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Abstract

We propose a discrete-time Markov process which takes values on the unit circle.

Some properties of the process, including the limiting behaviour and ergodicity, are

investigated. Many computations associated with this process are shown to be greatly

simplified if the variables and parameters of the model are represented in terms of

complex numbers. A further discussion is given on some submodels, especially, on

the stationary process. The proposed model is compared with some existing Markov

processes for circular data. Statistical inference for the process is considered. Finally,

an application of the model to wind direction data is provided.

Keywords: Circular autocorrelation; Circular time series; Möbius transformation;

Robustness; Wrapped Cauchy distribution

1 Introduction

Data which can be expressed as sets of observations on the circle arise in a number of
areas of applications such as biology, meteorology and geology. On occasions, circular
observations appear in a time series context. For instance, a series of wind directions
measured hourly at a weather station (Fisher and Lee, 1994) can be considered an example
of time series of circular data. Other examples of circular time series are seen in Cameron
(1983) and Breckling (1989, Part I).

For the analysis of this kind of data, some stochastic processes have been proposed in
the literature. Wehrly and Johnson (1980) proposed a Markov process by applying a class
of bivariate circular distributions with specified marginals. Breckling (1989, Chapter 6)
proposed two stochastic processes, namely, the von Mises process and the wrapped au-
toregressive process, and fitted these models to time series of wind directions. Fisher and
Lee (1994) discussed the models of Breckling (1989) and proposed new models based on a
projection method and a link function concept. Hidden Markov models for circular time
series were presented by Holzmann et al. (2006). See Fisher (1993, Chapter 7), Mardia
and Jupp (1999, Section 11.5.2) and Jammalamadaka and SenGupta (2001, Section 12.8)
for overviews of the time series models for circular data.

In this paper we provide a new discrete-time Markov process (Markov chain) on the
circle. The model can be derived based on the regression idea of Kato et al. (2008),
who provided a circular–circular regression model by adapting the Möbius circle transfor-
mation as a regression curve and the wrapped Cauchy distribution as an angular error.
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As seen in some existing works such as McCullagh (1996) and Kato et al. (2008), the
wrapped Cauchy distribution has some tractable features, one of which is related to the
Möbius circle transformation. By applying these results, some desirable properties of the
process, including the limiting behaviour and ergodicity, are obtained. To simplify many
computations associated with the process, we represent the variables and parameters in
terms of complex numbers.

The proposed model could be useful to describe a circular time series for which the
mean direction and concentration of the state at the time, say, n approach certain values
as n increases. Or our model can also be used to fit stationary circular time series data.
In both situations the proposed model can be applied as a robust model because of the
heavy tail the wrapped Cauchy distribution has. We present an application of our model
to a time series of wind directions to illustrative an advantage of the model.

The subsequent sections are organised as follows. Section 2 provides some preliminary
knowledge about the Möbius transformation and wrapped Cauchy distribution, which
play an essential role in the proposed model. In Section 3 we propose a Markov process
and investigate its properties. Also, we illustrate the interpretation of the parameters and
the limiting behaviour of the process by simulating the proposed processes for specified
values of the parameters. Section 4 concerns some submodels of the process proposed in
the previous section. In particular we pay the most attention to the stationary case of
our model. A comparison with some existing Markov models is in Section 5. Parameter
estimation based on maximum likelihood and method of moments is briefly discussed
in Section 6. In Section 7 the proposed stationary model is fitted to a dataset of wind
directions to illustrate an advantage of our model. Finally, concluding remarks are made
in Section 8.

2 Preliminaries

Before we embark on the main topic, we briefly introduce some preliminary knowledge
about the Möbius transformation and the wrapped Cauchy distribution. This background
is central to investigating the properties of the Markov process which we propose in Section
3.

2.1 Möbius transformation

The Möbius transformation is defined as

M(x) =
a00x + a01

a10x + a11
, x ∈ C;

(

a00 a01

a10 a11

)

∈ GL(2, C), (1)

where GL(2, C) is a group of 2 × 2 regular matrices of which each element is a complex
number. The transformation is well known as a projection which maps the complex
plane C onto itself. As seen in works such as McCullagh (1996) and Jones (2004), this
transformation can play an important role in directional statistics.

In particular, we consider a subclass of the Möbius transformation with constraints

(

a00 a01

a10 a11

)

=

(

1 β

β 1

)

, β ∈ D.
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This transformation is a conformal mapping which maps the unit disc, D = {z ∈ C ; |z| <
1}, onto itself. In addition, the unit circle, ∂D = {z ∈ C ; |z| = 1}, is also mapped onto
itself via the transformation. See Jones (2004) and Kato et al. (2008) for details about
this transformation. Following the convention in the latter paper, we call this mapping
the Möbius circle transformation.

For convenience, write (1) as

a00x + a01

a10x + a11
=

(

a00 a01

a10 a11

)

◦ x.

It is known that the following property holds for the Möbius transformation:

A ◦ (B ◦ x) = (AB) ◦ x, A, B ∈ GL(2, C). (2)

2.2 Wrapped Cauchy distribution

A random variable Z is said to have the wrapped Cauchy distribution if it has the density

f(z; φ) =
1

2π

∣

∣1 − |φ|2
∣

∣

|z − φ|2 , z ∈ ∂D; φ ∈ C \ ∂D, (3)

with respect to arc length on the circle µ. The model is also called the circular Cauchy
distribution as seen in McCullagh (1996). In this paper we extend the domain of φ and
define Z = φ for φ ∈ ∂D. Here Arg(φ) or φ/|φ| is the mean direction for φ 6= 0 and |φ|
the mean resultant length of Z for φ ∈ D, where Arg(z) denotes the complex argument
of z taking values between [−π, π) and D = D ∪ ∂D. As discussed in McCullagh (1996),
it is the case that f(z; φ) = f(z; 1/φ). The distribution is unimodal and symmetric
about z = φ/|φ|. When |φ| is equal to 0, the distribution is the uniform distribution
on the circle. As |φ| tends to 1, the distribution approaches a point distribution with
singularity at Z = φ. In the same way as McCullagh (1996), we denote the wrapped
Cauchy distribution in (3) by Z ∼ C∗ (φ).

