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Data

Observations
Images
Strings
Movie rentals logs and scores
Webpages
Microarray measurements

Labels
Identity of users, objects, biometric features
Named entities, tags, paragraph segmentation
Lists of preferred movies, related entities
Ranking
Health status, relevance of genes

Loss
Sophisticated discrepancy score for estimated label.
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Loss Functions

Example: Density estimation in exponential families
Find maximizer of log-likelihood

− log p(y |x) = log
∑

y ′

ef (x ,y ′) − f (x , y)

Example: Winner takes all estimation
Estimate label y∗(x) for observation x via

y∗(x) = argmax
y

f (x , y) and incur loss ∆(y , y∗(x)).

This problem is nonconvex in f . Convex bound via

∆(y , y∗(x)) ≤ max
y ′

f (x , y ′)− f (x , y) + ∆(y , y ′)

Example: Least Mean Squares Regression
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Binary Classification

Decision Function

f (x , y) = yf (x) where y ∈ {±1}
Estimate

y∗(x) = argmax
y∈{±1}

yf (x) = sgn f (x)
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Binary Classification

Loss Function
∆(y , y ′) =

{
0 if y = y ′

1 otherwise

Convex Upper Bound (soft margin loss)

l(x , y , f ) = max(0, 1− yf (x))

l(x,y,f)

y f(x)
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Segmentation

Paragraph Segmentation
Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had
peeped into the book her sister was reading, but it had no pictures or conversations in it, ‘and what is the use of a book,’
thought Alice ‘without pictures or conversation?’
<break>
So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid),
whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when
suddenly a White Rabbit with pink eyes ran close by her.
<break>
There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to
itself, ‘Oh dear! Oh dear! I shall be late!’ (when she thought it over afterwards, it occurred to her that she ought to have
wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its
waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had
never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran
across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge.
<break>
In another moment down went Alice after it, never once considering how in the world she was to get out again.
<break>
The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not
a moment to think about stopping herself before she found herself falling down a very deep well.

Protein Positioning

GATTACATTACTCAGTACTCAGGTCTCTATCTGATTACATTACTCAGTACTCAGGTCTCTATCT
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Segmentation

Labels
y = {1, 5, 23, 49, 99, . . .} is a list of positions, i.e.
y ⊂ {1, . . . , n}.

Loss
1 Unit loss for each missed and each wrongly placed

segment boundary.
2 Increasing loss for wrongly placed boundaries.

The Argmax
The function f (x , y) has the semi Markov property.

f (x , y) =
∑

i

f̄ (x , yi , yi+1, yi+2)

Maximize it by dynamic programming. Note that the number
of segments need not be fixed.
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Web Page Ranking

Top ranking Google scores for “euro 2007”
1 22nd European Conference on Operational Research
2 Live Score service (powered by LiveScore.com)
3 CAP Euro 2007 - October 4 - 7th Barcelona, Spain
4 Under-21 squad readies their Euro 2007 finals campaign
5 Euro-Par 2007 Conference in Rennes

Discounted Cumulative Gains Score
Find a permutation π such that for ratings yi we maximize

DCG(y , π) =
∑

i

2yπ(i)

log(i + 1)

The Argmax function

f (x , π) =
∑

i

cπ(i) f̄ (xi) is maximized by sorting.
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Linear Function Classes

Key Observation
Many loss functions can be made convex in f .

Consequences
Only useful if f is chosen from a vector space.
Use Banach spaces
Reproducing Kernel Hilbert Spaces are powerful since

〈f , k(x , ·)〉 = f (x)

Representer theorems and parametric problems.
Simplified Representation

f (x , y) = 〈φ(x , y), w〉 for some feature map φ(x , y).
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Regularized Risk Functional

Empirical Risk

Remp[w ] =
1
m

m∑
i=1

l(xi , yi , w) where l is a convex loss.

Applications include classification, regression, quantile
regression, ranking, segmentation, sequence annotation,
named entity tagging, Poisson, . . .

Overfitting
Add regularizer to Remp[w ] and minimize Remp[w ] + λΩ[w ].

Regularizers
Quadratic regularization Ω[w ] = 1

2 ‖w‖
2
2.

LP regularization Ω[w ] = 1
2 ‖w‖

2
1.

Entropy regularization Ω[w ] =
∑

i wi log wi .
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The Chinese Restaurant guide to writing
machine learning papers

Step 1: pick a loss function l(x , y , w)
Bonus points if you find with a new one.

