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Abstract

The Euler characteristic heuristic has been proposed as a method for approximating
the upper tail probability of the maximum of a random field with smooth sample
path. When the random field is Gaussian, this method is proved to be valid in
the sense that the relative approximation error is exponentially smaller. However,
very little is known about the validly of the method when the random field is non-
Gaussian. In this paper, as a milestone to developing the general theory about the
validity of the Euler characteristic heuristic, we examine the Euler characteristic
heuristic for approximating the distribution of the largest eigenvalue of an orthog-
onally invariant non-Gaussian random matrix. In this particular example, if the
probability density function of the random matrix converges to zero sufficiently fast
at the the boundary of its support, the approximation error of the Euler charac-
teristic heuristic is proved to be small and the approximation is valid. Moreover,
for several standard orthogonally invariant random matrices, the approximation
formula for the distribution of the largest eigenvalue and its asymptotic error are
obtained explicitly. Our formulas are practical enough for the purpose of numerical
calculations.
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1 Introduction

Let X(t) (t ∈ S) be a random field on the index set S ⊂ R
n with smooth

sample path. In this paper, we treat the approximation of the distribution of
the maximum supt∈S X(t) of the random field. This distribution is required
in testing hypothesis based on the maximum type statistic and multiple com-
parisons.

The set of indices t such that the value X(t) exceeds a threshold x,

Ax = {t ∈ S | X(t) ≥ x},

is called an excursion set . Note that Ax is a random set. By its definition,

P
(
sup
t∈S

X(t) ≥ x
)

= E[1Ax],

where 1 is the indicator function of a set defined by

1Ax =
{

1 (Ax �= ∅)
0 (Ax = ∅).

The Euler characteristic of the set Ax is denoted by χ(Ax). χ(Ax) is an integer-
valued topological invariant. It holds that

χ(Ax) =
{

1 (Ax is contractible)
0 (Ax = ∅)

in particular. Note that a set is called contractible if the set can be transformed
into a point set by a continuous map (i.e., the set is homotopy equivalent to
a point set).

Suppose that there exists a unique t = t∗ which attains supt∈S X(t). Consider
the case where x is large. If x > X(t∗), then Ax = ∅. Even if x ≤ X(t∗), but
if x is close to the maximum X(t∗), then the excursion set Ax is expected to
be a set homotopy equivalent to the point set {t∗}. Namely,

1Ax ≈ χ(Ax) (for x large). (1)

By taking the expectations of both sides, we have the approximation formula

P
(
sup
t∈S

X(t) ≥ x
)
≈ E[χ(Ax)] (for x large). (2)

This approximation is called Euler characteristic heuristic (Adler (1981), Wors-
ley (1994), Worsley (1995), Adler (2000), Taylor and Adler (2003)).
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The reason why this approximation is proposed is that, in taking the expec-
tations, χ(Ax) is easier to handle than 1Ax in general. However, as we already
saw, the approximation (1) is based on an intuitive consideration, and the
validity of the approximation (2) is not obvious.

Actually, when the random field X(t) is Gaussian with the mean 0 and con-
stant variance, under suitable regularity conditions, the Euler characteristic
heuristic is proved to be valid in the sense that the relative approximation
error is exponentially smaller (Kuriki and Takemura (2001), Takemura and
Kuriki (2002), Taylor et al. (2005)). However, very little is known about the
validly of the method when the random field is non-Gaussian.

In this paper, as a milestone to developing the general theory about the valid-
ity of the Euler characteristic heuristic, we examine the approximation error
of the Euler characteristic heuristic for approximating the distribution of the
largest eigenvalue of an orthogonally invariant non-Gaussian random matrix.
In Section 2, we formulate the largest eigenvalue of real symmetric random
matrix as the maximum of a random field defined by the quadratic form, and
give the approximation formula and its asymptotic error. It is shown that, if
the probability density function of the random matrix converges to zero suf-
ficiently fast at the the boundary of its support, the approximation error of
the Euler characteristic heuristic is proved to be small, and the approximation
method is valid. In Section 3, for several standard orthogonally invariant ran-
dom matrices, the approximation formulas for the distribution of the largest
eigenvalues and their asymptotic error are obtained explicitly. Usually the ex-
act formulas for the distribution about the eigenvalues of random matrix are
described in terms of special functions of matrix arguments (e.g., Muirhead
(1982), Section 9.7). However, they are very complicated and not suitable
for numerical calculations. The formulas obtained in this paper are practical
enough for the purpose of numerical calculations.

2 Approximation of the distribution of the largest eigenvalue

2.1 Euler characteristic and its expectation

The set of p × p real symmetric matrices is denoted by Sym(p), and the
set of p× p orthogonal matrices is denoted by O(p). By identifying the upper
triangular elements of the matrix in Sym(p) with the element of the Euclidean
space R

p(p+1)/2, we denote the Lebesgue measure of Sym(p) at W ∈ Sym(p)
by dW =

∏
i≤j dwij. In this paper, we treat the case where the random matrix

W ∈ Sym(p) has a probability density function f(W ) with respect to the
Lebesgue measure dW . Moreover, we assume that W is orthogonally invariant,
that is, the distributions of W and QWQ′ are the same for all Q ∈ O(p). This
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assumption means that

f(W ) = f(QWQ′) for all Q ∈ O(p).

Using the random matrix W , define a random field on the index set S
p−1, the

p − 1 dimensional unit sphere, by the quadratic form

X(h) = h′Wh, h ∈ S
p−1.

Since the maximum of X(h) is the largest eigenvalue of W ,

λ1(W ) = max
h∈Sp−1

X(h),

we can consider the approximation of the distribution of the largest eigenvalue
of W by virtue of the Euler characteristic heuristic.

For an arbitrarily fixed Q ∈ O(p), define a random field Y (h) = X(Qh) on the
index set S

p−1. Because of the orthogonal invariance, the finite dimensional
marginal distribution of X(·) is the same as that of Y (·). This means that X(·)
is stationary with respect to the group action O(p). Note that the marginal
distribution of X(h) does not depend on h.

In the following, we will derive an expression of χ(Ax) with the help of Morse’s
theorem. We begin with showing that X(h) is a Morse function.

Let t = (t1, . . . , tp−1) be a local coordinate of S
p−1 so that h = h(t). We use

the abbreviations hi = ∂h/∂ti, hij = ∂2h/∂ti∂tj , Xi = ∂X(h)/∂ti, etc. Note
first that h′h = 1, h′

ih = 0, and h′
ijh + h′

ihj = 0. Moreover

Xi = 2h′
iWh, Xij = 2h′

iWhj + 2h′
ijWh.

Since h, h1, . . . , hp−1 span R
p, we can write

hij = cijh + dk
ijhk.

Here we adopt Einstein’s convention of omitting summation symbols. Let
cij = h′hij = −h′

ihj = −gij (say). Because h′
lhij = dk

ijgkl, it holds that
dk

ij = (h′
lhij)g

kl = Γk
ij (say), where gkl is the element of the inverse of the

matrix (gkl). gij and Γk
ij are the metric tensor and the connection coefficient,

respectively. Using these geometric quantities, the second derivatives are ex-
pressed as

hij =−gijh + Γk
ijhk,

Xij = 2h′
iWhj − 2gijh

′Wh + 2Γk
ijh

′
kWh.
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The critical point h = h∗ is defined to be a point such that Xi(h) = 0 for all i.
If the second derivative matrix (Xij(h)) is not degenerate at each critical point
h∗, the function X(h) is said to be non-degenerate (or a Morse function).

Lemma 1 The random field X(h) is non-degenerate with probability one. The
set of critical points is a finite set with probability one.

Proof. By the Gram-Schmidt orthonormalization, let

(h1, . . . , hp−1) = HT, (3)

where H is a p×(p−1) matrix satisfying H ′H = Ip−1, and T is a (p−1)×(p−1)
upper triangular matrix with positive diagonal elements. Note that both H
and T are defined as functions of h (i.e., H = H(h), T = T (h)). The metric
tensor is (gij) = T ′T . Since T is non-singular, h is a critical point iff h′WH = 0.
Moreover, because h′H = 0, h is a critical point iff h is an eigenvector of W .