The properties of the wrapped Cauchy distribution have been intensively investigated
by McCullagh (1996). (See Fisher (1993, Section 3.3.4), Mardia and Jupp (1999, pp.51–
52) and Jammalamadaka and SenGupta (2001, Section 2.2.7) for book treatments of the
wrapped Cauchy distribution.) The following hold for the wrapped Cauchy distribution:

Z ∼ C∗(φ) =⇒ αZ ∼ C∗(αφ), α ∈ ∂D, (4)

Z1 ∼ C∗(φ1), Z2 ∼ C∗(φ2), |φ1|, |φ2| ≤ 1, Z1⊥Z2 =⇒ Z1Z2 ∼ C∗(φ1φ2), (5)

Z ∼ C∗(φ) =⇒
(

1 β

β 1

)

◦ Z ∼ C∗

{(

1 β

β 1

)

◦ φ

}

, β ∈ C. (6)

3 A Markov process for circular data

3.1 Definition

Kato et al. (2008) proposed a circular–circular regression model by using the Möbius
circle transformation as a regression curve and the wrapped Cauchy distribution as an
angular error. In this paper we adapt their regression model to construct a discrete-time
Markov process for circular data. A class of Markov processes is provided in the following
theorem.
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Theorem 1. Let W0 be a random variable or a constant which takes values on ∂D.
Assume that {Wn}∞n=1 is a sequence of random variables defined by

Wn =
Wn−1 + β

βWn−1 + 1
εn, n = 1, 2, . . . ,

where β ∈ D and εn is a ∂D-valued random variable for any n ∈ N. Then {Wn}∞n=0 is a
discrete-time Markov process which takes values on ∂D.

Proof. Clearly, the Markov property and time homogeneity hold for {Wn}∞n=0. Since the
Möbius circle transformation maps ∂D onto itself, it follows that {Wn}∞n=0 takes values
on ∂D.

From now on, we assume that ε1, ε2, . . . in Theorem 1 are iid random variables which
are independent of W0 and are distributed as the wrapped Cauchy distribution C∗(ϕ), 0 ≤
ϕ < 1. We call this process the Möbius Markov process.

3.2 Some properties

We discuss some properties of the proposed process. Throughout this subsection, we
assume that {Wn}∞n=0 is the Möbius Markov process.

From property (2), it follows that Wt+n can be expressed as a function of Wt, εt+1, . . . , εt+n

as follows.

Wt+n =

{(

εt+n βεt+n

β 1

)(

εt+n−1 βεt+n−1

β 1

)

· · ·
(

εt+1 βεt+1

β 1

)}

◦ Wt,

where t ≥ 0 and n ≥ 1. In the later discussion, we assume, without loss of generality,
that t = 0. Using properties (2) and (4)–(6), the following theorem is readily established.

Theorem 2.

Wn | (W0 = w0) ∼ C∗ {φn(w0)} ,

where

φn(w0) =

(

ϕ βϕ

β 1

)n

◦ w0, n ≥ 0.

Thus, the conditional of Wn given W0 = w0 is the wrapped Cauchy for any n. By using
mathematical induction, it can be proved that the parameter of the above conditional can
be expressed in another form as follows.

(

ϕ βϕ

β 1

)n

◦ w0 =

{(

ϕ |β|ϕ
|β| 1

)n

◦ β

|β|w0

}

β

|β| (7)

This representation will be used later in the paper.
By the above theorem and Theorem 1 of Kato et al. (2008), the pth trigonometric

moment of Wn | (W0 = w0) is given by

E(W p
n |W0 = w0) =

{

φp
n(w0), p ≥ 0,

φ−p
n (w0), p < 0,

for p ∈ Z.
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In particular, Arg{φn(w0)} and |φn(w0)| are the mean direction and the mean resultant
length of Wn | (W0 = w0), respectively.

Given a process as in Theorem 1, a natural question to address is the limiting be-
haviour of the process, which we describe in the following lemma. See Appendix A for
the proof.

Lemma 1.

Wn | (W0 = w0)
d−→ C∗(φ∞) as n −→ ∞,

where

φ∞ =











ϕ − 1 +
√{(1 − ϕ)2 + 4ϕ|β|2}

2|β|
β

|β| , β ∈ D \ {0},

0, β = 0.

For convenience, we write π to denote the distribution and the density of C∗(φ∞).
Also, define a transition kernel as

Pn(w, A) =

∫

A

1

2π

1 − |φn(w)|2
|z − φn(w)|2 µ(dz),

where A (⊂ ∂D) is a measurable set.

Lemma 2. The unique invariant distribution of the Möbius Markov process is given by
π.

Proof. See Appendix B.

It is remarked that, in general, π is not a reversible distribution except for some special
cases discussed in Section 4.3.

A Markov process is said to be ergodic if it is positive Harris recurrent and aperiodic.
(See, for example, Meyn and Tweedie (1993, pp.116, 200, 230–231) for the definition of
positive Harris recurrence and aperiodicity.)

Theorem 3. The Möbius Markov process is ergodic.

Proof. It is clear from Lemma 2 that the Möbius Markov process is π-irreducible and
πP = π holds. For each measurable set A with π(A) = 0, which is equivalent to the
condition that A is a null set, it holds that P (w0, A) = 0 for all w0 ∈ ∂D. This means
that P (w0, ·) is absolutely continuous with respect to π for all w0. Hence Corollary 1 of
Tierney (1994) implies that P is positive Harris recurrent. Aperiodicity of the process is
clear from Lemma 1.