Step 2: pick a regularizer Ω[w ]
Bonus points if you find with a new one (happens rarely).

Step 3: pick a new feature map
Bonus points if you can compute 〈φ(x , y), w〉 cheaply.

Step 4: build a fancy implementation
Must run faster on at least one problem.

Publication
Happens if at least one of the four features is new.
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A better idea

One Algorithm to rule them all, One Algorithm to find
them, One Algorithm to bring them all and in the
darkness bind them . . .
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Key Idea

Empirical Risk
Convex
Expensive to compute
Line search just as expensive as new computation
Gradient comes almost for free with function value
Parallel computation simple

Regularizer
Convex
Cheap to compute
Cheap to optimize

Strategy
Compute only tangents on emprirical risk
Perform optimization in the dual
Modularity
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Bundle Approximation
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Lower Bound

Regularized Risk Minimization

minimize
w

Remp[w ] + λΩ[w ]

Taylor Approximation for Remp[w ]

Remp[w ] ≥ Remp[wt ] + 〈w − wt , ∂wRemp[wt ]〉 = 〈at , w〉+ bt

where at = ∂wRemp[wt−1] and bt = Remp[wt−1]− 〈at , wt−1〉.
Bundle Bound

Remp[w ] ≥ Rt [w ] := max
i≤t
〈ai , w〉+ bi

Regularizer Ω[w ] solves stability problems.
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Algorithm

Pseudocode
Initialize t = 0, w0 = 0, a0 = 0, b0 = 0
repeat

Find minimizer

wt := argmin
w

Rt(w) + λΩ[w ]

Compute gradient at+1 and offset bt+1.
Increment t ← t + 1.

until εt ≤ ε

Convergence Monitor Rt+1[wt ]− Rt [wt ]

Since Rt+1[wt ] = Remp[wt ] (Taylor approximation) we have

Rt+1[wt ] + λΩ[wt ] ≥ min
w

Remp[w ] + λΩ[w ] ≥ Rt [wt ] + λΩ[wt ]
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Dual Problem

Good News
Dual optimization for Ω[w ] = 1

2 ‖w‖
2
2 is Quadratic Program

regardless of the choice of the empirical risk Remp[w ].
Details

minimize
β

1
2λ

β>AA>β − β>b

subject to βi ≥ 0 and ‖β‖1 = 1

The primal coefficient w is given by w = −λ−1A>β.
General Result

Use Fenchel-Legendre dual of Ω[w ], e.g. ‖·‖1 → ‖·‖∞.
Very Cheap Variant

Can even use simple line search for update (almost as good).
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Features

Parallelization
Empirical risk sum of many terms: MapReduce
Gradient sum of many terms, gather from cluster.
Possible even for multivariate performance scores.

Solver independent of loss
No need to change solver for new loss.

Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.

Line search variant
Optimization does not require QP solver at all!
Update along gradient direction in the dual.
We only need inner product on gradients!
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Architecture
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Convergence

Theorem
The number of iterations to reach ε precision is bounded by

n ≤ log2
λRemp[0]

G2 +
8G2

λε
− 4

steps. If the Hessian of Remp[w ] is bounded, convergence to
any ε ≤ λ/2 takes at most the following number of steps:

n ≤ log2
λRemp[0]

4G2 +
4
λ

max
[
0, 1− 8G2H∗/λ

]
− 4H∗

λ
log 2ε

Advantages
Linear convergence for smooth loss
For non-smooth loss almost as good in practice (as long
as smooth on a course scale).
Does not require primal line search.
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Proof Idea

Duality Argument
Dual of Ri [w ] + λΩ[w ] lower bounds minimum of
regularized risk Remp[w ] + λΩ[w ].
Ri+1[wi ] + λΩ[wi ] is upper bound.
Show that the gap γi := Ri+1[wi ]− Ri [wi ] vanishes.

Dual Improvement
Give lower bound on increase in dual problem
in terms of γi and the subgradient ∂w [Remp[w ] + λΩ[w ]].
For unbounded Hessian we have δγ = O(γ2).
For bounded Hessian we have δγ = O(γ).

Convergence
Solve difference equation in γt to get desired result.
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Scalability: Astrophysics dataset
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Scalability: Reuters dataset
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Parallelization: classification
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Parallelization: ranking
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Parallelization: ordinal regression
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