Noting that (Xij(h)) = 2T ′H ′WHT − 2T ′T (h′Wh) at a critical point h, we
see that X(h) is degenerate at a critical point h iff

det((h′Wh)Ip−1 − H ′WH) = 0. (4)

The ith largest eigenvalue of W is denoted by λi(W ). Suppose that a critical
point h is an eigenvector of W with respect to the eigenvalue λk(W ). Then
H ′WH has eigenvalues λi(W ) (i �= k), and (4) implies λi(W ) = λk(W ) for
some i �= k. On the other hand, the random matrix W whose distribution is
absolutely continuous with respect to the Lebesgue measure dW on Sym(p)
has distinct eigenvalues with probability one. (This follows from the facts that
the discriminant of the eigenfunction of W is a polynomial of the elements of
W , and that the Lebesgue measure of the zero-point set of a polynomial is
0. See Okamoto (1973).) Therefore, X(h) is non-degenerate with probability
one. Also, the set of critical points consists of p distinct points with probability
one. �

Lemma 2 Let h(k) denote the eigenvector with respect to the kth largest eigen-
value of W . Then

χ(Ax) =
p∑

k=1

1{h′Wh≥x}sgn det((h′Wh)Ip−1 − H ′WH)
∣∣∣
h=h(k)

(5)

=
p∑

k=1

(−1)k−11{λk(W )≥x} (6)

holds with probability one.
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Proof. Obviously, −X(h) is also non-degenerate with probability one. Noting
that −X(h) is a C∞-function on a C∞-manifold, and by applying Morse’s
theorem (Morse and Cairns (1969), Theorem 10.2; Worsley (1995), Theorem
1) to −X(h), we have

χ(Ax) =
∑

h : critical point

1{X(h)≥x}sgn det(−Xij(h))

with probability one. The first equality now follows from the fact that the
critical points of X(h) are the eigenvectors h(k) (1 ≤ k ≤ p) of W . Moreover,
the right hand side of the first equality is rewritten as

p∑
k=1

1{λk(W )≥x}sgn
∏
i�=k

(λk(W ) − λi(W )),

from which the second equality follows. �

Remark 3 From (6) with probability one, χ(Ax) takes the value 0 or 1, and
hence the expectation E[χ(Ax)] exists. Also χ(Ax) − 1Ax takes the value 0 or
−1, and hence E[χ(Ax)] ≤ P (λ1(W ) ≥ x) holds for all x.

Next we will derive the Jacobian in order to take the expectation of χ(Ax). Let
h ∈ S

p−1 be a p dimensional unit vector such that the first non-zero element
is positive. Let H = H(h) be a p× (p−1) matrix defined by (3). Consider the
transform

W = (h, H)
(

w̃11 0
0 W̃22

)(
h′

H ′

)
. (7)

This transform represents that w̃11 is an eigenvalue of W , and h is a corre-
sponding eigenvector. By imposing a restriction that, for fixed k (1 ≤ k ≤ p),
w̃11 is the kth largest eigenvalue of W (i.e., h is the kth eigenvector of W ), the
relation (7) becomes an one-to-one relation with probability one. Note that
this restriction is rewritten as

λk−1(W̃22) > w̃11 > λk(W̃22). (8)

By standard techniques of multivariate analysis, the Jacobian of (7) is shown
to be

dW = dw̃11dW̃22| det(w̃11Ip−1 − W̃22)|H ′dh,

where H ′dh is a volume element of the unit sphere S
p−1. Due to the restriction

that the first non-zero element of h is positive, the total integral with respect
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to the volume element is a half of the volume Ωp of S
p−1, that is,

∫
H ′dh =

Ωp

2
, Ωp =

2π
p
2

Γ(p
2
)
.

Because f(W ) = f(diag(w̃11, W̃22)), the marginal distribution of (w̃11, W̃22)
within the range (8) is

Ωp

2
f(diag(w̃11, W̃22))| det(w̃11Ip−1 − W̃22)|dw̃11dW̃22. (9)

By combining the density function (9) and the expression (5) of χ(Ax) in
Lemma 2, we get the following.

Theorem 4 The approximation formula P̂ (x) by the Euler characteristic heuris-
tic is given by

P̂ (x) =E[χ(Ax)]

=
Ωp

2

∫ ∫
R×Sym(p−1)

dw11dW221{w11≥x}

× det(w11Ip−1 − W22)f(diag(w11, W22)).

2.2 Exact distribution and approximation error

Consider the transform (7) in the range that w̃11 is the largest eigenvalue of
W . The marginal distribution of (w̃11, W̃22) is

Ωp

2
f(diag(w̃11, W̃22)) det(w̃11Ip−1 − W̃22)dw̃11dW̃22 (w̃11Ip−1 > W̃22).

Here the inequality ‘>’ of matrices means that the difference between the left
hand side and the right hand side is positive definite. By taking the integral
over the range w̃11 ≥ x, we get the upper probability P (x) of the largest
eigenvalue λ1(W ) and the approximation error ΔP (x) = P̂ (x) − P (x) of the
Euler characteristic heuristic as

P (x) =P (λ1(W ) ≥ x)

=
Ωp

2

∫ ∫
R×Sym(p−1)

dw11dW221{w11≥x}1{w11Ip−1>W22}

× det(w11Ip−1 − W22)f(diag(w11, W22))
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and

ΔP (x) = P̂ (x) − P (x)

=
Ωp

2

∫ ∫
R×Sym(p−1)

dw11dW221{w11≥x}(1 − 1{w11Ip−1>W22})

× det(w11Ip−1 − W22)f(diag(w11, W22)),

respectively. Note that ΔP (x) ≤ 0 for all x by Remark 3.

Let l1 = w11 and denote the eigenvalues of W22 by l2 > · · · > lp. Let L =
diag(li)1≤i≤p be the diagonal matrix consisting of li’s, and dL =

∏p
i=1 dli. By

successive decomposition of W22 similar to (7), we get an expression in terms
of the integral in eigenvalues

P (x) =
p∏

i=1

Ωi

2

∫
l1≥x

l1>l2>···>lp

f(L)
∏
i<j

(li − lj)dL.

Similarly,

P̂ (x) =
p∏

i=1

Ωi

2

∫
l1≥x

l2>···>lp

f(L)
∏
i<j

(li − lj)dL,

ΔP (x) =
p∏

i=1

Ωi

2

∫
l2>l1≥x
l2>···>lp

f(L)
∏
i<j

(li − lj)dL.

2.3 A class of orthogonally invariant distributions

Furthermore in this paper, we restrict our attention to the case where the den-
sity function is written as a product of non-negative functions in eigenvalues
li of W ,

f(W ) = f(L) =
p∏

i=1

g(li). (10)

The Wishart distribution, the multivariate beta distribution, the inverse Wishart
distribution, and p× p multivariate symmetric normal distribution which has
the density function

f(A) =
1

e(p)
e−

1
2
tr(A2) (A ∈ Sym(p))
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with e(p) = πp(p+1)/42p/2 belong to the class (10). Also, the restriction of these
distributions such that the eigenvalues are restricted to a particular region,
for example, the conditional distribution of the p× p matrix A distributed as
the multivariate symmetric normal distribution given the condition that A is
positive definite is in the class (10).

Here we make an assumption on g(·).
Assumption 5 Throughout the paper, let a = inf{l | g(l) > 0} and b =
sup{l | g(l) > 0}. g(·) is non-negative and piecewise continuous on (a, b). There
exists c < b such that g(l) > 0 for l ∈ (c, b).

The property that f(·) is a probability density function characterizes the func-
tion g(·).
Lemma 6 The integral of f(·) in (10) over Sym(p) is finite if and only if

b∫
a

(|l|p−1 + 1)g(l)dl < ∞. (11)

Proof. We begin with proving that if∫
b>l1>···>lp>a

∏
i

g(li)
∏
i<j

(li − lj)dl1 · · · dlp < ∞, (12)

then (11) holds. Let b (= c0) > c1 > · · · > cn > a (= cn+1) be the dis-
continuities of g(·). We only have to check the convergence of (11) at l = ck

(0 ≤ k ≤ n + 1).