Next we consider the orbit of a sequence of the parameters {φn(w0)}∞n=0 which we
already know converges to φ∞ as n tends to infinity. For any β ∈ D \ {0} and n ≥ 1,

Re
{

βE(Wn |W0 = w0)
}

≥ Re
{

βE(Wn−1 |W0 = w0)
}

.

The following theorem describes how a sequence of the parameters {φn(w0)} approaches
φ∞.
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Theorem 4. Let {φn(w0)}∞n=0 be a sequence of parameters defined in Theorem 2. Then
{φn(w0)}∞n=0 lies on the arc or on the line segment with equation

g(λ) =

(

ξ1w0 − 2βϕ ξ2w0 + 2βϕ

ξ2 − 2βw0 ξ1 + 2βw0

)

◦ λ, 0 ≤ λ ≤ 1, (8)

where ξ1 = 1 − ϕ +
√{(1 − ϕ)2 + 4ϕ|β|2} and ξ2 = ϕ − 1 +

√{(1 − ϕ)2 + 4ϕ|β|2}.
Proof. By looking at equation (15) as a function of λ = (λ1/λ2)

n, we obtain equation
(8). Since the Möbius transformation maps the real line onto the circle or the line in the
complex plane (see Rudin (1987, Section 14.3)), it follows that g(λ) takes values on an
arc or a line segment in the complex plane.

In particular, g(1) = w0 and g(0) = φ∞. If w0 6= ±β/|β|, g(λ) takes values on the
circle whose center and radius are given by

−i
(ξ1 + ξ2)(1 − ϕ)(w0 + β)

2 Im(ξ2βw0 − ξ1βw0)
and

{

∣

∣

∣

∣

(ξ1 + ξ2)(1 − ϕ)(w0 + β)

2 Im(ξ2βw0 − ξ1βw0)

∣

∣

∣

∣

2

+ ϕ

}1/2

,

respectively. In equation (8), g(λ) coincides with {φn(w0)}∞n=0 when

λ = λ(n) =

(

1 + ϕ −√{(1 − ϕ)2 + 4ϕ|β|2}
1 + ϕ +

√{(1 − ϕ)2 + 4ϕ|β|2}

)n

, n = 0, 1, . . .

Thus, the rate of convergence is

r(|β|, ϕ) ≡
∣

∣

∣

∣

λ(n + 1)

λ(n)

∣

∣

∣

∣

=
1 + ϕ −√{(1 − ϕ)2 + 4ϕ|β|2}
1 + ϕ +

√{(1 − ϕ)2 + 4ϕ|β|2} . (9)

From this, it follows that |β| and ϕ influence the rate of convergence. Clearly, r is
monotonically decreasing with respect to |β|. Hence, as |β| increases, the process con-
verges at the higher speed. In particular, r → 0 (|β| → 1) and r → ϕ (|β| → 0).
On the other hand, r is monotonically increasing as a function of ϕ. Here we get
r → (1 − |β|)/(1 + |β|) (ϕ → 1) and r → 0 (ϕ → 0). Thus the higher the value of
ϕ, the slower the convergence of the process.

Finally, we discuss a method to make a manual plot of {φn(w0)}∞n=0 in the following
theorem. The proof is lengthy but straightforward, and therefore omitted.

Theorem 5. Let Ω be a Riemann sphere in C×R, i.e., Ω = {(z, x) ∈ C×R ; |z|2+x2 = 1}.
Suppose φ̃n is the point where the line joining the north pole N (= (0, 1)) and (φn(w0), 0)
crosses Ω. Let ω be the point where −φ̃n is transformed via a straight-line projection
through the point (β, 0) onto the opposite side of Ω. Then the line from N through ω
intersects the plane {(z, 1 − ϕ) ; z ∈ C} at the point (φn+1(w0), 1 − ϕ).

3.3 Simulation

In this subsection we conduct further discussion about the interpretation of the parameters
and the limiting behaviour of the process by simulating the Möbius Markov process for
specified values of the parameters.

For simulation of a Möbius Markov process, it is necessary to generate random vari-
ables from the wrapped Cauchy distribution. A C∗(β) random variable is generated by
the following two steps:
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Step 1: Generate a uniform (0, 1) random number U .

Step 2: Put Z =

(

1 β

β 1

)

◦ exp(2πiU).

Then it follows from property (6) that Z has the wrapped Cauchy C∗(β).
Fig. 1 displays simulations of the Möbius Markov process for specified values of ϕ and

β. This figure explicitly shows that as n converges to infinity, the mean direction of
the conditional of Arg(Wn) given W0 = w0 tends to Arg(β), and this is mathematically
validated by Lemma 1. By comparing the first two frames of Fig. 1, it seems that |β|
influences the speed of convergence r and the parameter of the limiting distribution |φ∞|.
Actually, as stated in Section 3.2, |φ∞| and the negative of the rate of convergence (9),
−r, are monotonically increasing with respect to |β|. From frames (a) and (c) of Fig. 1,
it seems that the smaller the value of ϕ, the smaller the concentration of the limiting
distribution. In addition, ϕ influences the rate of convergence (9) which is monotonically
decreasing. Finally, comparing Fig. 1(a) and (d), we find that the parameter Arg(β)
controls the mean direction of the limiting distribution, i.e., Arg(φ∞).

