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0 Convexity in Machine Learning
@ Linear Function Classes
@ Loss Functions
@ Regularization
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Observations
@ Images
@ Strings
@ Movie rentals logs and scores
@ Webpages
@ Microarray measurements
Labels

@ |dentity of users, objects, biometric features

@ Named entities, tags, paragraph segmentation
@ Lists of preferred movies, related entities

@ Ranking

@ Health status, relevance of genes

Loss
Sophisticated discrepancy score for estimated label.
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Loss Functions

Example: Density estimation in exponential families
@ Find maximizer of log-likelihood

—log p(y|x) = Iogze 0 — f(x, y)

Example: Winner takes all estlmatlon
@ Estimate label y*(x) for observation x via

y*(x) = argmax f(x, y) and incur loss A(y, y*(x)).
y
@ This problem is nonconvex in f. Convex bound via

Aly.y"(x)) < max f(x, y) = f(x,y)+ Ay, y")

Example: Least Mean Squares Regression
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Binary Classification

Decision Function
f(x,y) = yf(x) where y € {1}
Estimate

y*(x) = argmax yf(x) = sgn f(x)
ye{£1}
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Binary Classification

Loss Function o i )
/ Ty=y
A -
v.y) { 1 otherwise

Convex Upper Bound (soft margin loss)
I(X7.y7 f) = maX(O, 11— yf(X))

A
1(x,y.f)

y f(xL>
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Segmentation

Paragraph Segmentation

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had
peeped into the book her sister was reading, but it had no pictures or conversations in it, ‘and what is the use of a book,’
thought Alice ‘without pictures or conversation?’

<break>

So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid),
whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when
suddenly a White Rabbit with pink eyes ran close by her.

<break>

There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to
itself, ‘Oh dear! Oh dear! | shall be late!” (when she thought it over afterwards, it occurred to her that she ought to have
wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its
waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had
never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran
across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge.

<break>

In another moment down went Alice after it, never once considering how in the world she was to get out again.

<break>

The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not
a moment to think about stopping herself before she found herself falling down a very deep well.

Protein Positioning
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Segmentation

Labels
y ={1,5,23,49,99, ...} is a list of positions, i.e.
yc{1l,....n}.

Loss

@ Unit loss for each missed and each wrongly placed
segment boundary.
© Increasing loss for wrongly placed boundaries.

The Argmax
The function f(x, y) has the semi Markov property.

f(X,y) = Z?(X7Yi7}’i+17}’i+2)

Maximize it by dynamic programming. Note that the number
of segments need not be fixed.
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Web Page Ranking

Top ranking Google scores for “euro 2007”
@ 22nd European Conference on Operational Research
© Live Score service (powered by LiveScore.com)
© CAP Euro 2007 - October 4 - 7th Barcelona, Spain
© Under-21 squad readies their Euro 2007 finals campaign
© Euro-Par 2007 Conference in Rennes
Discounted Cumulative Gains Score
Find a permutation 7 such that for ratings y; we maximize

V(i)
DCG(y, w Z ol 2

The Argmax function

f(x,m) = Z C-(i)f(x;) is maximized by sorting.
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Linear Function Classes

Key Observation
Many loss functions can be made convex in f.

Consequences
@ Only useful if f is chosen from a vector space.

@ Use Banach spaces
@ Reproducing Kernel Hilbert Spaces are powerful since

(f.k(x.-)) = f(x)

Representer theorems and parametric problems.
Simplified Representation

f(x,y) = (o(x,y), w) for some feature map ¢(x, y).
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Regularized Risk Functional

Empirical Risk

1 .
Remp[W] = = Z I(x;, yi, w) where [ is a convex loss.

Applications include classification, regression, quantile
regression, ranking, segmentation, sequence annotation,
named entity tagging, Poisson, ...
Overfitting
Add regularizer to Renp[w] and minimize R, [w] + AQ[w].
Regularizers
@ Quadratic regularization Q[W] = 1w
e LP regularization Q[w] = 1 ||w][7.
@ Entropy regularization Q[w] = ). w;log w;.
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The Chinese Restaurant guide to writing

machine learning papers

Step 1: pick a loss function /(x, y, w)

Bonus points if you find with a new one.
Step 2: pick a regularizer Q[w]

Bonus points if you find with a new one (happens rarely).
Step 3: pick a new feature map

Bonus points if you can compute (¢(x, y), w) cheaply.
Step 4: build a fancy implementation

Must run faster on at least one problem.