It holds for c ∈ (ck+1, ck) that

ck∫
c

g(l1)F (l1)dl1 < ∞

with

F (l) =
∫

l>l2>···>lp>ck+1

∏
i≥2

g(li)(l − li)
∏

2≤i<j

(li − lj)dl2 · · · dlp.

Since F (·) is monotonically non-decreasing and F (c) > 0, it holds that

ck∫
c

g(l)dl ≤ 1

F (c)

ck∫
c

g(l)F (l)dl < ∞. (13)
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Also when ck = ∞ (i.e., k = 0), it holds for c > max(c1, 0) that

∞∫
c

lp−1
1 g(l1)F (l1)dl1 < ∞

with

F (l) =
∫

l>l2>···>lp>max(c1,0)

∏
i≥2

g(li)
(
1 − li

l

) ∏
2≤i<j

(li − lj)dl2 · · ·dlp.

Since F (·) is monotonically non-decreasing and F (c) > 0, it holds that

∞∫
c

lp−1g(l)dl ≤ 1

F (c)

∞∫
c

lp−1g(l)F (l)dl < ∞. (14)

From (13) and (14), in both cases ck = ∞ and ck < ∞, it holds that

ck∫
c

(|l|p−1 + 1)g(l)dl < ∞ for some c ∈ (ck+1, ck).

We can prove similarly that

c∫
ck

(|l|p−1 + 1)g(l)dl < ∞ for some c ∈ (ck, ck−1)

and (11) follows.

Next we will prove that (11) implies (12). By expanding the linkage factor∏
i<j(li − lj) in the integrand in (12), we see that (12) is a finite sum of the

terms of the form∫
b>l1>···>lp>a

∏
i

g(li)l
qi
i dl1 · · · dlp (0 ≤ qi ≤ p − 1). (15)

Noting that |lqi
i | ≤ |li|p−1 +1, we see that the integral above is bounded above

by

∫
b>l1>···>lp>a

∏
i

g(li)(|li|p−1 + 1)dl1 · · · dlp ≤
{ b∫

a

g(l)(|l|p−1 + 1)dl
}p

.

�
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By the use of the cofactor expansion of the Vandermonde determinant,

∏
i<j

(li − lj) =det(lp−j
i )1≤i,j≤p

=
p−1∑
j=0

(−1)jlp−1−j
1 trj(l2, . . . , lp)

∏
2≤i<j

(li − lj) (16)

or

∏
i<j

(li − lj) =
∏
i<j

{(b − lj) − (b − li)}

=
p−1∑
j=0

(−1)j(b − l1)
jtrp−1−j(b − l2, . . . , b − lp)

∏
2≤i<j

(li − lj) (17)

(trj(·) is the jth elementary symmetric polynomial), we get expressions for
P̂ (x).

Theorem 7 When the density function is of the form (10), the approximation
P̂ (x) by the Euler characteristic heuristic is written as follows.
(i) The case b = ∞.

P̂ (x) =
p∏

i=1

Ωi

2

p−1∑
j=0

(−1)j

∞∫
x

lp−1−j
1 g(l1)dl1

∫
∞>l2>···>lp>a

trj(l2, . . . , lp)

× ∏
2≤i<j

(li − lj)g(l2) · · · g(lp)dl2 · · · dlp. (18)

(ii) The case b < ∞.

P̂ (x) =
p∏

i=1

Ωi

2

p−1∑
j=0

(−1)j

b∫
x

(b − l1)
jg(l1)dl1

×
∫

b>l2>···>lp>a

trp−1−j(b − l2, . . . , b − lp)

× ∏
2≤i<j

(li − lj)g(l2) · · · g(lp)dl2 · · · dlp. (19)

In addition, in each summation
∑p−1

j=0 in (18) and (19), the term indexed by
j is asymptotically smaller than that indexed by j − 1 for 1 ≤ j ≤ p − 1 as
x ↑ b. That is, the summation represents an expansion with terms ranked in
descending order of asymptotic magnitude.

Recall that, for two functions f(x) and g(x), f(x) is said to be asymptotically
smaller than g(x) if f(x) = o(g(x)) as x ↑ b, or equivalently limx↑b f(x)/g(x) =
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0. Before proving the theorem, we cite L’Hospital’s rule (L’Hôpital’s rule),
which shall be used frequently in this paper (Rudin (1976), Theorem 5.13).

Theorem 8 Let f(x) and g(x)be differential on an interval (c, b) (c < b ≤ ∞)
for which g′(x) �= 0. If both limx↑b f(x) and limx↑b g(x) are 0, or both are
±∞, and if the limit limx↑b f ′(x)/g′(x) = A (−∞ ≤ A ≤ ∞) exists, then
limx↑b f(x)/g(x) = A.

Proof of Theorem 7. Confirm first that the definite integrals appearing in the
expressions are finite. The finiteness of the integral with respect to l1 in (18)
follows immediately from (11), and the finiteness of the integral with respect
to li (i ≥ 2) follows from the fact that the integral is a sum of the terms of
the form (15). Finiteness of the integrals for (19) is established similarly.

In addition, by virtue of L’Hospital’s rule (Theorem 8), for 0 ≤ q, q′ ≤ p − 1

lim
x→∞

∫∞
x lqg(l)dl∫∞
x lq′g(l)dl

= lim
x→∞

xqg(x)

xq′g(x)
=

⎧⎪⎨⎪⎩
∞ (q > q′)
1 (q = q′)
0 (q < q′)

holds, from which (18) is shown to be an expansion of descending order. Here
the conditions for L’Hospital’s rule are assured from Assumption 5 and Lemma
6. Similarly (19) is shown to be an expansion of descending order. �

2.4 Asymptotic evaluation of the approximation error

When the density function is assumed to be of the form (10), the approxima-
tion error ΔP (x) in terms of the integral in eigenvalues is expressed as

ΔP (x) =
p∏

i=1

Ωi

2

∫
b>l2>l1≥x

b>l2>···>lp>a

p∏
i=1

g(li)
∏

1≤i<j≤p

(li − lj)dL.

In this subsection, we look at the asymptotic behavior of ΔP (x) as x ↑ b. The
results are summarized in the theorem below.

Theorem 9 The approximation error ΔP (x) has the following asymptotic
expressions.
(i) The case b = ∞.

ΔP (x)∼−
p∏

i=1

Ωi

2

∫
∞>l2>l1≥x

(l1l2)
p−2(l2 − l1)g(l1)g(l2)dl1dl2
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×
∫

∞>l3>···>lp>a

p∏
i=3

g(li)
∏

3≤i<j≤p

(li − lj)
p∏

i=3

dli (x → ∞). (20)

(ii) The case b < ∞.

ΔP (x)∼−
p∏

i=1

Ωi

2

∫
b>l2>l1≥x

g(l1)g(l2)(l2 − l1)dl1dl2

×
∫

b>l3>···>lp>a

p∏
i=3

g(li)(b − li)
2

∏
3≤i<j≤p

(li − lj)
p∏

i=3

dli

(x ↑ b). (21)

When p = 2, the integrals with respect to li (i ≥ 3) are assumed to be 1.

Here ‘∼’ means that the ratio of both sides converges to 1. In proving the
theorem, we treat the cases b = ∞ and b < ∞ separately.

Proof. (i) The case b = ∞.

Let

q =
(

p − 1 p − 2 · · · 0
q1 q2 · · · qp

)

be a permutation of {p − 1, p − 2, · · · , 0}. The set of all q such that

q1 > q2, q3 > · · · > qp

is denoted by Q2. We can write an element of Q2 as q = (q1, q2) shortly without
loss of information. Noting the Laplace expansion

∏
i<j

(li − lj) =det(lp−j
i )1≤i,j≤p

=
∑

q∈Q2

sgn(q) det(l
qj

i )1≤i,j≤2 det(l
qj

i )3≤i,j≤p,

we have

ΔP (x) =
p∏

i=1

Ωi

2

∑
q∈Q2

sgn(q)
∫

∞>l2>l1≥x

g(l1)g(l2) det(l
qj

i )1≤i,j≤2Fq(l2)dl1dl2

with

Fq(l) =
∫

l>l3>···>lp>a

p∏
i=3

g(li) det(l
qj

i )3≤i,j≤p

p∏
i=3

dli.

