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Introduction

B “Kernel methods” for nonlinear relations

— Positive definite kernels have been used for capturing nonlinearity
of original data.  e.g. Support vector machine.

— Kernelization: mapping data into a functional space (RKHS) and
apply linear methods on RKHS.

— Consider linear statistics (mean, variance, ...) on RKHS, and their
meaning on the original space.

@ (X) =k( , X)
X I

RGN SN

Q (original space) ~ feature map / | H (RKHS)




B Representing probabilities

— Determining probabilities (Arthur Gretton’s talk)
— Characterizing independence (Arthur Gretton’s talk)
— Characterizing conditional independence

B Motivation

— Dependence among many variables

— Conditional independence is essential for many probabilistic
modeling
e.g. graphical modeling



Positive Definite Kernel and RKHS

B Positive definite kernel (p.d. kernel)

Q: set. k:QxQ—>R

k is positive definite if k(x,y) =k(y,x) and forany ne N, X;,...X, € Q
the matrix (k(X;, X j))i,j (Gram matrix) is positive semidefinite.

— Example: Gaussian RBF kernel  k(x,y) = exp(—Hx— yHZ/az)

B Reproducing kernel Hilbert space (RKHS)

k: p.d. kernel on Q.
—> dl H: reproducing kernel Hilbert space (RKHS)

1) k(-,x)eH forall xeQ.
2) Span{k(-,x)|xeQ} is dense in H.
3) <k(-,x), f>H = f(x) (reproducing property)



B Functional data (feature map)
O:Q—>H, x> k(-Xx) l.e. d(x)=k(-,x)
(@(x), )= T(x) (reproducing property)

Data: X, ..., Xy 2> D (X),..., Dy(X,) : functional data

B \Why RKHS?

— By the reproducing property, computation of the inner product on
RKHS does not need expansion by basis functions.

F(O)=2sak( %), 9()=2;bk(-,X;)
= <f’g>zzi,jaibjk(xi’xj)

Advantageous for high-dimensional data of small sample size.



Representing Nonlinear Dependence

B Kernel Statistics: linear statistics on RKHS

X, Y : general random variables on Q, and Q, , resp.
Prepare RKHS (H,, k,) and (H,, k) defined on QQ, and Q,, resp
Define random variables on the RKHS H, and H, by

CDX(X)sz(-,X) (DY(Y):kY("Y)

— Covariance

Sex = E[(@y (Y) =t )@y (X) = p4)'] —> 2w =0 XY

— Conditional covariance
-1
Lyxz SE2yx ~2ZyzZzzizx T2 Iy =0& XY |Z

— c.f. Gaussian variables
Vo, =0 = XY

Vixz =0 < X1UY|Z !



Richness Assumption on RKHS

k: kernel on a measurable space (2, 8). H: associated RKHS.

Assumption (A):
3g=1. H+ R is dense in L9(P) for any probability P on (Q2, 3),

— RKHS can approximates various functions such as the index
function of a measurable set, polynomials, and e,

— Example: Gaussian kernel on the entire R™
2
XYl
Ks (X, y) =ex —H—

Laplacian kernel on the entire R™
k. (x,y) = expl- A3 % - i



Covariance on RKHS

— Definition: cross-covariance operator
X, Y : general random variables on Q, and Q, , resp.
Prepare RKHS (H,, k,) and (H,, k) defined on Q, and Q,, resp.

There is a unique operator %, :H, — H, such that

(9.2 f)=E[g(Y) f (X)]-E[g(V)IE[f (X)] (= Cov[f(X),g(¥)])
forall feH,,geH,

— Independence by cross-covariance operator
Under (A),
Xand Y are independent < X,, =0
E[g(Y) T (X)]=E[g(Y)IE[f (X)]

e c.f. Characteristic function
XLY & Exle™™]=E[e ™ ]E [e™"]



Conditional Covariance on RKHS

B Conditional Cross-covariance operator
X, Y, Z : random variables on Q,, Q,, Q, (resp.).
(Hy, ky), (Hy, k), (H;, k;) : RKHS defined on Q,, Q,, Q, (resp.).

— Conditional cross-covariance operator H, — H,

1
ZYX|z = 2yy —2yz 277 27x

— Conditional covariance operator

1
zW|z =2y —2yzZzz27y

— Note: X5 may not exist. But, we have the decomposition

Sy = ZuWey ZN2 with operator norm || W, ||<1

Rigorously, define  Zyy; =Xy — SUAN, W, Z52
10



B Relation with regression error
Theorem (FBJ'06)

Y, Z : random variables on Q,, Q, (resp.).
(Hy, ky), (H,, k,) : RKHS defined on Q,, Q, (resp.).

