compact all prob. dist. in Pl has common support

= [−1, 1]).

Definition A vector x satisfying, for a given 0 < z < 1:

Pr{f0(x) + Σzlfl(x) ≤ 0} ≥ 1− ε (chance constraint) (2)

provides a safe approximation of (1).

Challenge Find uncertainty set for z, Uε s.t. the Robust Counter-

part of (1):

f0(x) + Σzlfl(x) ≤ 0, ∀ z ∈ Uε (3)

is a safe approximation of (1), i.e., every x satisfying (3) satisfies
the CC (2).



Theorem

Uε = B ∩ (M + Eε)

B = {u ∈ IRd | ‖u‖∞ ≤ 1}

where M = {u|µ−l ≤ ul ≤ µ+
l , l = 1, . . . , d} (4)

E = {u|Σu2
l /σ

2
l ≤ 2 log(1/ε)}

µ−l , µ
+
l and σl are such that

Al(y) ≤ max(µ−l y, µ
+
l y) +

σ2
l

2
y2
l , ∀ l = 1, . . . , d

where

Al(y) = max
Pl∈Pl

log

(∫
exp(ys)dPl(s)

)
.



Values of            are explicitly known for various families Pl,
e.g.

Moreover, for the LP case (fl(y) affine) the RC of (3), with U as in
the Theorem, is conic quadratic or LP.
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(1) a(ζ)T x ≤ b(ζ)

a(ζ) = a0 +
L∑

`=1

ζ`a
`, b(ζ) = b0 +

L∑

`=1

ζ`b
`

ζ1, . . . , ζL i.i.d., E(ζ`) = 0 , |ζ`| ≤ 1

(CC)ε Probζ

(
a(ζ)T x ≤ b(ζ)

) ≥ 1− ε

Let UΩ =
{
ζ ∈ IRL | ‖ζ‖2 ≤ Ω

}
.

Consider the RC of (1) w.r.t. UΩ:

a(ζ)T x ≤ b(ζ) ∀ ζ ∈ UΩ

which we already know is equivalent to

(RC)Ω (a0)T x + Ω
√∑L

`=1 ((a`)T x− b`)
2 ≤ b0

Theorem 1 If x solves (RC)Ω with Ω ≥
√

2 log(1/ε),
then x solves (CC)ε

OR :





x solves (RC)Ω then x solves

(CC)ε with ε < e−Ω2/2

e.g., Ω = 7.44, 1− ε = 1− 10−12.
1



Discussion What if we ignore the stochastic information and just use

|ζ`| ≤ 1? In this case, the CC coincide with the RC of the linear eq.

with uncertainty

UBox = {ζ | |ζi| ≤ 1, ` = 1, . . . , L}

which is here
∑∣

∣(a`)T x − b`
∣
∣ ≤ b0 − (ao)T x (3)

Hence

x feasible for (3) ⇒ CC is feasible with prob. 1. (4)

When using the stochastic information, the RC is

Ω
√∑

[(a`)T x − b`]
2 ≤ b0 − (a0)T x (5)

which corresponds to UBall, and we have

x feasible for (4) ⇒ CC is feasible with prob. 1 − exp(−Ω2/2) (6)

(For Ω = 7.44 1 − exp(−Ω2/2) = 1 − 10−12 so (4) and (6) are

indistinguishable!)



But, for large L

Vol(UBox)

Vol(UBall)
−→ ∞ superexponentially

(ratio is > 1 starting with L = 237).

For small L, we could use

U = UBox ∩ UBall =
{
ζ ∈ IRL | ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ Ω

}

Here the RC is






∑
|z`| + Ω

√∑
w2

` ≤ b0 − (a0)T x

z` + w` = b` = (a`)T x
(7)

and we have

If x is a component of a feasible

solution (x, z, w) of (7)
=⇒

CC is feasible with

prob. 1 − exp(−Ω2/2)
(8)



Discussion With U = UBox ∩ UBall, we get always (for all L) less

conservative RC (incomparable so for Ω > 7 compared to UBox) and

yet guarantee the CC with prob. essen. 1.

Striking phenomenon Consider the special case of P in Case I:

Pr(ζi = ±1) = 1/2 .

Note that here

‖ζ‖2
2 = L ;

hence, if L > Ω2, the set U does not contain even a single

realization of ζ, and yet the CC holds with high probability.

Conclusion The “immunization power” of the RC (7) cannot be

explained by the fact that the underlying perturbation set U contains

“nearly all” realizations of the random perturbation vector.



Illustration: Single-Period Portfolio Selection

There are 200 assets. Asset #200 (“money in the bank”) has yearly

return r200 = 1.05 and zero variability. The yearly returns r`,

` = 1, . . . , 199 of the remaining assets are independent random variables

taking values in the segments [µ` − σ`, µ` + σ`] with expected values µ`;

here

µ` = 1.05 + 0.3
(200 − `)

199
, σ` = 0.05 + 0.6

(200 − `)

199
, ` = 1, . . . , 199 .

The goal is to distribute $1 between the assets in order to maximize the

return of the resulting portfolio, the required risk level being ε = 0.5%.

We want to solve the uncertain LO problem

max
y,t

{

t :

199∑

t=1

r`y` + r200y200 − t ≥ 0,

200∑

`=0

y` = 1, y` ≥ 0 ∀ `

}

,

where y` is the capital to be invested into asset #`.



The uncertain data are the returns r`, ` = 1, . . . , 199; their natural

parameterization is

r` = µ` + σ`ζ` ,

where ζ`, ` = 1, . . . , 199, are independent random perturbations with

zero mean varying in the segments [−1, 1]. Setting x = [y;−t] ∈ IR201,

the problem becomes






minimize x201

subject to

(a)
[

a0 +
∑199

`=1 ζ`a
`
]T

x −
[

b0 +
∑199

`=1 ζ`b
`
]

≤ 0

(b)
∑200

j=1 x` = 1

(c) x` ≥ 0, ` = 1, . . . , 200

(4)

where

a0 = [−µ1;−µ2; . . . ;−µ199;−r200;−1]; a` = σ` · [0`−1,1; 1; 0201−`,1], ` = 1, . . . , 199;

b` = 0, ` = 0, 1, . . . , 199 .



The only uncertain constraint in the problem is the linear inequality

(a). We consider 3 perturbation sets along with the associated robust

counterparts of problem (4).

1. Box RC which ignores the information on the stochastic nature of

the perturbations affecting the uncertain inequality and uses the

only fact that these perturbations vary in [−1, 1]. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1} ;

2. Ball-Box with the safety parameter Ω =
√

2 ln(1/ε) = 3.255, which

ensures that the optimal solution of the associated RC (a CQ prob.)

satisfies (a) with probability at least 1 − ε = 0.995. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1}, ‖ζ‖2 ≤ 3.255} ;

 



Results

Box RC. The associated RC is the LP

max
y,t







t :

199∑

`=1

(µ` − σ`)y` + 1.05y200 ≥ t

200∑

`=1

y` = 1, y ≥ 0







;

as it should be expected, this is nothing but the instance of our

uncertain problem corresponding to the worst possible values

r` = µ` − σ`, ` = 1, . . . , 199, of the uncertain returns. Since these

values are less than the guaranteed return for money, the robust

optimal solution prescribes to keep our initial capital in the bank with

guaranteed yearly return 1.05.