13



Note that det(l
qj

i )3≤i,j≤p is an alternating polynomial with positive sign for l3 >
· · · > lp. Since Fq(·) is positive and monotonically increasing, and Fq(∞) < ∞,
it holds for l2 ≥ x that

|Fq(∞) − Fq(l2)| ≤ |Fq(∞) − Fq(x)| = o(1) (x → ∞),

and hence

Fq(l2) = Fq(∞) + o(1) (x → ∞).

Therefore,

ΔP (x)∼
p∏

i=1

Ωi

2

∑
q∈Q2

sgn(q)Hq(x)Fq(∞),

where

Hq(x) =
∫

∞>l2>l1≥x

g(l1)g(l2) det(l
qj

i )1≤i,j≤2dl1dl2

=

∞∫
x

lq1
1 g(l1)

[ ∞∫
l1

lq2
2 g(l2)dl2

]
dl1

−(the term with q1 and q2 exchanged).

This includes the case p = 2 by letting Fq(∞) = 1.

In the following, we evaluate the asymptotic behavior of Hq(x) as x → ∞.
In the case b = ∞, we will show that Hq(x) takes the maximum value
asymptotically when (q1, q2) = (p − 1, p − 2). Namely, we will show that for
q0 = (p − 1, p − 2) ∈ Q2 and q = (q1, q2) ∈ Q2 such that q �= q0,

lim
x→∞

Hq(x)

Hq0(x)
= 0. (22)

Note that q2 ≤ p − 3 and q1 + q2 ≤ 2p − 4.

Here we use L’Hospital’s rule again. Because

H ′
q0(x) =xp−2g(x)

∞∫
x

lp−2(l − x)g(l)dl > 0

for sufficiently large x, it suffices to prove that

14



H ′
q(x)

H ′
q0(x)

=
−xq1−p+2

∫∞
x lq2g(l)dl + xq2−p+2

∫∞
x lq1g(l)dl

−x
∫∞
x lp−2g(l)dl +

∫∞
x lp−1g(l)dl

(23)

converges to 0. Note that for k ≤ p − 1 and j + k ≤ p − 1,

xj

∞∫
x

lkg(l)dl = xj+k−p+1

∞∫
x

xp−1−klkg(l)dl ≤ xj+k−p+1

∞∫
x

lp−1g(l)dl → 0.

In the following we treat the cases q1 = p − 1 and q1 ≤ p − 2 separately.

The case q1 = p − 1. The right hand side of (23) is rewritten as

xq2−p+2 +
−x

∫∞
x lq2g(l)dl + xq2−p+3

∫∞
x lp−2g(l)dl

−x
∫∞
x lp−2g(l)dl +

∫∞
x lp−1g(l)dl

,

whose first term converges to 0. Therefore, we only have to check that the
second term converges to 0. Since both numerator and denominator converge
to 0, it suffices to show that

− ∫∞x lq2g(l)dl + (q2 − p + 3)xq2−p+2
∫∞
x lp−2g(l)dl

− ∫∞x lp−2g(l)dl

=

∫∞
x lq2g(l)dl∫∞

x lp−2g(l)dl
− (q2 − p + 3)xq2−p+2

converges to 0 by L’Hospital’s rule. Actually, it follows from q2 ≤ p − 3.

The case q1 ≤ p − 2. In the right hand side of (23), both numerator and
denominator converge to 0. Therefore, by L’Hospital’s rule, if

lim
x→∞

−(q1 − p + 2)xq1−p+1
∫∞
x lq2g(l)dl + (q2 − p + 2)xq2−p+1

∫∞
x lq1g(l)dl

− ∫∞x lp−2g(l)dl

(24)

exists, then (23) has the same limit as (24). Noting that for k ≤ p − 2 and
j + k ≤ p − 3,

xj
∫∞
x lkg(l)dl∫∞

x lp−2g(l)dl
=

xj+k−p+2
∫∞
x xp−2−klkg(l)dl∫∞

x lp−2g(l)dl

≤ xj+k−p+2
∫∞
x lp−2g(l)dl∫∞

x lp−2g(l)dl
= xj+k−p+2 → 0,

we see that the limit in (24) exists and takes the value 0. This completes the
proof of (22).
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When q = q0, it holds that sgn(q) = 1,

det(l
qj

i )1≤i,j≤2 = (l1l2)
p−2(l1 − l2), det(l

qj

i )3≤i,j≤p =
∏

3≤i<j≤p

(li − lj),

and hence (20) follows.

(ii) The case b < ∞.

Let

q̄ =
(

0 1 · · · p − 1
q̄1 q̄2 · · · q̄p

)

be a permutation of {0, 1, . . . , p − 1}. The set of all q̄ such that

q̄1 < q̄2, q̄3 < · · · < q̄p

is denoted by Q̄2. We can write an element of Q̄2 as q̄ = (q̄1, q̄2). For 1 ≤ i ≤ p,
let l̄i = b − li. Noting the Laplace expansion

∏
i<j

(li − lj) = (−1)
p(p−1)

2

∏
i<j

(lj − li) = (−1)
p(p−1)

2

∏
i<j

(l̄i − l̄j)

=det(l̄j−1
i )1≤i,j≤p =

∑
q̄∈Q̄2

sgn(q̄) det(l̄
q̄j

i )1≤i,j≤2 det(l̄
q̄j

i )3≤i,j≤p,

in the same manner as the case b = ∞, we see

ΔP (x)∼
p∏

i=1

Ωi

2

∑
q̄∈Q̄2

sgn(q̄)H̄q̄(x)
∫

b>l3>···>lp>a

p∏
i=3

g(li) det(l
q̄j

i )3≤i,j≤p

p∏
i=3

dli,

where

H̄q̄(x) =
∫

b>l2>l1≥x

g(l1)g(l2) det(l̄
qj

i )1≤i,j≤2dl1dl2

=

b∫
x

l̄q̄1
1 g(l1)

[ b∫
l1

l̄q̄2
2 g(l2)dl2

]
dl1

−(the term with q̄1 and q̄2 exchanged).

In the following, as x ↑ b, we will show that H̄q̄(x) takes the maximum value
asymptotically when (q̄1, q̄2) = (0, 1). Namely, we will show that for q̄0 =
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(0, 1) ∈ Q̄2 and q̄ = (q̄1, q̄2) ∈ Q̄2 such that q̄ �= q̄0,

lim
x↑b

H̄q̄(x)

H̄q̄0(x)
= 0. (25)

Note that q̄2 ≥ 2 and q̄1 + q̄2 ≥ 2. Because

H̄ ′
q̄0(x) = g(x)

b∫
x

(l − x)g(l)dl > 0

for sufficiently large x, it suffices to prove that

H̄ ′
q̄(x)

H̄ ′
q̄0(x)

=
−(b − x)q̄1

∫ b
x(b − l)q̄2g(l)dl + (b − x)q̄2

∫ b
x(b − l)q̄1g(l)dl

− ∫ b
x(b − l)g(l)dl + (b − x)

∫ b
x g(l)dl

(26)

converges to 0 by L’Hospital’s rule. Note that for k ≥ 0 and j + k ≥ 0,

(b − x)j

b∫
x

(b − l)kg(l)dl = (b − x)j+k

b∫
x

(b − x)−k(b − l)kg(l)dl

≤ (b − x)j+k

b∫
x

g(l)dl → 0.

In the right hand side of (26), both numerator and denominator converge to
0. Therefore, by L’Hospital’s rule, if

lim
x↑b

q̄1(b − x)q̄1−1
∫ b
x(b − l)q̄2g(l)dl − q̄2(b − x)q̄2−1

∫ b
x(b − l)q̄1g(l)dl∫ b

x g(l)dl

(27)

exists, then (26) has the same limit as (27). Noting that for k ≥ 0 and j+k ≥ 1,

(b − x)j
∫ b
x(b − l)kg(l)dl∫ b

x g(l)dl
=

(b − x)j+k
∫ b
x(b − x)−k(b − l)kg(l)dl∫ b

x g(l)dl

≤ (b − x)j+k
∫ b
x g(l)dl∫ b

x g(l)dl
= (b − x)j+k → 0,

we see that (27) exists and takes the value 0. This completes the proof of (25).