As already discussed in Theorem 2, the conditional distribution of Wn given W0 = w0

is the wrapped Cauchy distribution. The parameters of this conditional distribution for
specified values of β and ϕ are exhibited in Fig. 2. Note that sequences of parameters,
{φn(w0)}∞n=0, lie on circles as Theorem 4 shows. This figure is also helpful to interpret
how the parameters influence the mean direction Arg{φn(w0)} and mean resultant length
|φn(w0)|. We omit the comparison between the four frames since this figure provides a
very similar interpretation of the parameters to that in Fig. 1.

Summarising the results in Section 3.2 and these figures, the interpretation of each
parameter is given as follows. As stated in Lemma 1 and as is clear from the two figures,
the parameter Arg(β) controls the mean direction of the limiting distribution, Arg(φ∞).
The parameter |β| determines the rate of convergence and the mean resultant length of the
limiting distribution |φ∞|. This interpretation is mathematically validated by Lemma 1
and the fact that r is monotonically decreasing as a function of |β|. In particular, |φ∞| → 1
as |β| → 1. Also, ϕ influences the rate of convergence and the concentration of φ∞ as
shown in Lemma 1 and the fact that r = r(ϕ) is monotonically decreasing for fixed |β|.

We note that although both ϕ and |β| control the rate of convergence and the concen-
tration, their roles are completely different. For example, |φ∞| is monotonically increasing
with respect to ϕ or |β|, but r is monotonically decreasing as a function of ϕ whereas it
is monotonically increasing with respect to |β|.

4 Submodels of the process

In this section we consider some submodels of the Möbius Markov process. The Markov
process having the wrapped Cauchy initial distribution is discussed in Section 4.1. In Sec-
tion 4.2 the stationary process and its autocorrelation coefficient are considered. Finally
we focus on the submodel of the stationary process with uniform marginals in Section
4.3.
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Figure 1: Simulation of the Möbius Markov model {Arg(Wn) |W0 = e−3πi/4}300
n=0 for some

selected values of (β, ϕ) taken as (a) (0.01, 0.995), (b) (0.05, 0.995), (c) (0.01, 0.985) and
(d) (0.01i, 0.995). The bold curve represents the equation Arg{E(Wn |W0 = e−3πi/4)}.
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Figure 2: Plot of the parameters, {φn(w0)}30
n=0, of the wrapped Cauchy distributions for

the Möbius Markov process given in Theorem 2 for w0 = e−3πi/4 and the parameters:
(a) (β, ϕ) = (0.05, 0.9), (b) (β, ϕ) = (0.5, 0.9), (c) (β, ϕ) = (0.05, 0.5) and (d) (β, ϕ) =
(0.05i, 0.9). The dotted line represents the circle (8).

9



4.1 Wrapped Cauchy initial distribution

The following lemma shows that the Möbius Markov process has wrapped Cauchy marginals
if the initial distribution follows the wrapped Cauchy. The proof is clear from properties
(4)–(6).

Lemma 3. Assume W0 ∼ C∗(φ0) where φ0 ∈ D. Then Wn ∼ C∗ {φn(φ0)} , n ≥ 0.

Remark that, for the above model, the marginal of Wj and the conditional of Wj given
Wk = wk (j > k ≥ 0) have the wrapped Cauchy distribution. Applying Theorem 4, it is
easy to show that a sequence of parameters {φn(w0)}∞n=0 given in Lemma 3 lies on the
arc or on the line segment.

4.2 Stationary process

Here we focus on a submodel which can be obtained on putting φ0 = φ∞ for the Markov
process given in Lemma 3. As stated in Lemma 2, this process is strictly stationary. Some
moments of the process are provided in following lemma. See Appendix C for the proof.

Lemma 4. Let {Wn}∞n=0 be the Möbius Markov process having the initial distribution
W0 ∼ C∗(φ∞). Assume that Vj = (Re(Wj), Im(Wj))

′ (j = m,n). Then the following
equations hold

E(Vm) = E(Vn) = Q

(|φ∞|
0

)

, E(VmV′
n) = Q

(

a 0
0 b

)

Q′,

E(VmV′
m) = E(VnV

′
n) = Q

(

1
2(1 + |φ∞|2) 0

0 1
2(1 − |φ∞|2)

)

Q′,

where

Q =
1

|β|

(

Re(β) −Im(β)
Im(β) Re(β)

)

,

a =
(a00a11 + a01a10){1 − |φ∞a10/a11|2 + (|φ∞| − |a10/a11|)2}

2(|a11|2 − |a10|2)(1 + |φ∞a10/a11|)

+
(a00a10 + a01a11)(|φ∞| − |a10/a11|)
(|a11|2 − |a10|2)(1 + |φ∞a10/a11|)

,

b =
(a00a11 − a01a10){1 − |φ∞|2 − |a10/a11|2 + |φ∞a10/a11|2}

2(|a11|2 − |a10|2)(1 + |φ∞a10/a11|)
,

(

a00 a01

a10 a11

)

=

(

ϕ |β|ϕ
|β| 1

)m−n

.

Note that these moments do not include any integrals or infinite sums. From this
result, autocorrelation coefficients of this circular process are calculated as follows.

Theorem 6. The Johnson and Wehrly (1977) correlation coefficient of (Wm,Wn) (m >
n) of the Markov process given in Lemma 4 is

ρJW = λ1/2 =
2max{|a − |φ∞|2|, |b|}

1 − |φ∞|2 ,

10



where λ is the largest eigenvalue of Σ−1
mmΣmnΣ−1

nnΣ′
mn, Σjk = E(VjV

′
k)−E(Vj)E(V′

k) (j, k =
m,n), and Vℓ (ℓ = m,n) is defined as in Lemma 4. The correlation coefficients of Jupp
and Mardia (1980) and Fisher and Lee (1983) are given by

ρJM = tr(Σ−1
mmΣmnΣ−1

nnΣ′
mn) =

4{(a − |φ∞|2)2 + b2}
(1 − |φ∞|2)2

and

ρFL =
det {E(VmV′

n)}√
[det {E(VmV′

m)} det {E(VnV′
n)}] =

4ab

1 − |φ∞|4 , (10)

respectively.