(0.2 )= inf E[g(Y)-E[g()D-(f(2)-E[f(2)])°

feH,

= inf Var[g(Y) - f(2)] (VgeHy)

feH,

c.f. for Gaussian variables,

b'Vyob=minb'Y ~a'Z" (V=Y -E[Y],Z =Z-E[2])

Residual error of linear regression is given by

the conditional covariance matrix. "



— Rough sketch of the proof

E[(g(Y)-E[g(Y)])-(f(Z)-E[f@))°
:<f’zzz f>—2<f,ZZYg>+<g,ZYYg>

=5 f H2 B 2< f ’le/ZZWZYZ%Zg> +‘

=27 f -WxZw'g 2 "‘HE%(/YZQHZ -

This part can be arbitrary small
by choosing f.

2
1/2
Zyy gH

sz S Hz

2
= 21z/z2 =Wy 2\1(/\(2 g + <g ! (ZYY - szZWYZWZY 2\1(/\(2 )g>
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B Relation with conditional covariance

Theorem (FBJ'06, Sun et al. '07)
X, Y, Z : random variables on Q,, Q,, Q, (resp.).
(Hy, ky), (Hy, ky), (H;, k,) : RKHS defined on Q,, Q,, Q, (resp.).
Assume
H, + R :dense in L%P,)

then,
(0,5, f)=E[Cov[g(Y), f(X)[Z]] (vf eHy,geHy)

— c.f. for Gaussian variable
a'Vyyb=Covla' X,b'Y |Z]
(not dependent on the value of 2)

13



— Sketch of the proof for the simpler case of X=Y and f =g,
e (9,Zy,0)=E[Var[g(Y)| Z]]

Lemma

Var[Y]=Var, |E,[Y | X]]+ Ex [Var, [Y | X]]

(9,Zyyz0) = inf Var[g(Y)- f(2)]

feH,

= figj Var[E[g(Y) - f(2)|Z]]+E[Var[g(Y)- T (2)|Z]]}
YA const.
= figiVar[E[g(Y) |Z]-f(2)]+E[var[g(Y)| Z]]
e L°(P,)

=0+E[varg(Y)|Z]

(by denseness assumption)

14



Conditional Independence

Theorem (FBJO4, Sun et al 07)
Under (A),

2wz =0 < Ry =E; |_PY|Z ® PX|ZJ

where E,|R,, ® P, | is a probability on Q, xQ, defined by
E, [P ® Py (BxA)=[Ry, (B Z =2)Py, (A| Z = 2)dP, (2)

With p.d.f.
E, |_PY|Z ® Py [(AxB) = ”A Pxz (X] Z)dM(X)IB Pyiz (Y 2)du, (y)dP; (2)

Remark: The assertion R, =E,|R,, ®P,| isweaker than
the conditional independence Ry, =R, ® Py,

c.f. for Gaussian variables
Vixg =0 & X1Y|Z

15




— Proofof XZyy; =0 = Ry =E lPle ® PX|ZJ
Syxz =0 means E[Cov[g(Y), f(X)|Z]]=0

= E[E[g(Y) f(X)|Z]]=E[E[g(Y)| Z]IE[f (X)|Z]]

= En [90V) F(X)]1=Ee,m,e, [0 FOX)]  Vf eHy,geH,

Under (A), by approximating the index function 1, ;(X,Y)
Rx =E; I_PY|Z ® PX|ZJ

16



B Characterization of conditional independence

Theorem
Define the augmented variable X =(X,z) and define a kernel
on Q, xQ, by
Ke =Ky K
Under (A),
2ygiz = O Ad XY |Z
2 =0 & Xy, =0 © Zg,=0 & XY |Z

proof)
Zyixz1z=0 = pxYy,2) :_[ p(x,z'|z)p(y|z)p(z)dz
where P(X,2|2) = p(x|2)6(z'-2)
— p(x,y,2') = p(x|z') p(y|Z') p(Z')
Le.  p(x,y[Z')=px|Z')p(y|Z)

17



Normalized Cond. Covariance

B Normalized conditional cross-covariance operator
Definition

-1/2 -1/2 -1/2 -1 -1/2
WYX|Z o Z ZYX|ZZ XX Z (ZYX o ZYZZZZZZX XX

More rigorously,
Wiz =Wy =Wy, Woy Recall: X, =3ZVAN, 342

— Conditional independence
Under the assumption (A),

W, =0 < X1UY|Z

YX|Z

18



Conditional Dependence Measure

— HS Normalized Conditional Independence Criteria

HSNCIC =Wy, ||i|s

HSNCIC =0 — XUY|Z

— Hilbert-Schmidt norm of an operator
A:H,— H, operator on a Hilbert space
A is called Hilbert-Schmidt if for complete orthonormal systems

@} of Hyand{y; § of H,
2
iji<Wj’A¢i> < 0.
Hilbert-Schmidt norm is defined by

2 2
Al = 2.2 <‘//J' ’ A¢i> c.f. Frobenius norm of a matrix
19



Kernel-free Expression

Theorem
Assume

Py and E, |R,, ® Py, | have density Pxy (X, ¥) and Px vz (X, Y), resp.
H, + Rand H, ® H, +R are dense in LP,) and L*(P, ® R,), resp.
W,y and W,, W, are Hilbert-Schmidt.