Ball-Box RC. The associated RC is the conic quadratic problem

max
y,z,w,t







t :

199∑

`=1

(µ`y` + 1.05y200 −
199∑

`=1

|z`| − 3.255

√
√
√
√

199∑

`=1

w2
` ≥ t

z` + w` = y`, ` = 1, . . . , 199,

200∑

`=1

y` = 1, y ≥ 0







.

The robust optimal value is 1.1200, meaning 12.0% profit with risk as

low as ε = 0.5%.



Robust Solution of Uncertain Optimization

Problems under Ambiguous Stochastic Data

Aharon Ben-Tal

Technion—Israel Institute of Technology

Joint work with K. Postek, D. den Hertog and B. Melenberg



Deterministic optimization problem (z known parameters)

min
x∈X

f (x, z)

s.t.

g(x, z) ≤ 0 .

What if z is uncertain?

Case I z is only known to reside in a bounded set U (called

uncertainty set).

Approach: Robust optimization
min
x∈X

max
z∈U

F (x, z)

s.t.
max
z∈U

g(x, z) ≤ 0

For tractability it is needed that f and g are convex in x and con-

cave in z.

Case II z is a random vector with known distribution function P.

Approach

minx∈X EPf (x, z)

s.t.
ProbabilityP{g(x, z) ≤ 0} ≥ 1− ε

Difficulties: Obj. function involves multiple integration. Con-

straint is usually NP-hard (nonconvex).



Case III z is stochastic but its distribution P is not known exactly.

It is only known to belong to a family P of distributions.

Approach

min
x∈X

max
P∈P

EPf (x, z)

s.t.
max
P∈P

ProbP{g(x, z) ≤ 0} ≥ 1− ε

This is Robust Optimization under Stochastic Ambiguity.



Basic theory

Ambiguous constraints

Consider a constraint
f (x, z) ≤ 0,

where

x ∈ Rnx is the decision vector

z ∈ Rnz is an uncertain parameter vector

f (·, z) is convex for all z.

Assume that z has a stochastic nature:

follows a probability distribution P
P belongs to an ambiguity set P, based on some partial information

Postek et al. (2015) 4 / 34



Basic theory

Distributionally Robust Optimization

Two types of constraints:

worst-case expected feasibility constraints:

sup
P∈P

EPf (x, z) ≤ 0, (WC-EF)

worst-case chance constraints:

sup
P∈P

P (f (x, z) > 0) ≤ ε. (WC-CC)

(WC-EF) is used to construct safe approximations of (WC-CC).
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Basic theory

Ambiguity set P

Ambiguity set P should be such that it is possible to obtain good,
computationally tractable upper bounds on

sup
P∈P

EPf (x, z)

Most frequently, P consists of P with known:

mean

(co)variance matrix

possibly, higher order moment information

Major works: Scarf (1958), Dupačová (1977), Birge and Wets (1987),
Birge and Dulá (1991), Gallego (1992), Gallego, Ryan & Simchi-Levi
(2001), Delage and Ye (2010), Wiesemann et al. (2014) and many
others...

Postek et al. (2015) 6 / 34



Basic theory

Scarf’s (1958) newsvendor problem

Scarf considered a newsvendor problem with a single product such that

c is the selling price per unit

z ≥ 0 is the uncertain demand with known mean µ and variance σ2

x is the number of items chosen by the newsvendor to purchase

The objective is to maximize the worst-case expected profit:

max
x

sup
P∈P

min{x , z} − cx

where
Pz = {P : EPz = µ, EP(z − µ)2 = σ2}.

Postek et al. (2015) 7 / 34



Basic theory

Scarf’s result

In our framework the problem is given by

max t

sup
P∈P

EPf (x , z) ≤ −t

x ≥ 0,

where f (x , z) = cx −min{x , z}.
The optimal value is equal to:

t∗ = µ

(
(1− c) +

√
σ2c(1− c)/µ2

)+

.

However, no closed-form tight bound for the worst-case expectation of a
general convex f (x , ·) under mean-variance information!

Postek et al. (2015) 8 / 34



Basic theory

Forgotten result of Ben-Tal and Hochman (1972)

An exact upper bound when the dispersion measure is the mean absolute
deviation (MAD).

Theorem
Assume that a one-dimensional random variable z has support included in
[a, b] and its mean and mean absolute deviation are µ and d:

P = {P : supp(z) ⊆ [a, b], EPz = µ, EP|z − µ| = d} .

Then, for any convex function g : R→ R it holds that

sup
P∈P

EPg(z) = p1g(a) + p2g(µ) + p3g(b),

where p1 = d
2(µ−a) , p3 = d

2(b−µ) , p2 = 1− p1 − p3.

Postek et al. (2015) 9 / 34



Basic theory

Generalization to multiple dimensions

The result of Ben-Tal and Hochman (1972) generalizes to
multidimensional z with independent components.

P = {P : supp(zi ) ⊆ [ai , bi ], EPzi = µi , EP|zi − µi | = di , zi ⊥ zj} .

Independence implies that the worst-case distribution is a product of the
per-component worst-case distributions.

For each convex g(·) it holds that

sup
P∈P

EPg(z) =
∑

α∈{1,2,3}nz

(
nz∏
i=1

piαi

)
g(τ1α1

, . . . , τnzαnz
)

where piαi
and τ iαi

depend only on ai , bi , µi , and di (not on g(·)).

Postek et al. (2015) 10 / 34



Basic theory

Lower bound result

Ben-Tal and Hochman (1972) provide also an exact formula for the lower
bound on the expectation if additionally, it is known that P(z ≥ µ) = β:

Pβ = {P : P ∈ P, P(z ≥ µ) = β} .

Then, for any convex function g : R→ R it holds that

inf
P∈Pβ

EPg(z) = βg

(
µ+

d

2β

)
+ (1− β)g

(
µ− d

2(1− β)

)
.
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Worst-case expected feasibility constraints

Application to (WC-EF)
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Worst-case expected feasibility constraints

Setting

Consider (WC-EF):
sup
P∈P

EPf (x, z) ≤ 0,

where f (x, ·) is convex. Then, (WC-EF) is equivalent to:

gU(x) ≤ 0

where

gU(x) =
∑

α∈{1,2,3}nz

(
nz∏
i=1

piαi

)
f (x, τ1α1

, . . . , τnzαnz
)

with fixed τ iαi
∈ {ai , µi , bi}, piαi

. Note that gU(x) is convex.
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Worst-case expected feasibility constraints

What can be gained by the lower bound result?

If for each zi we also know βi = P(zi ≥ µi ) then we know not only the

sup
P∈P

EPf (x, z)

but also
inf
P∈P

EPf (x, z)

by a generalization of the lower-bound result to multiple dimensions.

Hence, an entire, tight interval for EPf (x, z) is provided!

If βi unknown, assume several values and evaluate the lower bound for
each.
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Worst-case expected feasibility constraints

Specific applications - convex functions

Constraints that are convex in the uncertain parameter z are generally
intractable in the classical (worst-case oriented) RO.