To compare our model with the models of Fisher and Lee (1994), here we consider
the Fisher and Lee (1983) correlation coefficient which Fisher and Lee (1994) used as
a measure of autocorrelation coefficient for circular time series. Fig. 3 plots their auto-
correlation coefficients for some selected values of parameters. All frames of the figure
show that as the lag between two variables increases, the autocorrelation between them
decreases. This figure also implies that the greater the value of ϕ, the greater the autocor-
relation coefficient between Wn and Wn+h. Also, the larger the value of |β|, the greater
the autocorrelation coefficient.

Compared with Fig. 3 of Fisher and Lee (1994), our model shows similar correlation
patterns to their linked autoregressive LAR(1) process when the concentration parameter
ϕ of our model is large; Both models show exponential decay pattern as seen in the linear
AR(1) model. Further comparison between our model and theirs will be given in the next
section.

4.3 Stationary process with uniform marginals

Breckling (1989, Example 6.1) briefly considerd a stationary process with uniform marginals
as a special case of the von Mises process. Fisher and Lee (1983) proposed a stationary
process with uniform marginals by projecting two independent Gaussian processes.

In this subsection we discuss a submodel of our Markov process which has uniform
marginals. The submodel can be derived on putting β = 0 in the Markov process given
in Lemma 4. Althoug the model has a different form from the aforementioned mod-
els, it can be proved that the reversible distribution exists for our model. The proof is
straightforward and therefore omitted.

Lemma 5. Assume that β = 0 in the Markov process given in Lemma 4. Then a circular
uniform, C∗(0), is the reversible distribution of the process.

Consider the two variables of the above process, (Wm, Wn) (m > n). It is clear that
the joint density for (Wm,Wn) is

f(wm, wn) =
1

4π2

1 − ϕ2(m−n)

|1 − ϕm−nwnwm|2
, wm, wn ∈ ∂D. (11)

This density is equivalent to the one given by Kato (to appear, equation 4.1) which is
obtained using Brownian motion. Note that, in this submodel, the conditional distribution
of Wn given Wm = wm (m > n) is also a wrapped Cauchy C∗(ϕm−nwm).

The autocorrelation coefficients for this submodel can be expressed in simple form as
follows.

11
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Figure 3: The Fisher and Lee (1983) autocorrelation coefficients for the stationary Markov
process with parameters: (a) (β, ϕ) = (0, 0.6), (b) (β, ϕ) = (0, 0.8), (c) (β, ϕ) = (0, 0.99),
(d) (β, ϕ) = (0.1, 0.6), (e) (β, ϕ) = (0.1, 0.8), (f) (β, ϕ) = (0.1, 0.99), (g) (β, ϕ) = (0.2, 0.6),
(h) (β, ϕ) = (0.2, 0.8) and (i) (β, ϕ) = (0.2, 0.99).
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Corollary 1. The Johnson and Wehrly (1977), Jupp and Mardia (1980), and Fisher and
Lee (1983) correlation coefficients of (Wm, Wn) (m > n) of the Markov process given in
Lemma 5 are given by

ρJW = ϕm−n, ρJM = 2ϕ2(m−n), and ρFL = ϕ2(m−n).

All autocorrelations have the following properties:

1. the autoccorelation is positive for any m − n,

2. the greater the value of the lag m−n, the smaller the autocorrelation between Wm

and Wn,

3. as the lag m − n tends to infinity, the autocorrelation tends to zero,

4. as ϕ increases, the autocorrelation between Wm and Wn decreases.

Remember that the Fisher and Lee (1983) autocorrelation of this stationary process for
some selected values of parameters is given in Fig. 3(a),(b) and (c).

Furthermore, the following corollaries are obtained for the above model by using equa-
tion (4.3) and Section 2.1 of Kato (to appear), respectively.

Corollary 2. Let {W1n}∞n=0 and {W2n}∞n=0 be independent Markov processes of the type
given in Lemma 5. Then {W1nW2n}∞n=0 is also a Markov process of the type given in
Lemma 5 with the parameter ϕ replaced by ϕ2.

Corollary 3. Let {Bt}t≥0 be C-valued Brownian motion starting at the origin. Suppose
τn is the smallest time at which the Brownian particle hits a circle with radius ϕ−n, i.e.,
τn = inf{t ; |Bt| = ϕ−n} where n = 0, 1, . . . , 0 < ϕ < 1. Then a sequence of random
variables {ϕnBτn

}∞n=0 is a Markov process of the type given in Lemma 5.

5 Comparison with existing Markov processes

Fisher and Lee (1994) proposed some stochastic processes for circular data. Among these
models, a general class of the inverse autoregressive processes has some association with
the general form of our Möbius Markov process given in Theorem 1. The inverse model
denoted by IAR(p) in their paper is defined as follows. Let {Θn} be a sequence of [−π, π)-
valued random variables. Assume that Θn given (Θn−1, . . . ,Θn−p) = (θn−1, . . . , θn−p) has
a von Mises distribution with concentration parameter κ and mean direction

µt = µ + g{w1g
−1(θt−1 − µ) + · · · + wpg

−1(θt−p − µ)}, (12)

where µ ∈ [−π, π) and g(·) is an odd monotone function mapping the real line onto the
interval (−π, π).