Publication
Happens if at least one of the four features is new.
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A better idea

One Algorithm to rule them all, One Algorithm to find
them, One Algorithm to bring them all and in the
darkness bind them . ..
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e Algorithm
@ Bundle Methods

@ Dual Optimization Problem
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Key Idea

Empirical Risk
@ Convex
@ Expensive to compute
@ Line search just as expensive as new computation
@ Gradient comes almost for free with function value
@ Parallel computation simple
Regularizer
@ Convex
@ Cheap to compute

@ Cheap to optimize
Strategy
@ Compute only tangents on emprirical risk
@ Perform optimization in the dual
@ Modularity
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Bundle Approximation
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Lower Bound

Regularized Risk Minimization
minivrvnize Remp[W] + AQ[w]
Taylor Approximation for R..,,[w]
Remp[W] 2 Remp[Wi] + (W — Wi, Ow Remp[Wi]) = (&1, W) + b

where a; = 0y Renp[Wi—1] and by = Repp [Wi—1] — (@1, Wi_1).
Bundle Bound

RemplW] > Ri[w] = max (ai, w) + b;
Is

Regularizer Q[w] solves stability problems.
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Pseudocode
Initialize t =0, wy =0,80=0,by =0
repeat
Find minimizer

w; = argmin Ry(w) + A\Q[w]
Compute gradient a;, and offset by 1.
Increment t — t+ 1.

until ¢; < e
Convergence Monitor R; ([w;] — R:[w;]

Since R: 1[wi] = Remp[Ws] (Taylor approximation) we have
Rt [wi] + AQ[wy] > mvin Remp[W] + AQ[w] > Ri[wy] + AQ[w]
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Dual Problem

Good News
Dual optimization for Q[w] = 1 |w||3 is Quadratic Program
regardless of the choice of the empirical risk Repp[W].

Details
miniénize ~BTAAT3 - 37b
subjectto 3; > 0 and || 5|, =1

The primal coefficient w is given by w = —\~1AT 3.
General Result
Use Fenchel-Legendre dual of Q[w], e.g. [|-||; — |-

Very Cheap Variant
Can even use simple line search for update (almost as good).
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Parallelization
@ Empirical risk sum of many terms: MapReduce
@ Gradient sum of many terms, gather from cluster.
@ Possible even for multivariate performance scores.

Solver independent of loss
No need to change solver for new loss.
Loss independent of solver/regularizer
Add new regularizer without need to re-implement loss.
Line search variant
@ Optimization does not require QP solver at all!
@ Update along gradient direction in the dual.
@ We only need inner product on gradients!
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Architecture

Solver [« Loss |« Data
Loss |« Data 1
Solver sf:)i'[ei'r LOESS - Datia 2
Lo:ss - Dat:a N
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e Convergence
@ Main Result
@ Proof Idea
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Convergence

Theorem
The number of iterations to reach e precision is bounded by
ARenp[0] G?
< P —
n <log, e e 4

steps. If the Hessian of R..,[w] is bounded, convergence to
any € < \/2 takes at most the following number of steps:

ARemp[0] y 4H*
4—62 +5 4 max (0,1 —8G*H"/A] —

n <log, log 2¢

Advantages
@ Linear convergence for smooth loss
@ For non-smooth loss almost as good in practice (as long
as smooth on a course scale).
@ Does not require primal line search.
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Proof Idea

Duality Argument
@ Dual of Ri[w] + AQ[w] lower bounds minimum of
regularized risk Repmp[W] + AQ[w].
@ Ri1[wi] + \Q[w;] is upper bound.
@ Show that the gap ~, := R, 1[w;] — Ri[w;] vanishes.
Dual Improvement
@ Give lower bound on increase in dual problem
in terms of ~; and the subgradient 0y, [Remp[W] + AQ[w]].
@ For unbounded Hessian we have 6y = O(v?).
@ For bounded Hessian we have iy = O(7).
Convergence
@ Solve difference equation in +; to get desired result.
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0 Experiments
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Scalability: Astrophysics dataset

astro-ph
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Scalability: Reuters dataset

reuters-ccat
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Parallelization: classification

number of computers vs time
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Parallelization: ranking

number of computers vs time
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Parallelization: ordinal regression

number of computers vs time
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0 Convexity in Machine Learning
@ Linear Function Classes
@ Loss Functions
@ Regularization

e Algorithm
@ Bundle Methods
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e Convergence
@ Main Result
@ Proof Idea

0 Experiments

NATIONAL

Alexander J. Smola: Bundle Methods for Machine Learning 31/31 ‘\_ """"" A




	Convexity in Machine Learning
	Linear Function Classes
	Loss Functions
	Regularization

	Algorithm
	Bundle Methods
	Dual Optimization Problem

	Convergence
	Main Result
	Proof Idea

	Experiments