When q̄ = q̄0, it holds that sgn(q̄) = 1,

17



det(l̄
q̄j

i )1≤i,j≤2 = l̄2 − l̄1 = l1 − l2,

det(l̄
q̄j

i )3≤i,j≤p =
p∏

i=3

(b − li)
2

∏
3≤i<j≤p

(li − lj),

and hence (21) follows. �

2.5 Validity of the Euler characteristic heuristic

In this subsection, we compare the approximation error ΔP (x) given in The-
orem 9 with the expansion P̂ (x) given in Theorem 7.

The Euler characteristic heuristic is said to be weakly valid when ΔP (x) is
asymptotically smaller than P̂ (x) as x ↑ b, that is, ΔP (x) = o(P̂ (x)). The
Euler characteristic heuristic is said to be valid when ΔP (x) is asymptotically
smaller than each term of P̂ (x) as x ↑ b. We treat the cases b = ∞ and
b < ∞ separately. The conditions for L’Hospital’s rule used below are fulfilled
by Assumption 5 and Lemma 6.

(i) The case b = ∞.

Let Hq0(x) be the function defined in the previous subsection. We first consider
the condition that the approximation error ΔP (x) in (20) is asymptotically
smaller than the leading term of P̂ (x) in (18), or

lim
x→∞

Hq0(x)∫∞
x lp−1g(l)dl

= 0.

Actually, by L’Hospital’s rule, the left hand side of the above is

lim
x→∞

H ′
q0(x)

−xp−1g(x)
= lim

x→∞

{ ∞∫
x

lp−2g(l)dl − x−1

∞∫
x

lp−1g(l)dl
}

= 0,

which means that ΔP (x) is always asymptotically smaller than the leading
term of P̂ (x).

Next we consider the condition that the approximation error ΔP (x) is asymp-
totically smaller than each term of P̂ (x) expressed as (18), or

lim
x→∞

Hq0(x)∫∞
x g(l)dl

= 0.

By L’Hospital’s rule, it suffices to consider the condition for

lim
x→∞

H ′
q0(x)

−g(x)
= lim

x→∞
x
∫∞
x lp−2g(l)dl − ∫∞

x lp−1g(l)dl

x−(p−2)
= 0,
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which is, however, always true for p = 2. For p ≥ 3, by using L’Hospital’s rule
again, we see that the above holds if

lim
x→∞xp−1

∞∫
x

lp−2g(l)dl = 0. (28)

Moreover, we have

lim
x→∞x2p−2g(x) = 0 (29)

as a sufficient condition for (28).

(ii) The case b < ∞.

Let H̄q̄0(x) be the function defined in the previous subsection. We first consider
the condition that the approximation error ΔP (x) in (21) is asymptotically
smaller than the leading term of P̂ (x) in (19), or

lim
x↑b

H̄q̄0(x)∫ b
x g(l)dl

= 0.

Actually, by L’Hospital’s rule, the left hand side of the above is

lim
x↑b

H̄ ′
q̄0(x)

−g(x)
= lim

x↑b

{ b∫
x

(b − l)g(l)dl − (b − x)

b∫
x

g(l)dl
}

= 0,

which means that ΔP (x) is always asymptotically smaller than the leading
term of P̂ (x).

Next we consider the condition that the approximation error ΔP (x) is asymp-
totically smaller than each term of P̂ (x) expressed as (19), or

lim
x↑b

H̄q̄0(x)∫ b
x(b − l)p−1g(l)dl

= 0.

By L’Hospital’s rule, it suffices to consider the condition for

lim
x↑b

H̄ ′
q̄0(x)

−(b − x)p−1g(x)
= lim

x↑b

∫ b
x(b − l)g(l)dl − (b − x)

∫ b
x g(l)dl

(b − x)p−1
= 0,

which is, however, always true for p = 2. For p ≥ 3, by using L’Hospital’s rule
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again, we see that the above holds if

lim
x↑b

(b − x)−(p−2)

b∫
x

g(l)dl = 0. (30)

Moreover, we have

lim
x↑b

(b − x)−(p−3)g(x) = 0 (31)

as a sufficient condition for (30).

The results so far are summarized as follows.

Theorem 10 In both cases b = ∞ and b < ∞, the Euler characteristic heuris-
tic is weakly valid. That is,

ΔP (x) = o(P̂ (x)) (x ↑ b).

Moreover, if p = 2, or if p ≥ 3 and

lim
x→∞x2p−2g(x) = 0 (in the case b = ∞),

lim
x↑b

(b − x)−(p−3)g(x) = 0 (in the case b < ∞),

then the Euler characteristic heuristic is valid. That is, ΔP (x) is asymptoti-
cally smaller than each term of P̂ (x) as x ↑ b.

Remark 11 The above results show that the faster g(x) converges to 0 as
x ↑ b, the smaller is the approximation error ΔP (x).

3 Examples

In the second half of the paper, we give the formulas of P̂ (x) and the asymp-
totic evaluations for ΔP (x) for the Wishart distribution, the multivariate beta
distribution, and the inverse Wishart distribution. They are distributions of
standard orthogonally invariant random matrices appearing in the multivari-
ate analysis.
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3.1 Wishart distribution

The p × p Wishart distribution with n (n > p − 1) degrees of freedoms is
denoted by Wp(n). When W ∼ Wp(n), X(h) = h′Wh for fixed h ∈ S

p−1 is
distributed as χ2(n), the chi-squared distribution with n degrees of freedom.
We can call X(·) a chi-squared field. In the following, let Ḡν(·) denote the
upper probability of the chi-squared distribution with ν degrees of freedom.

Theorem 12 The approximation formula for the distribution of the largest
eigenvalue of the Wishart matrix Wp(n) by the Euler characteristic heuristic
is given by

P̂ (x) =
2p+n−2Γ(p+1

2
)Γ(n+1

2
)√

π

p−1∑
j=0

(
−1

2

)j Γ(n+p−1−2j
2

)

Γ(p − j)Γ(n − j)j!
Ḡn+p−1−2j(x).

(32)

The asymptotic error is evaluated as

ΔP (x)∼− 1

Γ(p − 1)Γ(n − 1)
xp+n−5e−x (x → ∞). (33)

Remark 13 Since Ḡν(x) = O(x
ν
2
−1e−

x
2 ), the approximation error ΔP (x) is

exponentially smaller than each term of P̂ (x).

Remark 14 We can propose an improved version of P̂ (x) by incorporating
the right hand side of (33) as

P̃ (x) = P̂ (x) +
1

Γ(p − 1)Γ(n − 1)
xp+n−5e−x.

The error P̃ (x) − P (x) is asymptotically smaller than ΔP (x).

Remark 15 Kuriki and Takemura (2001) formulated the largest eigenvalue of
the Wishart matrix as the maximum of a Gaussian random field, and derived
the same formula (32) by virtue of the tube method, the Euler characteristic
heuristic applied to the Gaussian random field. They showed that the approx-
imation error is O(x

np
2
−1e−x) at most.

For the Wishart W2(5), the exact upper probability of the largest eigenvalue
P (x), the approximation by the Euler characteristic heuristic P̂ (x), and its
improvement P̃ (x) are given as

P (x) =
x2

3
e−

x
2 +

(
1 + x +

x2

6

)
e−x,
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P̂ (x) =
x2

3
e−

x
2 , and P̃ (x) = P̂ (x) +

x2

6
e−x.

These three are depicted in Fig. 1 as solid line, dotted line, and dashed line,
respectively.

2 4 6 8 10 12 14
x

0.2

0.4

0.6

0.8

1

P(x)

Fig. 1. P (x) (—), P̂ (x) (· · ·), and P̃ (x) (– –) for the Wishart W2(5)

From now on we prove Theorem 12. We will show (32) at first. The density
function of the Wishart distribution is

fp,n(W ) =
1

c(p, n)
e−

1
2
tr(W ) det(W )

1
2
(n−p−1) (W > 0)

with

c(p, n) = 2
pn
2 Γp

(n

2

)
, Γp(a) = π

p(p−1)
4

p∏
i=1

Γ
(
a − 1

2
(i − 1)

)
. (34)

For w11 ∈ R and W22 ∈ Sym(p − 1), it holds that

fp,n(diag(w11, W22)) =
c(1, n − p + 1)c(p − 1, n − 1)

c(p, n)

×f1,n−p+1(w11)fp−1,n−1(W22).