On putting p = 1, 0 < w1 ≤ 1, and g(x) = 2 arctan(x) in this model, one can
obtain a Markov process given in Theorem 1 with β = {(1 − w1)/(1 + w1)} eiµ and
Arg(εn) ∼ VM(0, κ). However, the Möbius Markov process is not a submodel of this
general class since our model assumes that the angular error has the wrapped Cauchy
distribution, not the von Mises distribution. This distinction makes some differences in
properties because of some desirable features of the wrapped Cauchy distribution and
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its relationship with the Möbius circle transformation as seen in Sections 2 and 3. For
instance, the conditional distribution of Wn+h given Wn = wn has the wrapped Cauchy,
and this property enables us to derive limiting distribution, the stationary distribution
and autocorrelation coefficient of the model.

The wrapped Cauchy and von Mises are different in terms of shapes of the density in
some situations. Both models are symmetric and unimodal distributions on the circle and
these densities look similar when mean resultant lengths of these distributions are small.
Therefore one can apply both IAR model and our process to a circular time series if the
observations are dispersed. However, if the concentration parameters of both densities
are large, then the wrapped Cauchy and von Mises have different ‘tailweights’, or the
behaviour of the densities around the antimodes. When the mean resultant lengths of
the densities are large, the wrapped Cauchy density has a heavier tail than the von Mises
density has. This distinction suggests that the IAR model is more suitable if observations
are highly concentrated and do not involve outliers. On the other hand, when robustness
is desired, it would be expected that our model provides a better fit.

Our stationary process with uniform marginals given in Lemma 5 has relationship with
the Markov model presented by Wehrly and Johnson (1980). They provided the model
by applying a general class of bivariate circular distributions with specified marginals. A
special case of their model is a Markov process which has uniform marginals and von Mises
errors. The model has also been briefly considered by Breckling (1989, Example 6.1) as a
submodel of the von Mises process. Their model and our submodel discussed in Lemma 5
are related in the sense that both models have uniform marginals. The difference is that we
adopt the wrapped Cauchy error, whereas the existing one uses the von Mises as an error
distribution. As discussed before, the tail behaviour of the wrapped Cauchy is different
from that of the von Mises if the distributions are highly concentrated. Therefore one can
select which model to use depending on how heavy contamination the dataset of interest
includes. From the mathematical point of view, our model has some tractable properties
as discussed in the previous paragraph. For example, the autocorrelation coefficients of
this submodel can be expressed in simple form (see Corollary 1).

Our stationary process with uniform marginals also has some association with one
of the models proposed by Fisher and Lee (1994). They presented a time series model
by projecting two independent Gaussian processes. Both this projected model and our
stationary process have the common advantage that the autocorrelation coefficient of the
model can be expressed in relatively simple form. An advantage the projected model is
that the parameters of the model can be readily estimated by applying EM algorithm.
On the other hand, our model is attractive because it has clear dependence structure
between Wn and Wn+h as one can see in the joint density (11).

6 Statistical inference for the process

Assume that {Wn}T
n=0 is an observation from the Möbius Markov process with unknown

β and ϕ. The quasi log-likelihood function for β and ϕ, Lq(β, ϕ |w0), is given by

log Lq(β, ϕ |w0) = log {f(wn|wn−1)f(wn−1|wn−2) · · · f(w1|w0)}

= C + T log(1 − ϕ2) −
T

∑

n=1

log

∣

∣

∣

∣

wn − wn−1 + β

βwn−1 + 1
ϕ

∣

∣

∣

∣

2
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Transform the observations and parameters by taking wn = eiθn and β = reiµ, where
−π ≤ θn, µ < π, 0 ≤ r < 1. Then the above function can be expressed as

log Lq(r, µ, ϕ | θ0) = C + T log(1 − ϕ2) −
T

∑

n=1

log
{

1 − 2ϕ cos(θn − µn) + ϕ2
}

, (13)

where µn = θn−1 − 2Arg{1 + rei(θn−1−µ)} and C is a constant irrelevant to unknown
parameters. Therefore the maximum likelihood estimation of the proposed process is
essentially the same as that of the regression model of Kato et al. (2008).

It is clear from their context that, when r and µ are known, the estimates are obtained
by the recursive algorithm of Kent and Tyler (1988). The method of moments estimator
based on the first trigonometric moment can be obtained in closed form as follows

ϕ̂ =
1

T

∣

∣

∣

∣

∣

T
∑

n=1

cos(θn − µn) + i
T

∑

n=1

sin(θn − µn)

∣

∣

∣

∣

∣

.

As for the stationary process given in Lemma 4, it is easy to see that log-likelihood
function is

log Ls(r, µ, ϕ) = C + log Lq(r, µ, ϕ | θ0) + log
(

1 − |φ∞|2
)

− log
{

1 − 2 |φ∞| cos(θ0 − µ) + |φ∞|2
}

, (14)

where |φ∞| = [ϕ− 1 +
√{(1−ϕ)2 + 4ϕr}]/(2r) and Lq(r, µ, ϕ) is given by (13). If r = 0,

the stationary process has uniform marginals, and therefore φ∞ = 0. In this case the
maximum likelihood estimate of ϕ can be obtained, again, from Kent and Tyler (1988).

7 Application

We consider a time series of wind directions measured hourly at a weather station in Texas,
U.S.A. The data are provided by NCAR/EOL under sponsorship of the National Science
Foundation and accessible at http://data.eol.ucar.edu/codiac/dss/id=85.034. The
original data contain hourly resolution surface meteorological data from the Texas Natural
Resources Conservation Commission Air Quality Monitoring Network. Of all the data,
we discuss a time series of 101 wind directions measured hourly at a weather station in
Texas, which is denoted by C1 1 in the dataset, from June 26 at 9 p.m. to July 1 at 1
a.m. in 2003.