This can occur, e.g., when:

implementation error x 7→ x + z is present: f (x, z) = g(x + z)

linear decision rules x = v + V z are applied: f (x, z) = g(v + V z)

the objective has a sum-of-max form:
f (x, z) =

∑
i max{l1(x, z), . . . , lIi (x, z)}, where lj(·, ·) are bilinear
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Worst-case expected feasibility constraints

Inventory management (Ben-Tal et al. (2004))

Problem characteristics:

6 periods to manage the inventory

involves purchase, holding and shortage costs

the uncertain parameter is the deviation of product demand zt from
its forecast value µt

decision variables are ordering decisions xt(zt) (linear decisions of
observed past demand)

We assume independence of the deviations zt with mean 0 and known
MAD.
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Worst-case expected feasibility constraints

Inventory management (Ben-Tal et al. (2004))

Research question: What is the difference in average-case performnce
between

RO solutions - solutions that minimize the worst-case outcome

WCE solutions - solutions that minimize the worst-case expectation of
the outcome?

Objective type β
Total costs

RO WCE

Worst-case value - 1950 2384
Expectation range 0.25 [1255,1280] [1004,1049]
Expectation range 0.5 [1223,1280] [970,1049]
Expectation range 0.75 [1230,1280] [994,1049]

We assume three possible values of β (skewness of the product demand).
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Worst-case expected feasibility constraints

Inventory management (Ben-Tal et al. (2004))

Objective type β
Total costs

RO WCE

Worst-case value - 1950 2384
Expectation range 0.25 [1255,1280] [1004,1049]
Expectation range 0.5 [1223, 1280] [970, 1049]
Expectation range 0.75 [1230,1280] [994,1049]

WCE solution performs worse on the worst-case basis (as expected)

WCE solution yields strictly better average-case performance than the
robust solution - for β = 0.5 the entire WCE interval lies below the
RO interval

even more so, the WCE solutions are better by one standard deviation
than the RO solutions
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Worst-case expected feasibility constraints

Average-case enhancement of RO solutions

Suppose that f (x, z) is RO tractable (concave or special-case convex in z)
and we minimize sup

z∈Z
f (x, z).

Often, there are multiple worst-case optimal x (Iancu and Trichakis
(2013)). Answer? Choose the one with the best average-case performance.

1 Solve the RO problem minimizing the worst-case objective:

min
x

sup
z∈Z

f (x, z)

Denote optimal value by t.
2 Solve the second-stage enhancing problem:

min
x

sup
P∈P

EPf (x, z)

s.t. sup
z∈Z

f (x, z) ≤ t
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Worst-case expected feasibility constraints

Inventory management (Ben-Tal et al. (2004))

Research question: What is the difference in simulation performnce
between

non-enhanced RO solutions

enhanced RO solutions?

Demand in the simulation is sampled uniformly from the uncertainty set.

We study the distribution of the total costs obtained in the simulation
study by each of the solutions.
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Worst-case expected feasibility constraints

Inventory management (Ben-Tal et al. (2004))
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The enhanced solution is better because:

both solutions yield the same worst-case value (3149)

the worst-case mean objective value brought by the enhanced solution
is 1284 vs 1502 of the non-enhanced solution (down by 15%)

the histogram of total costs obtained by the enhanced solution is
visibly more skewed to the left (smaller total costs more probable)
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Worst-case chance constraints

Application to (WC-CC)
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Worst-case chance constraints

Setting

We assume w.l.o.g. that supp(zi ) ∈ [−1, 1], EPzi = 0 and EP|zi − 0| = d .

Consider the (WC-CC):

sup
P∈P

P
(
aT (z)x > b(z)

)
≤ ε,

where

[a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi [a
i ; bi ].
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Worst-case chance constraints

Safe approximations

As such, (WC-CC) is intractable and we need a safe approximation - a
computationally tractable set S of deterministic constraints such that

x feasible for S ⇒ x feasible for (WC-CC)

How to construct safe approximations?
The crucial step is a construction of an upper bound on the moment
generating function (MGF) of z (Ben-Tal et al. (2009)):

sup
P∈P

EP exp(wTz).

.
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Recall: For each convex g(·) it holds that

sup
P∈P

EPg(z) =
∑

α∈{1.2.3}n

(
n∏
i=1

piαi

)
g
(
τ 1
α1, . . . , τ

nz
αnz

)
where piαi and τ iαi depend only on ai, bi, µi, and di (not on g(·)).

This formula has 3n terms!

However:

sup
P∈P

log
(
EP exp(wTz)

)
= sup

P∈P
log
(
EP
(
ew1z1+···+wnzn

))
= sup

P∈P
log

(
EP

n∏
i=1

ewizi

)
= due to zi’s being independent

= sup
P∈P

log

(
n∏
i=1

E ewizi

)
= sup

P∈P

n∑
i=1

(logE ewizi) .

So here we need to apply the (B-H) upper (lower) bound separately

to each on the n one-variable convex functions E ewizi!



Worst-case chance constraints

MGF with our distributional assumptions

We know exactly the worst-case value of the MGF (not just an upper
bound):

sup
P∈P

EP exp(wTz) =
nz∏
i=1

sup
P∈P

EP exp(wizi )

=
nz∏
i=1

(
d

2
exp(−wi ) + 1− d +

d

2
exp(wi )

)

=
nz∏
i=1

(d cosh(wi ) + 1− d)

Using this fact, we are able to construct three safe approximations of
increasing tightness and increasing complexity.

Postek et al. (2015) 25 / 34



Worst-case chance constraints

An example of a safe approximation

Theorem
Let

[a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi [a
i ; bi ].

If there exists α > 0 such that (x, α) satisfies the constraint

(a0)Tx− b0 + α log

(
nz∑
i=1

(
di cosh

(
(ai )Tx− bi

α

)
+ 1− di

))
+α log(1/ε) ≤ 0,

then x satisfies the (WC-CC): sup
P∈P

P
(
aT (z)x > b(z)

)
≤ ε.

The approximating constraint is convex in (x, α)!
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Worst-case chance constraints

Antenna array (Ben-Tal and Nemirovski (2002))

1 We consider an optimization problem with 40 circular antennas.

2 Each antenna has its diagram Di (φ) - a plot of intensity of signal sent
to different directions.

3 The diagram of the set of 40 antennas is the sum of their diagrams .

D(φ) =
n∑

i=1

xiDi (φ)

4 To the i-th antenna we can send a different amount of power xi .

5 Objective: Set the xi ’s in such a way that the diagram has the
desired shape.
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Application - antenna array optimization

Consider a circular antenna:

X

Y

Z

φ

ri

Energy sent in angle φ is
characterized by diagram

Diagram of a single antenna:

Di (φ) =
1

2

2π∫
0

cos

(
2πi

40
cos(φ) cos(θ)

)
dθ

Diagram of n antennas

D(φ) =
n∑

i=1

xiDi (φ)

xi - power assigned to antenna i

Objective: construct D(φ) as close as possible to the desired D∗(φ) using the
antennas available.