Hence, if we suppose that w11 ∼ χ2(n − p + 1) and W22 ∼ Wp−1(n − 1) are
independent random variables, then we have

P̂ (x) =
Ωp

2

c(1, n − p + 1)c(p − 1, n − 1)

c(p, n)
E[1{w11≥x} det(w11Ip−1 − W22)].
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The multiplicative constant in the expression above is

Ωp

2

c(1, n − p + 1)c(p − 1, n − 1)

c(p, n)
= 2−(p−1)

√
π

Γ(n−p+1
2

)

Γ(p
2
)Γ(n

2
)
.

Noting the expansion of the determinant

det(w11Ip−1 − W22) =
p−1∑
j=0

(−1)jwp−1−j
11 trj(W22) (35)

(trj(·) denotes the summation of all j × j principal minor determinants, see
Muirhead (1982), Appendix A.7), we have

E[1{w11≥x} det(w11Ip−1 − W22)] =
p−1∑
j=0

(−1)jE[1{w11≥x}w
p−1−j
11 ]E[trj(W22)].

The expectation with respect to w11 can be evaluated by reconsidering w11 as
a chi-squared random variable with n − p + 1 + 2(p− 1− j) = n + p − 1− 2j
degrees of freedom. It follows that

E[1{w11≥x}w
p−1−j
11 ] = 2p−1−j Γ(n+p−1−2j

2
)

Γ(n−p+1
2

)
Ḡn+p−1−2j(x).

On the other hand, by letting χ2
ν denote an independent chi-squared random

variable with ν degrees of freedom, we can write

E[trj(W22)] =

(
p − 1

j

)
E
[ j∏
i=1

χ2
n−i

]

=

(
p − 1

j

)
(n − 1)(n − 2) · · · (n − j)

=
Γ(p)Γ(n)

Γ(p − j)Γ(n − j)j!
.

Summarizing the above, we get

P̂ (x) = 2−(p−1)
√

π
Γ(n−p+1

2
)

Γ(p
2
)Γ(n

2
)

×
p−1∑
j=0

(−1)j2p−1−j Γ(n+p−1−2j
2

)

Γ(n−p+1
2

)
Ḡn+p−1−2j(x) × Γ(p)Γ(n)

Γ(p − j)Γ(n − j)j!
,
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which is reduced to (32). Here we used the duplication formula of the gamma
function

Γ(z) =
2z−1

√
π

Γ
(z

2

)
Γ
(z + 1

2

)
. (36)

Since the expansion (35) is equivalent to the expansion of the Vandermonde
determinant (16), the resulting expansion of P̂ (x) corresponds to (18) in The-
orem 7.

Next we will derive the asymptotic evaluation of the approximation error (33).
Let li be the eigenvalue of W , and let

g(l) = l
n−p−1

2 e−
l
2 .

Then

fp,n(W ) =
1

c(p, n)

p∏
i=1

g(li).

Recall that

ΔP (x) ∼ − 1

c(p, n)

p∏
i=1

Ωi

2

∫
∞>l2>l1≥x

g(l1)g(l2)(l1l2)
p−2(l2 − l1)dl1dl2 × F,

where

F =
∫

∞>l3>···>lp>0

p∏
i=3

g(li)
∏

3≤i<j≤p

(li − lj)
p∏

i=3

dli

for p ≥ 3, and F = 1 for p = 2.

Assume that p ≥ 3. By considering the Wishart Wp−2(n − 2), we have

c(p − 2, n − 2) =
p−2∏
i=1

Ωi

2
× F,

and hence

ΔP (x)∼−c(p − 2, n − 2)

c(p, n)

Ωp

2

Ωp−1

2

×
∫

∞>l2>l1≥x

(l1l2)
n+p−5

2 (l2 − l1)e
− 1

2
(l1+l2)dl1dl2.
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The multiplicative constant contained above is

c(p − 2, n − 2)

c(p, n)

Ωp

2

Ωp−1

2
=

2−(p+n−2)π

Γ(n
2
)Γ(n−1

2
)Γ(p

2
)Γ(p−1

2
)

=
1

4Γ(p − 1)Γ(n − 1)
. (37)

On the other hand, the multiplicative constant for p = 2 is

1

c(2, n)

Ω2

2

Ω1

2
=

1

4Γ(n − 1)
, (38)

which is consistent with the constant for p ≥ 3.

Write k = n+p−5
2

for simplicity. The integral with respect to l1 and l2 is eval-
uated by integration by parts as

∞∫
x

lk1e
− l1

2 dl1

∞∫
l1

lk+1
2 e−

l2
2 dl2 −

∞∫
x

lk2e
− l2

2 dl2

l2∫
x

lk+1
1 e−

l1
2 dl1

= 4

∞∫
x

l2k+1
1 e−l1dl1 − 2xke−

x
2

∞∫
x

lk+1
2 e−

l2
2 dl2

∼ 4(2k + 1)x2ke−x − 4kxx+1e−
x
2 · 2xk−1e−

x
2 = 4x2ke−x. (39)

Multiplying (37) and (39) yields (33).

3.2 Multivariate beta distribution

The p × p multivariate beta distribution with parameters (n1

2
, n2

2
) (n1, n2 >

p− 1) is denoted by Bp(
n1

2
, n2

2
). When B ∼ Bp(

n1

2
, n2

2
), X(h) = h′Bh for fixed

h ∈ S
p−1 is distributed as B(n1

2
, n2

2
), the beta distribution with parameters

(n1

2
, n2

2
). We can call X(·) a beta random field. In the following, let B̄ ν1

2
,
ν2
2
(·)

denote the upper probability of the beta distribution with parameters (ν1

2
, ν2

2
).

Theorem 16 The approximation formula for the distribution of the largest
eigenvalue of the multivariate beta matrix Bp(

ν1

2
, ν2

2
) by the Euler characteristic

heuristic is given by

P̂ (x) =
2−n1+pΓ(p+1

2
)Γ(n2+1

2
)Γ(n1−p+1

2
)

Γ(n1

2
)Γ(n1+n2

2
− p

2
)
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×
p−1∑
j=0

(−1)j Γ(n2−p+1+2j
2

)Γ(n1 + n2 − p + j)

Γ(n1+n2

2
− p + 1 + j)Γ(p − j)Γ(n2 − p + 1 + j)j!

×B̄n1−p+1
2

,
n2−p+1+2j

2
(x). (40)

The asymptotic error is evaluated as

ΔP (x)∼− Γ(n1 + n2 − p + 1)Γ(n2 + 1)

Γ(p − 1)Γ(n1 − 1)Γ(n2 − p + 3)Γ(n2 − p + 4)

×xn1−p−1(1 − x)n2−p+2 (x ↑ 1). (41)

Remark 17 Since B̄ ν1
2

,
ν2
2
(x) = O((1− x)

ν2
2 ), ΔP (x) = o(P̂ (x)). In addition,

since ν2 = n2 +p−1 in the last term of P̂ (x), the approximation error ΔP (x)
is asymptotically smaller than each term of P̂ (x) whenever (n2 + p − 1)/2 <
n2 − p + 2, i.e., 3p < n2 + 5.

Remark 18 As in Remark 14, we can propose an improved version of P̂ (x)
as

P̃ (x) = P̂ (x) +
Γ(n1 + n2 − p + 1)Γ(n2 + 1)

Γ(p − 1)Γ(n1 − 1)Γ(n2 − p + 3)Γ(n2 − p + 4)

×xn1−p−1(1 − x)n2−p+2.

From now on we prove Theorem 16. We will show (40) at first. The density
function of the multivariate beta distribution is

fp,n1,n2(B) =
1

d(p, n1, n2)
det(B)

1
2
(n1−p−1) det(Ip − B)

1
2
(n2−p−1)

(0 < B < Ip)

with

d(p, n1, n2) =
Γp(

n1

2
)Γp(

n2

2
)

Γp(
1
2
(n1 + n2))

.