Then,

2 _ Pxy (X, Y) = Py vz (X, Y)jz
Wz Il _”( 0. (0P, (Y) Px (X) py (y)dxdy

In the special case of Z = ¢

2 _ Pxy (X2 y) 2
[ Wax [ls _II (px () py (¥) 1) Px (X) py (Y)dxdy

- Kernel-free expression, though the definitions are given by kernels!

20




— Kernel-free value is reasonable as a “measure” of dependence.
c.f. If unnormalized operators are used, the measures do depend
on the choice of kernel (HSIC, Gretton et al. ALT2005)

— In the unconditional case,
2
HS-NIC = [IWox [[s
Is equal to the mean square contingency, which is one of the
popular measures of dependence.

— In the conditional case, if we use the augmented variables

2
”WV)UZ ”HS

_ J‘J‘[ Pxvz (X, Y,Z) = Pxz (X| 2) Py (Y] 2) P; (Z)j 0., (%,2) D, (v, 2)dxdydz
Pxz (X, 2) Pyz (Y, 2)

(conditional mean square contingency)

21



— Key idea of the proof
By the eigendecomposition of =, and %, , we have CONS {¢, |
of Hy and {y;§ of H, such that
Zyx @i = 4oy, Lyl =Vi¥; (liZOleZO)
Define
- _¢g-Elpl -~ _V¥;- Ely ;]

2 \/Z y W= \/7.

By the denseness assumption, {I}U{@w ;}; ; is CONS of (P, ®R,)

2
2 N - 2 g O:
Z.,J<W1 Yx(0|> Zl,j< vy Wi &yx &xx (0|> Zl,j< /_Vj YX \/Z>
2

=3 B 7,005 00F =Zi,j('/71(”¢i(x)' op j
X FY J12(P, ®R))

2
Pxy

Px Py

-1

L2(P, ®R,) etc.
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Empirical Measures

— Empirical estimation is straightforward with the kernel method.

. . . 1 -1
— Inversion > regularization: Xy, — (Zy t+é)

— Replace the covariances in W,, =2./?x,, =% by the empirical
ones given by the data ®(X,),..., ®y(X) and O (Y,),..., D,(Y,)

HSNIC,,, = Tr[Ry Ry ] (dependence measure)

HSNCIC,,, = Tr|RyR; — 2Rz R/ R, + Ry R, RyR, |
(conditional dependence measure)

where R, =G.(G; +Ngyl, )" etc.

— HSNIC,,,, and HSNCIC,,; give kernel estimates for the mean
square contingency and conditional mean square contingency, resp.

23



Relation with Other Measures

B Mutual Information

MIECXY) = [ [ oy (o) Tog- P Y) g yd
() = ] P (o) tog 6 da (00 ()

H M| and HSNIC

HSNIC(X,Y) < MI(X,Y)

...)

([ Pyy (X, )
J] Pyy (X Y)( 0. (X) Py (Y) j w (X)des, ()

IA



— Mutual Information:
 Information-theoretic meaning.

« Estimation is not straightforward for continuous variables.
Explicit estimation of p.d.f. is difficult for high-dimensional data.

— Parzen-window is sensitive to the band-width.
— Partitioning may cause a large number of bins.

« Some advanced methods: e.g. k-NN approach (Kraskov et al.
2004, Ku&Fine 2005).

— Kernel method:
» Explicit estimation of p.d.f. is not required,;

the dimension of data does not appear explicitly, but it is
Influential in practice.

« Kernel / kernel parameters must be chosen.

25



Statistical Consistency

Theorem (FGSS2007)

Assume that W, , Is Hilbert-Schmidt, and the regularization
coefficient satisfies

&y =0 N3¢, — oo,
Then,

0 (N
Y(X|% ~Wxz HHS —0 (N — o)

In particular,

Wiz ls = Mgl (N )

l.e. HSNCIC,,, (HSNIC,,,;) converges to the population value
HSNCIC (HSNIC, resp).

26



Choice of Kernel

B How to choose a kernel?
— Empirical estimates still depend on the choice of kernels.

— For unsupervised problems, such as independence measures,
there are no theoretically reasonable methods.