Worst-case chance constraints

Antenna array (Ben-Tal and Nemirovski (2002))

Problem conditions:

for 77◦ < φ ≤ 90◦ the diagram is nearly uniform:

0.9 ≤
n∑

i=1

xiDi (φ) ≤ 1, 77◦ < φ ≤ 90◦

for 70◦ < φ ≤ 77◦ the diagram is bounded:

−1 ≤
n∑

i=1

xiDi (φ) ≤ 1, 70◦ < φ ≤ 77◦

we minimize the maximum absolute diagram value over 0◦ < φ ≤ 70◦:

min max
0◦<φ≤70◦

∣∣∣∣∣
n∑

i=1

xiDi (φ)

∣∣∣∣∣
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Worst-case chance constraints

Desired diagram graphically
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Optimization problem to be solved

min τ

s.t. −τ ≤
n∑

i=1

xiDi (φ) ≤ τ, 0 ≤ φ ≤ 70◦

−1 ≤
n∑

i=1

xiDi (φ) ≤ 1, 70◦ ≤ φ ≤ 77◦

0.9 ≤
n∑

i=1

xiDi (φ) ≤ 1, 77◦ ≤ φ ≤ 90◦

Typically, decisions xi suffer from implementation error zi :

xi 7→ x̃i = (1 + zi )xi

We want each constraint to hold with probability at least 1− ε!



Worst-case chance constraints

Implementation error

Typically, decisions xi suffer from implementation error zi :

xi 7→ x̃i = (1 + ρzi )xi

We want each constraint to hold with probability at least 1− ε for all
P ∈ P, for example:

P

(
n∑

i=1

xi (1 + ρzi )Di (φ) ≤ 1

)
≥ 1− ε, 77◦ < φ ≤ 90◦, ∀P ∈ P

Two solutions:

nominal: no implementation error

robust: ρ = 0.001 and ε = 0.001.
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Implementation error and chance constraints

Assumptions on implementation errors z1, . . . , zn:

independence: zi independent from zj for i 6= j

support: −1 ≤ zi ≤ 1 for all i

zero mean: EPzi = 0 for all i

mean absolute deviation: EP|zi − µi | = di for all i

Hence the ambiguity set:

P(µ,d) = {P : zi ∈ [−1, 1], EPzi = 0, EP|zi − µi | = di , zi ⊥ zj}

Safe approximations of chance constraints are typically constructed
by constructing upper bounds on moment-generating functions
M(w):

sup
P∈P

EPM(w) = sup
P∈P

EP exp
(
wTz

)



Ben-Tal and Hochman (1972)

Assume f : R 7→ R is convex and z follows distribution P belonging
to ambiguity set P such that

P =
{
P : supp(z) = [a−, a+], EPz = µ, EP|z − µ| = d

}
Then it holds that:

sup
P∈P

EPf (zi ) = p1f (a−) + p2f (µ) + p3f (a+)

where p1 = d
2(a+−µ) , p3 = d

2(µ−a−) , p2 = 1− p1 − p3.

Using this to the MGF problem with our assumptions on z1, . . . , zn
we have

sup
P∈P(µ,d)

EP exp
(
wTz

)
=

n∏
i=1

(di cosh(wi ) + 1− di )



How does it apply to antenna implementation error

We need µ−i , µ
+
i , σi such that:

di cosh(t) + 1− di ≤ exp

(
max{µ+i t, µ

−
i t}+

1

2
σ2i t

)
for all t ∈ R.
We easily find the right values µ−i = µ+i = 0 and

σi = sup
t∈R

√
2 log (di cosh(t) + 1− di )

t2

to satisfy this requirement.



Worst-case chance constraints

Nominal solution - dream and reality
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Worst-case chance constraints

Robust solution - dream and reality
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Worst-case chance constraints

Paper

Postek, K., Ben-Tal, A., Den Hertog, D., & Melenberg, B. (2015).

Exact robust counterparts of ambiguous stochastic constraints under mean
and dispersion information.

.   Operations Research 2018
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Recovery of signals

from noisy outputs



The Estimation Problem

y = Hx + w

Given y, find an estimator x̂, which is as “close” as
possible to x.

w random vector

E(w) = 0, cov(w) = C positive definite

CLASSICAL METHODS are based on minimizing
data error ‖y −Hx‖ .

2



CLASSICAL APPROACH (Gauss,. . .)

Closeness measured by (standardized) data error

‖C−1/2(y −Hx̂)‖2
Least Squares Estimator

x̂LS = arg min
x
‖C−1/2(y −Hx)‖2 convex

optimization

SOLUTION (H full column rank)

x̂LS = (HT C−1H)−1HT C−1y

a linear estimator
x̂ = Gy

CLASSICAL MODIFICATION (Tikhonov,. . .)

x̂T = arg min
x

{‖C−1/2(y −Hx)‖2 + λ‖x‖2}
still

convex

optimization

SOLUTION

x̂T = (HT C−1H + λI)−1HT C−1y

also a linear estimator.

3



True signal Observations

LS

4



MSE estimator

min
x̂

E‖x− x̂‖2

With a linear estimator x̂ = Gy problem becomes

min
G

{
xT (I −GH)T (I −GH)x + Tr(GCG)

}
bias variance

but x unknown!

“Solution”: minimal variance unbiased estimator
GH = I

Solution: Same as x̂LS
· · ·

Our approach: minmax MSE linear estimator:
x̂ = Gy, where:

min
G

max
‖x‖T≤L

{
xT (I −GH)T (I −GH)x + Tr(GCG)

}



min
G

{L2λ max(T−1/2(I − GH)T (I − GH)T−1/2)

+ Tr(GCGT )} (7)

m

min
s.t

L2λ + t

T−1/2(I − GH)T (I − GH)T−1/2 ≤ λI

Tr(GCGT ) ≤ t

(8)

Not an SDP . . . yet.

36



Schur’s complement:

T−1/2(I − GH)T (I − GH)T−1/2 � λI

⇔




λI T−1/2(I − GH)T

(I − GH)T−1/2 I



 � 0

︸ ︷︷ ︸

LMI

Tr(GCGT ) ≤ t ⇔




t gT

g I



 � 0

︸ ︷︷ ︸

LMI

where g = vec (GC1/2).

Theorem I: Original MinMax MSE problem (1) is

equivalent to the SDP problem:

min
s.t.

L2λ + t




λI T−1/2(I − GH)T

(I − GH)T−1/2 I



 � 0




t gT

g I



 � 0

37



Theorem II: For the special case T = I, SDP can be
solved explicitly. The optimal MMX MSE estimator is

x̂mmx = α (HT C−1H)−1HT C−1y︸ ︷︷ ︸
x̂LS

where α =
L2

L2 + Tr((HT C−1H)−1)

3



Proof Structure

(I) Establish the structure of the optimal solution

G = V DV T (HT C−1H)−1HT C−1

where V is the orthogonal matrix diagonalizing
HT C−1H, i.e.,

HT C−1H = V ΣV ∗

Σ = diag(σ1, . . . , σn)

This is obtained by optimality condition. Using
this, we end up with an equivalent problem in
variable (matrix) D (Problem B below).

(II) Show that ∃ an optimal matrix D which is
diagonal.

(III) Find the diagonal elements of D.

4



The First Part of the Proof

The optimization problem

(A)

min
s.t.