For b11 ∈ R and B22 ∈ Sym(p − 1), it holds that

fp,n1,n2(diag(b11, B22))

=
d(1, n1 − p + 1, n2 − p + 1)d(p − 1, n1 − 1, n2 − 1)

d(p, n1, n2)

×f1,n1−p+1,n2−p+1(b11)fp−1,n1−1,n2−1(B22).
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Hence, if we suppose that

b11 ∼ B
(n1 − p + 1

2
,
n2 − p + 1

2

)
and B22 ∼ Bp−1

(n1 − 1

2
,
n2 − 1

2

)

are independent random variables, then we have

P̂ (x) =
Ωp

2

d(1, n1 − p + 1, n2 − p + 1)d(p − 1, n1 − 1, n2 − 1)

d(p, n1, n2)

×E[1{b11≥x} det(b11Ip−1 − B22)].

The multiplicative constant in the expression above is

Ωp

2

d(1, n1 − p + 1, n2 − p + 1)d(p − 1, n1 − 1, n2 − 1)

d(p, n1, n2)

=

√
πΓ(n1+n2

2
)Γ(n1+n2

2
− 1

2
)Γ(n1−p+1

2
)Γ(n2−p+1

2
)

Γ(p
2
)Γ(n1

2
)Γ(n2

2
)Γ(n1+n2

2
− p

2
)Γ(n1+n2

2
− p + 1)

.

Noting the expansion of the determinant

det(b11Ip−1 − B22) =det(Ip−1 − B22 − (1 − b11)Ip−1)

=
p−1∑
j=0

(−1)p−1−j(1 − b11)
p−1−jtrj(Ip−1 − B22), (42)

we have

E[1{b11≥x} det(b11Ip−1 − B22)]

=
p−1∑
j=0

(−1)p−1−jE[1{b11≥x}(1 − b11)
p−1−j]E[trj(Ip−1 − B22)].

The expectation with respect to w11 can be evaluated by reconsidering b11 as
a beta random variable with the second parameter

n2 − p + 1

2
+ (p − 1 − j) =

n2 + p − 1 − 2j

2
.

It follows that

E[1{b11≥x}(1 − b11)
p−1−j]

=
Γ(n1+n2

2
− p + 1)Γ(n2+p−1−2j

2
)

Γ(n2−p+1
2

)Γ(n1+n2

2
− j)

B̄n1−p+1

2
,
n2+p−1−2j

2
(x).
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On the other hand, noting that

Ip−1 − B22 ∼ Bp−1

(n2 − 1

2
,
n1 − 1

2

)

and from Theorem 3.3.3 of Muirhead (1982), we can write

E
[
trj(Ip−1 − B22)

]
=

(
p − 1

j

)
E
[ j∏
i=1

Bn2−i

2
,
n1−1

2

]

=

(
p − 1

j

)
(n2 − 1)(n2 − 2) · · · (n2 − j)

(n1 + n2 − 2)(n1 + n2 − 3) · · · (n1 + n2 − 1 − j)

=
Γ(p)Γ(n2)Γ(n1 + n2 − 1 − j)

Γ(p − j)Γ(n2 − j)Γ(n1 + n2 − 1)j!
,

where B ν1
2

,
ν2
2

denotes an independent beta random variable with parameters

(ν1

2
, ν2

2
). Summarizing the above, we get

P̂ (x) =

√
πΓ(n1+n2

2
)Γ(n1+n2

2
− 1

2
)Γ(n1−p+1

2
)Γ(n2−p+1

2
)

Γ(p
2
)Γ(n1

2
)Γ(n2

2
)Γ(n1+n2

2
− p

2
)Γ(n1+n2

2
− p + 1)

×
p∑

j=0

(−1)p−1−j Γ(n1+n2

2
− p + 1)Γ(n2+p−1−2j

2
)

Γ(n2−p+1
2

)Γ(n1+n2

2
− j)

B̄n1−p+1
2

,
n2+p−1−2j

2
(x)

× Γ(p)Γ(n2)Γ(n1 + n2 − 1 − j)

Γ(p − j)Γ(n2 − j)Γ(n1 + n2 − 1)j!
,

which is reduced to (40). Here we used the duplication formula (36) again.

Since the expansion (42) is equivalent to the expansion of the Vandermonde
determinant (17) with b = 1, the resulting expansion of P̂ (x) corresponds to
(19) in Theorem 7.

Next we will derive the asymptotic evaluation of the approximation error (41).
Let li be the eigenvalue of W , and let

g(l) = l
n1−p−1

2 (1 − l)
n2−p−1

2 .

Then

fp,n1,n2(B) =
1

d(p, n1, n2)

p∏
i=1

g(li).
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Remark 17 follows again from the fact that (31) with b = 1 holds when
3p < n2 + 5. Recall that

ΔP (x) ∼ − 1

d(p, n1, n2)

p∏
i=1

Ωi

2

∫
1>l2>l1≥x

g(l1)g(l2)(l2 − l1)dl1dl2 × F,

where

F =
∫

1>l3>···>lp>0

p∏
i=3

g(li)(1 − li)
2

∏
3≤i<j≤p

(li − lj)
p∏

i=3

dli

for p ≥ 3, and F = 1 for p = 2.

Assume that p ≥ 3. Noting that

n1 − p − 1

2
=

(n1 − 2) − (p − 2) − 1

2
,

n2 − p − 1

2
+ 2 =

(n2 + 2) − (p − 2) − 1

2
,

and considering the multivariate beta Bp−2(
n1−2

2
, n2+2

2
), we have

d(p − 2, n1 − 2, n2 + 2) =
p−2∏
i=1

Ωi

2
× F,

and hence

ΔP (x)∼−d(p − 2, n1 − 2, n2 + 2)

d(p, n1, n2)

Ωp

2

Ωp−1

2

×
∫

1>l2>l1≥x

(l1l2)
n1−p−1

2 {(1 − l1)(1 − l2)}
n2−p−1

2 (l2 − l1)dl1dl2.

The multiplicative constant contained above is

d(p − 2, n1 − 2, n2 + 2)

d(p, n1, n2)

Ωp

2

Ωp−1

2

=
πΓ(n1+n2−p+2

2
)Γ(n1+n2−p+1

2
)Γ(n2+2

2
)Γ(n2+1

2
)

Γ(n1

2
)Γ(n1−1

2
)Γ(n2−p+4

2
)Γ(n2−p+3

2
)Γ(n2−p+2

2
)Γ(n2−p+1

2
)Γ(p

2
)Γ(p−1

2
)

=
Γ(n1 + n2 − p + 1)Γ(n2 + 1)

4Γ(p − 1)Γ(n1 − 1)Γ(n2 − p + 3)Γ(n2 − p + 1)
. (43)

On the other hand, the multiplicative constant for p = 2 is
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1

d(2, n1, n2)

Ω2

2

Ω1

2
=

Γ(n1 + n2 − 1)

4Γ(n1 − 1)Γ(n2 − 1)
,

which is consistent with the constant for p ≥ 3.

Write k1 = n1−p−1
2

, k2 = n2−p−1
2

for simplicity. The integral with respect to l1
and l2 is evaluated by integration by parts as

−
1∫

x

lk1
1 (1 − l1)

k2dl1

1∫
l1

lk1
2 (1 − l2)

k2+1dl2

+

1∫
x

lk1
1 (1 − l1)

k2+1dl1

1∫
l1

lk1
2 (1 − l2)

k2dl2

∼ −
1∫

x

lk1
1 (1 − l1)

k2dl1l
k1
1

1

k2 + 2
(1 − l1)

k2+2

+

1∫
x

lk1
1 (1 − l1)

k2+1dl1l
k1
1

1

k2 + 1
(1 − l1)

k2+1

∼ 1

(k2 + 1)(k2 + 2)(2k2 + 3)
x2k1(1 − x)2k2+3. (44)

Multiplying (43) and (44) yields (41).

3.3 Inverse Wishart distribution

The p× p inverse Wishart distribution with n (n > p− 1) degrees of freedom
is denoted by W−1

p (n). When V ∼ W−1
p (n), X(h) = h′V h for fixed h ∈ S

p−1

is distributed as 1/χ2(n − p + 1), the inverse chi-squared distribution with
n − p + 1 degrees of freedom. We can call X(·) an inverse chi-squared field.
Recall that the inverse chi-squared distribution with ν degrees of freedom is
the distribution of the reciprocal of the chi-squared random variable with ν
degrees of freedom, and has the expectation 1/(ν−2). In the following, let Gν(·)
denote the cumulative distribution function of the chi-squared distribution
with ν degrees of freedom.