Fig. 4(a) plots the time series of the wind directions. It seems from this figure that a
robust model may be appropriate to fit the data since the dataset includes some outliers.
The sample autocorrelation proposed by Fisher and Lee (1994, Equation (3.1)) is plotted
in Fig. 4(b). We fit our stationary process given in Theorem 4 and two inverse models
(12) of Fisher and Lee (1994) based on maximum likelihood. To maximise the likelihood
functions, we adopt an optimisation method, which can be implemented using a command
nlminb in R.

First, consider our stationary process. For the estimation of the parameters, we
maximise the log-likelihood function (14). The estimated maximum log-likelihood and
the maximum likelihood estimates of the parameters are given by log L = −41.5, r̂ =
0.205, µ̂ = 0.323 and ϕ̂ = 0.861, respectively. Hence, the estimated parameter of the
limiting distribution is φ̂∞ = 0.649 exp(0.323i).
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Figure 4: (a) the series of 101 wind directions hourly measured in Texas, U.S.A. from
June 26 at 9 p.m. to July 1 at 1 a.m. in 2003, (b) the Fisher and Lee (1983) sample
autocorrelation coefficients, (c) histogram of the estimated errors and the fitted density
of the estimated error distribution of the proposed stationary process and (d) the Fisher
and Lee (1983) theoretical autocorrelation coefficients for the fitted proposed process.
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Next we discuss two inverse Markov, or IAR(1), models of Fisher and Lee (1994). As
the first model, we define the link function g in (12) as g(x) = 2 arctan(x). Note that
this model is not a stationary process in general. The estimated maximum log-likelihood
and estimated parameters are log L = −64.7, ŵ1 = 1.00, µ̂ = −1.68 and κ̂ = 5.31.
The second model supposes that g is the probit link, namely, g(x) = 2π{Φ(x) − 0.5},
where Φ(x) =

∫ x
−∞

exp(−t2/2)/
√

(2π) dt. Then we obtain the maximum log-likelihood
and estimated parameters as log L = −63.0, ŵ1 = 1.14, µ̂ = −2.59 and κ̂ = 5.48.

Since the numbers of the parameters for the above three models are the same, model
selection based on some information criteria such as AIC and BIC is essentially the same
as the comparison of the maximum log-likelihood functions. Therefore, according to these
criteria, we find that the proposed stationary process is best among three models. One
reason our model fits better than the others could be the existence of some outliers seen
around Time 55–60.

Fig. 4(c) shows a histogram of the estimated errors and the fitted wrapped Cauchy
density. Here the estimated errors {Arg(ε̂n)}100

n=1 are Arg(ε̂n) = θn − θn−1 + 2 Arg{1 +
r̂ei(θn−1−µ̂)}. From the histogram, it appears that our model provides a satisfactory fit to
the dataset. It can also be confirmed from this frame that a probability distribution with
a heavy tail such as the one we used here would be appropriate to model this time series.

The theoretical autocorrelation coefficient (10) for the fitted Markov model is displayed
in Fig. 4(d). Comparing this frame with Fig. 4(b), our model provides a satisfactory result
when the lag is less than 8. However if the lag is not less than 8, there is slight difference
between these two autocorrelation coefficients.

In the example we consider a time series which involves some outliers. Since a robust
model is desired for this dataset, we think that our model provides a better fit than the
IAR models in terms of some information criteria. If we consider another time series
which does not contain outliers, it is more likely that the IAR models, which adopt the
von Mises error, are more suitable than the presented one.

8 Concluding remarks

Circle-valued processes can be used to analyse time series of circular data, which appear in
various scientific fields such as meteorology and biology. The proposed Markov process has
the virtues of being mathematically tractable as seen in properties in Section 3 such as easy
interpretation of the parameters and clear limiting behaviour. Many of these properties
can be derived because of some desirable features of the wrapped Cauchy distribution
and its association with Möbius transformation. In practice our process can be used as
a robust model even when observations include some outliers. The model is applicable
to real data as we demonstrated in Section 7. Potential fields for future research include
extension to an autoregressive process and construction of a hidden Markov process for
circular data. It might be also interesting to investigate properties of a process which
adopts a more flexible angular error distribution such as the ones provided by Jones and
Pewsey (2005) and Pewsey et al. (2007).
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Appendix A: Proof of Lemma 1

For β = 0, it is easy to see that Wn | (W0 = w0) ∼ C∗(ϕnw0), and this converges to the
circular uniform as n tends to infinity. For β 6= 0 and ϕ > 0, assume that Arg(β) = 0.
Using eigenvalue decomposition, we have

(

ϕ βϕ
β 1

)

= Q

(

λ1 0
0 λ2

)

Q−1,

where
λ1 = 1

2(1 + ϕ − A), λ2 = 1
2(1 + ϕ + A),

Q =

(

ϕ − 1 − A 2β
ϕ − 1 + A 2β

)

, A =
√{(1 − ϕ)2 + 4β2ϕ}.

Then it follows that
(

ϕ βϕ
β 1

)n

◦ w0

=
{λn

1 (1 − ϕ + A) + λn
2 (ϕ − 1 + A)}w0 + 2(λn

2 − λn
1 )βϕ

2(λn
2 − λn

1 )βw0 + λn
2 (1 − ϕ + A) + λn

1 (ϕ − 1 + A)

=
{(λ1/λ2)

n(1 − ϕ + A) + ϕ − 1 + A}w0 + 2{1 − (λ1/λ2)
n}βϕ

2{1 − (λ1/λ2)n}βw0 + 1 − ϕ + A + (λ1/λ2)n(ϕ − 1 + A)
. (15)

Since 0 < λ1 < 1 and λ2 > 1, it is clear that (λ1/λ2)
n → 0 as n → ∞. Thus

(

ϕ βϕ
β 1

)n

◦ w0 −→ (ϕ − 1 + A)w0 + 2βϕ

2βw0 + 1 − ϕ + A
as n −→ ∞.