L2λ + Tr(GCGT )




λI (I − GH)T

I − GH I



 � 0

Form the Lagrangian:

L(G, λ, U) = L2λ + Tr(GCGT )

− Tr










U1 UT

2

U2 U3








λI (I − GH)T

I − GH I











= L2λ + Tr(GCGT ) − λTr(U1) − 2Tr(U2(I − GH))

− Tr(U3) ,

U :=




U1 UT

2

U2 U3



 � 0

40



Differentiating the Lagrangian with respect to G:

∂L

∂G
= 0 ⇔ G = U2H

T C−1

⇔ GH = U2(H
T C−1H)

⇒ U2 = (GH)(HT C−1H)−1

change of variables: D = V T (GH)V (V T V = I)

⇔ V DV T = GH

⇒ U2 = V DV T (HT C−1H)−1

G = V DV T (HT C−1H)−1HT C−1

In particular, if the orthogonal matrix V is chosen as

the matrix which diagonalizes HT C−1H, i.e.

(HT C−1H) = V diag(σ1, . . . , σn)
︸ ︷︷ ︸

∑

V T

then our problem (A), after substituting G becomes
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(B)
min
D,λ

L2λ + Tr(DT DΣ−1)

(I −D)T (I −D) 4 λI

Second part of the proof (“optimal D can be chosen
diagonal”).

Let Jn be the set of 2n matrices which are n× n,
diagonal, with the entries in the diagonal being +1 or
−1.

Claim If D∗ is an optimal solution of (B), then so is

JD∗J, ∀ J ∈ Jn

Proof

Tr[(JDJ)T (JDJ)Σ−1 = Tr(DT DΣ−1)]

(I − JDJ)T (I − JDJ) ¹ λI ⇔ (I −D)T (I −D)

Conclusion Since (B) is a convex problem ⇒ its
optimal solution set is convex, so if D∗ is an optimal
solution, so is

1
2n

∑

J∈Jn

(JD∗J)

5



D =


 a, b

c, d




J2 =






 1 0

0 1


 ,


 −1 0

0 1


 ,


 1 0

0 −1





 −1 0

0 −1




J1 J2 J3 J4

J1DJ1 =


 a b

c d


 J2DJ2 =


 a −b

−c d




J3DJ3 =


 a −b

−c d


 J4DJ4 =


 a b

c d




1

4

4∑

i=1

JiDJi =
1

4


 4a 0

0 4d


 =


 a 0

0 d




General result
1

2n

∑
J∈Jn

JDJ = diag D

Part 3 of the proof with D = diag(d1, . . . , dn) problem (A)

⇔ (B) reduces to

min
di,λ

L2λ +
∑

(d2
i /σi)

s.t. (1− di)
2 ≤ λ , ∀ i

This problem can be solved analytically, which gives the

final result claimed in Theorem II. 16



True signal Observations

LS Minmax Use
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Adjustable Robust Optimization



Challenges: Adjustable Robust Optimization
♣ Aside of applications of the RO methodology in
various subject areas, an important venue of the
RO-related research is extending the RO methodology
beyond the scope of the RC approach as presented so far.

The most important in this respect is, we believe,
passing to Adjustable Robust Optimization, where the
decision variables are allowed to “adjust themselves”, to
come extent, to the true values of the uncertain data.
♠ One of the central assumptions which led us to
the notion of Robust Counterpart reads:

A.1. All decision variables in uncertain problem repre-
sent “here and now” decisions; they should be assigned
specific numerical values as a result of solving the prob-
lem before the actual data “reveals itself.”

While being adequate to many decision making sit-
uations, A.1 is not a “universal truth.”

3



♠ In some cases, not all decision variables represent
“here and now” decisions. In dynamical decision mak-
ing some of the variables represent “wait and see”
decisions and as such can depend on the portion
of the true data which “reveals itself” before the
moment when the decision is being made.
Example: In an inventory affected by uncertain demand,
there are no reasons to specify all replenishment orders in ad-
vance; the true time to specify the replenishment order of pe-
riod t is the beginning of this period, and thus we can allow this
order to depend on the actual demands in periods 1, ..., t− 1.
♠ Usually, not all decision variables represent actual deci-
sions; there exist also “analysis” (or slack) variables
which do not represent decisions at all and are used
to convert the problem into a desired form, e.g.,
one of a LO problem. Since the analysis variables do
not represent actual decisions, why not to allow them to
depend on the entire true data?
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Adjustable Robust Optimization

(NLP)


 minx f(x)

g(x, z) ≤ 0

z uncertain parameter vector, z ∈ U ← uncertainty set.

E.g., in the LP case

(LP)


 min cT (x)

Ax− b ≤ 0 ≤ 0

z = (c, A, b).

Robust counterpart of (NLP):

(RC)


 min f(x)

g(x, z) ≤ 0 ∀ z ∈ U .

Implicitly, it is understood that optimal x has to be
found prior to the realization of the data z.

• In many practical cases, part of the decision
variables can be determined after (part of) the
data vector z is realized (e.g., multi-stage decision
problems).

• Adjustable/nonadjustable variables.

1



Uncertain LP with Adjustable Variables

(LPz)





minu,v cT u

Uu + V v ≤ b





(U,V,b)∈Z

u = vector of nonadjustable variables
(“here and now” decisions)

v = vector of adjustable variables
(“wait and see” decisions)

V is called the recourse matrix.

The (usual) RC of (LPz):

(RC)





minu,v cT u

Uu + V v ≤ b , ∀ (U, V, b) ∈ Z

The new adjustable RC (ARC) is defined

(ARC)





minu cT u

∀ (U, V, b) ∈ Z, ∃ v :

Uu + V v ≤ b

ARC is less conservative.

2



Example (RC versus ARC)

Consider the following simple example:

min
u,v



−u :

(1− 2ξ)u + v ≥ 0
ξu− v ≥ 0

u ≤ 1





0≤ξ≤1

The RC and the ARC are, respectively, the problems:

min
u



−u :

∃ v ∀ (ξ ∈ [0, 1]) :
(1− 2ξ)u + v ≥ 0,
ξu− v ≥ 0, u ≤ 1



 (RC)

—————————————————————–

min
u



−u :

∀ (ξ ∈ [0, 1])∃ v :
(1− 2ξ)u + v ≥ 0,
ξu− v ≥ 0, u ≤ 1



 (ARC)

Let us solve the RC:

ξ = 1 ⇒
{
−u + v ≥ 0

u− v ≥ 0
; ξ = 0 ⇒

{
u + v ≥ 0
−v ≥ 0

.

The only u, v that satisfy these inequalities are
u = v = 0; therefore the only feasible solution to RC is
u = 0, and the optimal value is 0. When solving
ARC, for every u ∈ [0, 1], taking v = ξu, we see that u

is feasible. Thus, the optimal solution to ARC is u = 1,
and the optimal value is −1. Hence, the ARC of our
simple problem is completely different from its RC, i.e.,
the ARC is essential.

3



Tractability Status of the ARC

Consider an uncertain Linear Programming problem

(LPz)





minu cT u

s.t. Uu + V v ≤ b





[U,V,b]∈Z

Theorem 1 In the case when (fixed recourse)

Z = Conv {[U1,V , b1], . . . , UN , V , bN ]} ,

the ARC of LPz is equivalent to the usual LP problem

min
u,v1,...,vN

{
cT u : U`u + V v` ≥ b`, ` = 1, . . . , N

}
.