Theorem 19 The approximation formula for the distribution of the largest
eigenvalue of the inverse Wishart matrix W−1

p (n) by the Euler characteristic
heuristic is given by

P̂ (x) =
2n−1Γ(p+1

2
)Γ(n+1

2
)√

π
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×
p−1∑
j=0

(−2)j Γ(n−p+1+2j
2

)

Γ(p − j)Γ(n − p + j + 1)j!
Gn−p+1+2j(x

−1). (45)

The asymptotic error is evaluated as

ΔP (x)∼− Γ(n + 1)

Γ(p − 1)Γ(n − p + 4)Γ(n − p + 3)
x−(n−p+2)e−

1
x (x → ∞).

(46)

Remark 20 Since Gν(x
−1) = O(x− ν

2 ), ΔP (x) = o(P̂ (x)). In addition, since
ν = n + p − 1 in the last term of P̂ (x), the approximation error ΔP (x) is
asymptotically smaller than each term of P̂ (x) whenever (n + p − 1)/2 <
n − p + 2, i.e., 3p < n + 5.

Remark 21 As in Remark 14, we can propose an improved version of P̂ (x)
as

P̃ (x) = P̂ (x) +
Γ(n + 1)

Γ(p − 1)Γ(n − p + 4)Γ(n − p + 3)
x−(n−p+2)e−

1
x .

Remark 22 Hanumara and Thompson (1968) proposed a procedure for ap-
proximating the distributions of the largest and smallest eigenvalues of the
Wishart matrix. By some straightforward calculations, one can see that their
procedure coincides with our formulas (32) and (45).

For the inverse Wishart W−1
2 (5), the exact upper probability of the largest

eigenvalue P (x), the approximation by the Euler characteristic heuristic P̂ (x),
and its improvement P̃ (x) are given as

P (x) = 1 −
(
1 +

1

x
+

1

6x2

)
e−

1
x ,

P̂ (x) =
1

3x2
e−

1
2x , and P̃ (x) = P̂ (x) +

1

720x5
e−

1
x .

These three are depicted in Fig. 2 as solid line, dotted line, and dashed line,
respectively.

From now on we prove Theorem 19. We will show (45) at first. The density
function of the inverse Wishart distribution is

fp,n(V ) =
1

c(p, n)
e−

1
2
tr(V −1) det(V )−

1
2
(n+p+1) (V > 0).

The normalizing constant c(p, n) is given in (34). For v11 ∈ R and V22 ∈
Sym(p − 1), it holds that
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Fig. 2. P (x) (—), P̂ (x) (· · ·), and P̃ (x) (– –) for the inverse Wishart W−1
2 (5)

fp,n(diag(v11, V22))=
c(1, n + p − 1)c(p − 1, n + 1)

c(p, n)

×f1,n+p−1(v11)fp−1,n+1(V22).

Hence, if we suppose that v11 ∼ 1/χ2(n + p − 1) and V22 ∼ W−1
p−1(n + 1) are

independent random variables, then we have

P̂ (x) =
Ωp

2

c(1, n + p − 1)c(p − 1, n + 1)

c(p, n)
E[1{v11≥x} det(v11Ip−1 − V22)].

The multiplicative constant in the expression above is

Ωp

2

c(1, n + p − 1)c(p − 1, n + 1)

c(p, n)
= 2p−1

√
π

Γ(n+p−1
2

)Γ(n+1
2

)

Γ(p
2
)Γ(n−p+2

2
)Γ(n−p+1

2
)
.

According to the expansion of the determinant, we have

E[1{v11≥x} det(v11Ip−1 − V22)] =
p−1∑
j=0

(−1)jE[1{v11≥x}v
p−1−j
11 ]E[trj(V22)].

The expectation with respect to v11 can be evaluated by reconsidering v11 as an
inverse chi-squared random variable with n+p−1−2(p−1−j) = n−p+1+2j
degrees of freedom. It follows that

E[1{v11≥x}v
p−1−j
11 ] = 2−(p−1−j)Γ(n−p+1+2j

2
)

Γ(n+p−1
2

)
Gn−p+1+2j(x

−1).

On the other hand, noting that V22 ∼ W−1
p−1(n + 1), and hence j × j principle

minor of V22 is distributed as the inverse Wishart distribution with (n + 1)−
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(p − 1) + j = n − p + 2 + j degrees of freedom, we can write

E[trj(V22)] =

(
p − 1

j

)
E
[ j∏
i=1

1

χ2
n−p+3+j−i

]

=

(
p − 1

j

)
1

(n − p + j)(n − p + j − 1) · · · (n − p + 1)

=
Γ(p)Γ(n − p + 1)

Γ(p − j)Γ(n − p + j + 1)j!
,

where χ2
ν denotes an independent chi-squared random variable with ν degrees

of freedom. Summarizing the above, we get

P̂ (x) = 2p−1
√

π
Γ(n+p−1

2
)Γ(n+1

2
)

Γ(p
2
)Γ(n−p+2

2
)Γ(n−p+1

2
)

×
p−1∑
j=0

(−1)j2−(p−1−j)Γ(n−p+1+2j
2

)

Γ(n+p−1
2

)
Gn−p+1+2j(x

−1)

× Γ(p)Γ(n − p + 1)

Γ(p − j)Γ(n − p + j + 1)j!
,

which is reduced to (45). Here we used the duplication formula (36). The
resulting expansion of P̂ (x) corresponds to the expansion (18) in Theorem 7.

Next we will derive the asymptotic evaluation of the approximation error (46).
Let li be the eigenvalue of V , and let

g(l) = l−
n+p+1

2 e−
1
2l .

Then

fp,n(V ) =
1

c(p, n)

p∏
i=1

g(li).

Remark 20 follows again from the fact that (29) holds when 3p < n+5. Recall
that

ΔP (x) ∼ − 1

c(p, n)

p∏
i=1

Ωi

2

∫
∞>l2>l1≥x

g(l1)g(l2)(l1l2)
p−2(l2 − l1)dl1dl2 × F,

where

F =
∫

∞>l3>···>lp>0

p∏
i=3

g(li)
∏

3≤i<j≤p

(li − lj)
p∏

i=3

dli
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for p ≥ 3, and F = 1 for p = 2.

Assume that p ≥ 3. By considering the inverse Wishart W−1
p−2(n + 2), we have

c(p − 2, n + 2) =
p−2∏
i=1

Ωi

2
× F,

and hence

ΔP (x)∼−c(p − 2, n + 2)

c(p, n)

Ωp

2

Ωp−1

2

×
∫

∞>l2>l1≥x

(l1l2)
−n−p+5

2 (l2 − l1)e
− 1

2l1
− 1

2l2 dl1dl2.

The multiplicative constant contained above is

c(p − 2, n + 2)

c(p, n)

Ωp

2

Ωp−1

2

=
2p−n−2πΓ(n+2

2
)Γ(n+1

2
)

Γ(p
2
)Γ(p−1

2
)Γ(n−p+4

2
)Γ(n−p+3

2
)Γ(n−p+2

2
)Γ(n−p+1

2
)

=
Γ(n + 1)

4Γ(p − 1)Γ(n − p + 3)Γ(n − p + 1)
, (47)

which is consistent with the constant for p = 2 in (38).

Write k = n−p+5
2

for simplicity. The integral with respect to l1 and l2 is eval-
uated by integration by parts as

∞∫
x

l−k
1 e

− 1
2l1 dl1

∞∫
l1

l−k+1
2 e

− 1
2l2 dl2 −

∞∫
x

l−k+1
1 e

− 1
2l1 dl1

∞∫
l1

l−k
2 e

− 1
2l2 dl2

∼
∞∫
x

l−k
1 e

− 1
2l1 dl1

1

k − 2
l−k+2
1 e

− 1
2l1 −

∞∫
x

l−k+1
1 e

− 1
2l1 dl1

1

k − 1
l−k+1
1 e

− 1
2l1

∼ 1

(k − 1)(k − 2)(2k − 3)
x−2k+3e−

1
x . (48)

Multiplying (47) and (48) yields (46).
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