— Some heuristic methods which work:
» Heuristics for Gaussian kernels
o = median{X; - X;| |i# j|

» Speed of asymptotic convergence

lim Var|[N x HSNIC{W |= 2[5 |’ [Zy |2, under independence

N —o0 emp

Compare the bootstrapped variance and the theoretical one,
and choose the parameter to give the minimum discrepancy.

27



Application to Independence Test

B Toy example

6=0 0= rl/4 0= ml2
A .
9% ° 0,0 0 o ". M Q o0
SRS e [+
Y1 Yo o T e’ Ve g ‘t‘é
o3, V2B NS o0 ) 520 5 b
el P Vo
Xl X2 X3
independent dependent independent

They are all uncorrelated, but dependent for 0 < < n/2

28



N = 200.
Permutation test is used.

indep. more dependent
Angle 0.0 45 9.0 13.518.022.5
HSIC (Median) 93 92 63 5 0 O
HSIC (Asymp. Var.) 93 44 1 0 0 O
HSNIC (&= 10% Median) 94 23 0 O 0 O
HSNIC (&= 108, Median) 92 20 1 O O O
HSNIC (&= 108, Median) 93 15 0 O 0 O
HSNIC (Asymp. Var.) 94 11 0 O 0 O
MI (#NN = 1) 93 62 11 O 0 O
MI (#NN = 3) % 43 0 O O O
MI (#NN = 5) 97 49 0 O O O

# acceptance of independence out of 100 tests (significance level = 5%)

29



Cond. Independence Test

B Permutation test with the kernel measure

Ty = i\((l;il)z HZHS of = AY(XI\;% His

— If Z takes values in a finite set {1, ..., L},

set A ={i|Z =0} (/=1,.,L), £ {|]%ai] Yaa
otherwise, partition the values of Z into % i Yai, | Gy
L subsets C,, ..., C,, and set S (|| Kail Y,
A ={i|Z, eC} (/=1,..,L). o (|Xai Yai,
— Repeat the following process B times: (b=1, ...,B) E | Xoi| Yai, | Co
1. Generate pseudo cond. independent S \|[Xaid Y2y
data D® by permuting X data within each A,. . v
2. Compute T,® for the data D® . *g XLJ? YLii? o
—> Approximate null distribution o Lig| “Loig
under cond. indep. assumption S {1[ A i Y
— Set the threshold by the (1-a)-percentile of 0

the empirical distributions of T®).



Kernel Method for Causality of

Time Series

B Causality by conditional independence

— Nonlinear extension of Granger causality
X1s NOT a cause of Y if

POV g Yeops Koo X p) = PO [Yegsns Vi)
—

Yo AL X X | Yoo Yoo

— Kernel measures for causality
\/ (N—p-+1)
YX|Y,

Xp :{(Xt—l,xt—Z""1 Xt—p) < Rp |t — p+l1"'7 N}
Y, ={(Y 1Yo Yo ) €RP [t= p+1,..,N}

2

HSNCIC =

HS

31



Example: Causality of Time-Series

B Coupled HEnon map |
- X Y: X2 o

;Ma+n:14—ﬁaf+03@a)

X (t+1) = % (1)

Vit +1) =14-{x )y, (1) + A=)y, ()7} + 0.1y, (t)

LYo (t+1) =y (1)

2 2 25

1 yl 15 L e, PR SRS 15| :.W’*‘ﬁz‘ﬁfm}qx ]

— o




B Causality of coupled Hénon map

— XisacauseofYif y>0.

— Y is not a cause of X for all y.

Yo o X Xicp | Yog oo Yeo
X AL Y g Y | Xigron X

P

’ t_p
. . . (N 1 2
— Permutation tests for non-causality with HSNCIC :‘ Y(X I_\;H)
Plp lIHs
N =100
X, — Y, H,: Y, is not a cause of X, H,: X, Is not a cause of Y,
y 00 01 02 03 04 05 06100 01 02 03 04 05 0.6
HSNCIC| 94 88 81 63 86 77 62|97/ O 0 0 0 0 o)
Granger | 92 96 95 90 90 94 93|96 92 85 45 13 2 3

1-dimensional independent noise is added to X(t) and Y(t).

HSNCIC

97 96 93 85 81 68 75

% O 0 0 0 0 0

Number of times accepting H, among 100 datasets (« = 5%)33



Concluding Remarks

B Kernel dependence measures

— The normalized (conditional) covariance on RKHS gives kernel-free
measures of dependence in population.

— The Gram matrix expression gives the p.d.-kernel estimate of the
(conditional) mean square contingency.

— Comparably reliable methods for conditional independence test.

B Future directions

— More empirical studies
— More theory on kernel choice
— Application to causal inference (Sun et al., 2007).

34
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