Corollary 1 In the case when

1) uncertainty set Z is a polytope given as a convex
hull of a finite set of scenarios,

2) V is certain (fixed recourse).

The Adjustable Robust Counterpart of the LPz is an
explicit LP program and thus is computationally
tractable.

However, if only one of the properties 1) and 2) takes
place, the ARC is not necessarily computationally
tractable.

5



Computationally Intractable ARC’s

Theorem 2 In the case of an uncertainty set defined
as a convex hull of finitely many scenarios with varying
(from scenario to scenario) matrices Vi:

Z = Conv {[U1, V1, b1], . . . , [UN , VN , bN ]} ,

the ARC of LPz can be computationally intractable.

Theorem 3 In the case when Z is a general-type
polytope given by a list of linear inequalities, the ARC
of LPz is a computationally intractable problem even
when the coefficients of the analysis variables are
certain.

• What can be done when the ARC is
computationally intractable?

A natural solution in these cases would be to
switch from “exact” ARC’s to approximate ones.

6



Approximated Adjustable Robust
Counterpart

When passing from an uncertain problem to its adjustable

Robust Counterpart, we allow the analysis variables v to

tune themselves to the true data ζ. Now, let us impose a

restriction on how the analysis variables can be tuned to the

data; specifically, assume that for u given v is allowed to be

an affine function of the data:

(LDR) v = w+Wζ .

With this approach, we are interested in the decision

variables u that can be extended, by properly chosen w, W ,

to a solution of the infinite system of inequalities

Uu + V (w + W ζ) ≤ b, ∀ ζ = [U, V, b] ∈ Z
in variables u, w, W , and the approximate ARC of LPz

becomes the optimization program

(AARC) min
u,w,W

{
cT u : ∀ ζ = [U, V, b] ∈ Z
Uu + V (w + Wζ) ≤ b

}
.

Note that the AARC is “in-between” the usual RC of

problem Pz and the Adjustable RC of the problem (AARC

is less conservative than RC; solution of AARC is a

“policy”); to get the RC, one should set to zero the variable

W . Since the AARC seems simpler than the general ARC

of LPz, there are chances to arrive at computationally

tractable “approximate” ARC in the cases where the ARC

is intractable.
7



Let the uncertainty set Z be given in the parametric
form

Z =

{
[U, V, b] = [U0, V 0, b0] +

L∑

`=1

ξ`[U `, V `, b`] : ξ ∈ X
}

,

using the LDR:

v = v(ξ) = v0 +
∑

`

ξ`v
`.

The AARC of an uncertain LP becomes:




min
u,v0,v1,...,vL

cT u

[
U0 + Σ ξ` U `

]
u + [V 0 + Σ ξ` V `][v0 + Σ ξ` v`]

≤ [b0 + Σ ξ` b`], ∀ ξ ∈ X .

For which perturbation set X is this SIP tractable?

8



Theorem 4 Consider an uncertain LP with fixed
recourse and a cone-representable perturbation set:

X = {ξ | ∃ω : Aξ + Bω − d ∈ K} ⊂ RL.

When the cone K is

1. a nonnegative orthant Rn
+

2. a (finite) direct product of Lorentz cones

Lm =
{

x ∈ Rm : xm ≥
√

x2
1 + · · ·+ x2

m−1

}

3. a semidefinite cone (cone of positive semidefinite
symmetric matrices),

then: the AARC of uncertain LP is an explicit
Linear, Conic Quadratic or Semidefinite Programming
problem, respectively, of sizes polynomial in those of the
description of the perturbation set and of the
parametrization mapping.

Bad News: In the non-fixed resource case, the ARC
can become NP-hard.

Remedy ??

9



Tight Approximation on AARC

Recall the “perturbation-based” model of AARC:

min
u,v0,v1,...,vL

cT u

[
U0 + Σ ξ` U `

]
u + [V 0 + Σ ξ` V `][v0 + Σ ξ` v`]

≥ [b0 + Σ ξ` b`], ∀ ξ ∈ X .

with a ∩ ellipsoids perturbation set:

X = Xρ ≡ {ξ | ξT S` ξ ≤ ρ2, ` = 1, . . . , L},

with ρ > 0, S` º 0, Σ X` Â 0.

Note that this ellipsoidal uncertainty allows for a wide
variety of symmetric (with respect to the origin) and
convex perturbation sets. For example,

• setting ` = 1, the perturbation set is an ellipsoid
centered at the origin;

• setting L = dim ξ and ξT S`ξ = a−2
` ξ2

` , ` = 1, . . . , L,
we get, as the perturbation set, the box
X = {|ξ`| ≤ ρa`, ` = 1, . . . , L} centered at the
origin;

• choosing as S` dyadic matrices g`g
T
` , we can get, as

the perturbation set (centered at the origin)
polytope X = {ξ : |gT

` ξ| ≤ ρ, ` = 1, . . . , L}.
11



Theorem 5 Consider an uncertain LP with an
ellipsoidal perturbation set:

X = Xρ ≡
{
ξ | ξT S`ξ ≤ ρ2, ` = 1, . . . , L

}
,

where ρ > 0, S` º 0, Σ S` Â 0 along with the

Semidefinite program

(SDP) min
λ1,...,λm,x=[u,v0,v1,...,vL]

cT u

s.t.


 Γi(x)− ρ−2Σλi

`S` βi(x)

βT
i (x) αi(x)− Σλi

`(x)


 º 0,

λi ≥ 0, i = 1, . . . , m,

where x ≡ [u, v0, v1, . . . , vL] and

• αi(x) ≡ [U0
i u + V 0

i v0 − b0
i ]

• β`
i (x) ≡ [U`

i u+V 0
i v`+V `

i v0−b`
i ]

2 , ` = 1, . . . , L

• Γ(`,k)
i (x) ≡ V k

i v`+V `
i vk

2 , `, k = 1, . . . , L.

Then: Problem (SDP) is a “conservative
approximation” to the AARC: whenever x can be
extended, by some λ1, . . . , λm, to a feasible solution of
this semidefinite program, x is feasible for the AARC.

What is the level of conservativeness?
12



(SDP) min
λ1,...,λm,x=[u,v0,v1,...,vL]

cT u

s.t.


 Γi(x)− ρ−2Σλi

`S` βi(x)

βT
i (x) αi(x)− Σλi

`(x)


 º 0,

λi ≥ 0, i = 1, . . . , m,

Theorem 6 In the case of simple ellipsoidal
uncertainty (i.e. L = 1), problem (SDP) is exactly
equivalent to the AARC.

(Proof based on S-lemma)

Theorem 7 In the case of L > 1, (SDP) is a tight
approximation of the AARC. Specifically, the projection
on the x-space of the feasible set of (SDP) is
contained in the feasible set of the AARC, the
perturbation level being ρ, and contains the feasible set
of the AARC, the perturbation level being Ωρ, where

Ω = 0(1) ln L

In particular, the optimal value in (SDP) is in-between
the optimal values of the AARC’s corresponding to the
perturbation levels ρ and Ωρ.

Proof based on Approx. S-Lemma
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Application: Inventory Model

Consider a single product inventory system, which is
comprised of a warehouse and of I factories. The
planning horizon is T periods. At a period t:

• dt is the demand for the product. All the demands
must be satisfied;

• v(t) is the amount of the product in the warehouse
at the beginning of the period (v(1) is given);

• pi(t) – the i’th order of the period – is the amount
of the product that will be produced during the
period by factory i and used to satisfy the demand
of the period (and, perhaps, to replenish the
warehouse); these are the decision variables.

• Pi(t) is the maximal prod. capacity of factory i;

• ci(t) is the cost of producing one unit of the
product at factory i.

Other parameters of the problem are:

• Vmin is the minimal level of inventory that must be
at the warehouse at each given moment;

• Vmax is the maximal storing capacity of the
warehouse;

• Qi is the total maximal production capacity of the
i’th factory throughout the planning horizon.

1



Our goal is to minimize the total production cost over
all factories and the entire planning horizon. The
Linear Programming problem modeling this is the
following:

min
pi(t),v(t),F

F

T∑
t=1

I∑

i=1

ci(t)pi(t) ≤ F

0 ≤ pi(t) ≤ Pi(t), 1 ≤ i ≤ I, 1 ≤ t ≤ T
T∑

t=1

pi(t) ≤ Q(i), 1 ≤ i ≤ I

v(t + 1) = v(t) +
I∑

i=1

pi(t)− dt, 1 ≤ t ≤ T

Vmin ≤ v(t) ≤ Vmax, 2 ≤ t ≤ T + 1 .

We can eliminate the v variables:

min
pi(t),F

F

T∑
t=1

I∑

i=1

ci(t)pi(t) ≤ F

0 ≤ pi(t) ≤ Pi(t), 1 ≤ i ≤ I, 1 ≤ t ≤ T
T∑

t=1

pi(t) ≤ Q(i), 1 ≤ i ≤ I

Vmin ≤ v(1) +
t∑

s=1

I∑

i=1

pi(s)−
t∑

s=1

ds ≤ Vmax, 1 ≤ t ≤ T .

2



The decision on orders pi(t) is made at the beginning of
period t, and we are allowed to make these decisions on
the basis of demands dr, r ∈ It, where It is a given
subset of the segment {1, . . . , t}. The only uncertain
data in the problem are the demands dt, and all we
know is that

dt ∈ [d∗t − θd∗t , d
∗
t + θd∗t ] , t = 1, . . . , T ,

with given positive θ and d∗t . Applying the AARC
methodology, we restrict our decision-making policy
with affine decision rules

pi(t) = π0
i,t +

∑

r∈It

πr
i,tdr ,

where the coefficients πr
i,t are our new decision

variables. With this approach, we get an AARC
problem which is itself an LP.

3



Illustrative Example: The Data

There are 3 factories for production of umbrellas, and
one warehouse. The decisions concerning production
are made every two weeks, and we are planning
production for one year. Thus, the time horizon is
24 periods. The nominal demand d∗t is seasonal,
reaching its maximum in winter, and behaves according
to the following function:

d∗t = 1000
(

1− 1
2

sin
(

π(t− 1)
12

))
, t = 1, . . . , 24.

We assume that the uncertainty level is θ, i.e.,
dt ∈ [(1− θ)d∗t , (1 + θ)d∗t ].
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The production costs per unit of the product depend
on the factory and on time, and follow the same
seasonal pattern as the demand, i.e., rise in winter and
fall in summer. Cost per unit for a factory i at a period
t is given by:

ci(t) = αi

(
1− 1

2
sin

(
π(t− 1)

12

))
, t = 1, . . . , 24

α1 = 1, α2 = 1.5, α3 = 2 .

The maximal production capacity of each one of the
factories at each two-week period is Pi(t) = 567 units,
and the total production capacity of each one of the
factories for a year is Qi = 13600. The inventory at
the warehouse should not be less than 500 (Vmin) units,
and cannot exceed 2000 (Vmax) units.

The initial inventory at warehouse is v(1) = 1250.
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The Experiments

In every one of the experiments, the corresponding
management policy was tested against a given number
(100) of simulations; in every one of the simulations,
the actual demand dt of period t was drawn at random,
according to the uniform distribution, from the
segment [(1− θ)d∗t , (1 + θ)d∗t ], where θ was the
“uncertainty level” characteristic for the experiment.
The demands of distinct periods were independent of
each other.

We conducted two series of experiments.

1. We checked the influence of the demand
uncertainty θ on the total production costs
corresponding to the management policy yielded by
the optimal solution to the AARC. We compared

this cost to the “Perfect Hindsight” (PH) one, i.e.,
the cost we would have paid in the case when all
the demands were known to us in advance and we
were using the corresponding optimal management
policy as given by the optimal solution of certain
LP.
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The Results

• The influence of the uncertainty level on the
management cost.

Here we tested the robustly adaptive management
policy with the standard information basis against
different levels of uncertainty, specifically, the levels of
20%, 10% and 5%.

AARC cost PH cost

Uncertainty Mean Mean “price of

robustness”

5% 24615 23782 3.5%

10% 25211 23607 5.9%

20% 26860 23735 13%

Std. in range 100–780.
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The Results

• The influence of the “information basis” on the
management cost: Robust Counterpart

An interesting question is what is the uncertainty level
which still allows for a priori decision. To get an
answer, we solved the RC of our uncertain problem for
the uncertainty levels 20%, 10% and 5% and all the
time got infeasible RC’s. Only at the uncertainty
level as small as 2.5%, the RC becomes feasible and
yields the management costs as follows:

RC cost PH cost

Uncertainty Mean Mean price of
robustness

2.5% 25287 23842 6%

AARC → 2%

Note that even at this unrealistically small uncertainty
level, the price of robustness for the policy yielded by
the RC is larger by 6% than the PH cost (while for the
AARC this difference is just 2%).

10



The Price of Robustness?

Example: Robust Optimization of Multi-Period

Production Planning under Uncertainty
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Problem definition

 Single-product production planning problem

 Finite horizon T

 Uncertain demand

 Discrete periods

 Expected (nominal) demand follows a typical life-cycle 
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Problem definition (cont.)

 In each period t=1,…,T :

 Holding and shortage costs incurred for each unit of 

surplus or shortage, respectively 

 Income is realized through sales

 In each period t=1,…,T-1 :

 Unsatisfied demand is backlogged

 In period T :

 Salvage value is gained for surplus units

 Unsatisfied demand is lost 
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Mathematical model

 The model:

 Denote 

planning horizonT

production cost per unitctproduction quantity in unitsqt

selling price per unitmtdemand in unitsdt

salvage value per unitsTnominal demand in unitsdt

holding cost per unithtinventory levelIt

shortage cost per unitptinitial inventory (non-negative) k
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LP model

 The piecewise linear model (1) can be written as 

the following LP model:

 
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Affinely Adjustable Robust 

Counterpart (AARC)

 Two types of decision variables: adjustable and 

non-adjustable

 Non-adjustable should be determined before the 

uncertain data is revealed

 Adjustable can depend on past realizations of 

the uncertain data

 In the AARC the dependence of the adjustable

variables on past data is a linear decision rule 

(LDR) as follows: 
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The price of robustness

 One of the limitations of the RO methodology is 

its conservative optimal solutions. Its guaranteed 

objective value might be inferior as compared 

with the nominal solution (NOM)

 The difference between the nominal and the 

robust objective values is called the price of 

robustness (POR)
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The actual price of robustness

 In practice it is rare that the demand takes the worst 

case scenario values  POR is inappropriate

 We base the comparison on  L demand simulations:

 - the average "actual" profit 

according to the policy of method A 

 Define the actual price of robustness (APOR) for 

method A as the difference between AP(qNOM) and 

AP(qA)

   
1

1
,

L
l

A A

l

AP q F q d
L 

 
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Simulations

 For several uncertainty levels ρ three sets of L=100

demand vectors were generated

 Each vector consists of T=12 entries 

 The demand vectors entries of each set were generated 

from a Beta distribution with specific shape parameters 

supported by the uncertainty set for the demand





Robust Solutions of Uncertainly Affected

Linear Dynamic Systems



♣ Generic application: Affine control of uncertainty-affected Linear Dynami-
cal Systems.
♠ Consider Linear Time-Varying Dynamical system

xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z
(S)

• xt: state; • ut: control • yt: output;
• dt: uncertain input; • z: initial state

to be controlled over finite time horizon t = 0, 1, ..., T .
♠ Assume that a “desired behaviour” of the system is given by a system
of convex inclusions

Diw − bi ∈ Qi, i = 1, ..., m

on the state-control trajectory

w = (x0, x1, ..., xT+1, u0, u1, ..., uT ),

and the goal of the control is to minimize a given linear objective f (w).
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xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z
(S)

♠ Restricting ourselves with affine output-based control laws

ut = ξt0 +
t∑

τ=0
Ξtτyτ , (∗)

the problem of interest is

(!) Find an affine control law (∗) which ensures that the resulting state-
control trajectory w satisfies the system of convex inclusions

Diw − bi ∈ Qi, i = 1, ..., m

and minimizes, under this restriction, a given linear objective f (w).

Dynamics (S) makes w a known function of inputs d = (d0, d1, ..., dT ), the
initial state z and the parameters ξ of the control law (∗):

w = W (ξ; d, z).

Consequently, (!) is the optimization problem

min
ξ

{f (W (ξ; d, z)) : DiW (ξ; d, z) − bi ∈ Qi, i = 1, ..., m} (U)

25



open loop dynamics:







xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z

control law: ut = ξt0 +
t∑

τ=0
Ξtτyτ

⇓
w := (u0, ..., uT , x0, ..., xT+1) = W (ξ; d, z)

⇓
min

ξ
{f (W (ξ; d, z)) : DiW (ξ; d, z) − bi ∈ Qi, i = 1, ..., m} (U)

Note: Due to presence of uncertain input trajectory d and possible
uncertainty in the initial state, (U) is an uncertain problem.
Difficulty: While linearity of the dynamics and the control law make
W (ξ; d, z) linear in (d, z), the dependence of W (·, ·) on the parameters
ξ = {ξt0, Ξtτ}0≤τ≤t≤T of the control law is highly nonlinear
⇒ (U) is not a bi-affine problem, which makes inapplicable the theory
we have developed. In fact, (U) seems to be intractable already when
there is no uncertainty in d, z!
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Remedy: suitable re-parameterization of affine control laws.

♣ Consider a closed loop system along with its model:

closed loop system: model:
xt+1 = Atxt + Btut+Rtdt

̂xt+1 = At
̂xt + Btut

yt = Ctxt
̂yt = Ct

̂xt

x0 = z ̂x0 = 0
ut = Ut(y0, ..., yt)

♠ Observation: We can run the model in an on-line fashion, so that
at time t, before the decision on ut should be made, we have in our
disposal purified outputs

vt = yt − ̂yt.

♠ Fact I [Equivalence]: Every transformation (d, z) 7→ w which can be
obtained from an affine control law based on outputs:

ut = ξt0 +
t∑

τ=0
Ξtτyτ (∗)

can be obtained from an affine control law based on purified outputs:

ut = ηt0 +
t∑

τ=0
Htτvτ (∗∗)

and vice versa.
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system: model:
xt+1 = Atxt + Btut+Rtdt

̂xt+1 = At
̂xt + Btut

yt = Ctxt
̂yt = Ct

̂xt

x0 = z ̂x0 = 0
control law:

vt = yt − ̂yt

ut = ηt0 +
t∑

τ=0
Htτvτ (∗∗)

(S)

♠ Fact II [bi-affinity]: The state-control trajectory w = W (η; d, z) of (S)
is affine in (d, z) when the parameters η = {ηt0, Htτ}0≤τ≤t≤T of the control
law (∗∗) are fixed, and is affine in η when (d, z) is fixed.
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♠ Corollary: With parameterization (∗∗) of affine control laws, the problem

Find an affine control law (∗) which ensures that the resulting state-control
trajectory w satisfies the system of convex inclusions

Diw − bi ∈ Qi, i = 1, ..., m

and minimizes, under this restriction, a given linear objective f (w).

becomes an uncertain bi-affine optimization problem and as such can be processed
via the CRC approach.

In particular, in the case when Qi are one-dimensional, the CRC of the problem
is computationally tractable, provided that the normal range U of (d, z) and the
associated cone L are so. If U , L and the norms used to measure distances are
polyhedral, CRC is just an explicit LP program.
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Supply chain control – GRC 
implementation for control problems

xt
j=amount echelon j orders from j-1 at the beginning of 

period t
Yt

j =inventory level in echelon j at the end of period t
zj =initial inventory level at echelon j
dt =external demand at period t

TL(j) =I(j) +M(j-1) +L(j) the delay between the time an order 
is placed and received in echelon j.
TM(j) =I(j+1) +M(j) 
the delay between the time an order is placed and shipped
from echelon
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Supply chain control – GRC 
implementation for control problems

Main objective : minimizing cost
Sub objective:
stabilizing the system
Problem Characteristics:

Finite horizon
Multi echelon
Delays
Backlogging
Demand must be satisfied and is uncertain
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Supply chain control

Eliminating the equalities recursively will give us a LP 
problem of the form we discussed.
How do we control this system? What are the 
consequences of different types of control?
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LV control

Lets assume we take the control suggested by Love 
[Love,1979] using
target inventory:
Resulting in the LP problem:
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ILV control

We can further improve this method by making the 
reference inventory a decision variable rather than a 
constant.
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GRC control

Applying the GRC to the AARC problem assuming



Robust Counterpart (AARC)

yt
j = yt

j(d, z) affine function
xt

j = xt
j(d, z)

constraints must hold ∀ d ∈ D, z ∈ Z

CRC A typical constraint is of the form

Fi(d, z) ∈ Ki (Ki = interval)

Its CRC version being

When Dt, Zj are polyhedral (*) can be converted to linear
inequalities.
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The purified outputs corresponding to the dynamic system
(1) – (3) are here

The affine control law is here

where (non anticipativity)
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Example

[Love, 1979], Oscillating demand:

Horizon: n=20
Echelons: m=3
Cost: c=2, p=3,h=1
Initial inventory: z=12
Lead time: L=2
No other delays
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Inventory Behavior – “amplification of 
oscillation”

RC
OFV: 1207

AARC
OFV: 1165

GRC
OFV: 1065

LV
OFV: 4795

ILV
OFV: 3140
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