After some algebra, one obtains

(ϕ − 1 + A)w0 + 2βϕ

2βw0 + 1 − ϕ + A
= φ∞.

It follows from Theorem 2 and Lebesgue’s dominated convergence theorem that Wn | (W0 =

w0)
d→ C∗(φ∞) as n → ∞. In the case of Arg(β) 6= 0, one can easily prove that the con-

ditional of Wn given W0 = w0 also converges to C∗(φ∞) by combining the above result
and equation (7). If ϕ = 0, then Wn | (W0 = w0) ∼ C∗(0) for any n ≥ 1, and Lemma 1
holds.
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Appendix B: Proof of Lemma 2

First, we show πP = π, namely,
∫

∂D
P (w, A)π(dw) = π(A),

for any measurable set A (⊂ ∂D). If ϕ = 0, this is obvious. When ϕ > 0, the following
hold for πP :

(πP )(A) =

∫

∂D
P (w,A)π(dw)

=

∫

∂D

(
∫

A

1

2π

1 − |φ1(w)|2
|z − φ1(w)|2 µ(dz)

)

1

2π

1 − |φ∞|2
|w − φ∞|2 µ(dw)

=

∫

A

(
∫

∂D

1

4π2

1 − |φ1(w)|2
|z − φ1(w)|2

1 − |φ∞|2
|w − φ∞|2 µ(dw)

)

µ(dz). (16)

By transforming

W ′ =

(

1 −φ∞

−φ∞ 1

)

◦ W,

and using property (6), (16) can be expressed as

(πP )(A) =

∫

A

(
∫

∂D

1

4π2

1 − |φ′
1(w

′)|2
|z − φ′

1(w
′)|2 µ(dw′)

)

µ(dz),

where

φ′
1(w

′) =

(

ϕ βϕ

β 1

)

◦
{(

1 φ∞

φ∞ 1

)

◦ w′

}

.

From equation (2) and the following relationship
(

ϕ βϕ

β 1

)

◦ φ∞ = φ∞,

it follows that

φ′
1(w

′) =

{(

1 φ∞/ϕ

φ∞/ϕ 1

)

◦ w′

}

ϕ.

Transform

W ′′ =

(

1 φ∞/ϕ

φ∞/ϕ 1

)

◦ W ′,

and note that

h(w′′) =
||w′′|2 − 1/ϕ2|
|w′′ − z/ϕ|2 , w′′ ∈ D,

is continuous on the closed unit disc and analytic on the open unit disc. Then, by Theorem
1 of Kato et al. (2008), (πP )(A) reduces to

(πP )(A) =

∫

A

(
∫

∂D

1

4π2

||w′′|2 − 1/ϕ2|
|w′′ − z/ϕ|2

|1 − |φ∞|2/ϕ2|
|w′′ − φ∞/ϕ|2 µ(dw′′)

)

µ(dz)

=

∫

A

1

2π

||φ∞|2 − 1|/ϕ2

|φ∞ − z|2/ϕ2
µ(dz)

=

∫

A

1

2π

1 − |φ∞|2
|z − φ∞|2 µ(dz)

= π(A).
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Thus we obtain πP = π. Next we prove that the Möbius Markov process is π-irreducible.
Since each support of the densities for π and W1 | (W0 = w0) is ∂D, it follows that if a
measurable set A satisfies π(A) > 0, which is a condition equivalent to µ(A) > 0, then
P (w0, A) > 0. Hence the Möbius Markov process is π-irreducible. Therefore, by Theorem
1 of Tierney (1994), π is the unique invariant distribution of the process.

Appendix C: Proof of Lemma 4

On putting Ṽj = (Re(W̃j), Im(W̃j))
′ = Q′Vj (j = m,n), it follows that

E(Vm) = QE(Ṽm) and E(Vn) = QE(Ṽn).

Since Q′ is a rotation matrix which controls the mean direction of W̃ℓ to be 0, we have
W̃ℓ ∼ C∗(|φ∞|) for any ℓ. Remember that a known result of the wrapped Cauchy distri-
bution (see McCullagh (1996)):

Z ∼ C∗(φ) =⇒ E(Zp) = φp. (17)

On putting p = 1 in the above equation, we immediately obtain E(Ṽj) = (|φ∞|, 0)′.
Therefore it follows that

E(Vm) = E(Vn) = Q

(|φ∞|
0

)

.

Using equation (17) with p = 0 and 2, it is easy to show

E(VmV′
m) = E(VnV

′
n) = Q

(

1
2(1 + |φ∞|2) 0

0 1
2(1 − |φ∞|2)

)

Q′.

Next we consider E(VmV′
n). It can be expressed as

E(VmV′
n) = QE(ṼmṼ′

n)Q′.

From equation (7), one obtains that the conditional distribution of W̃m given W̃n has the
wrapped Cauchy C∗(φ̃m−n(w̃n)), where

φ̃m−n(w̃n) =

(

ϕ |β|ϕ
|β| 1

)m−n

◦ w̃n =

(

a00 a01

a10 a11

)

◦ w̃n

From this, E{Re(W̃m)Re(W̃n)} can be expressed as

E
{

Re(W̃m)Re(W̃n)
}

=

∫

∂D
Re(φ̃m−n(w̃n))Re(w̃n)

1

2π

1 − |φ∞|2
|w̃n − |φ∞||2 dµ(w̃n)

=

∫ π

−π
Re

(

a00e
iθ + a01

a10eiθ + a11

)

cos θ
1

2π

1 − |φ∞|2
1 + |φ∞|2 − 2|φ∞| cos θ

dθ

=
1

2π|a11|2
∫ π

−π
cos θ

(a00a10 + a01a11) + (a00a11 + a01a10) cos θ

1 + 2|a10/a11| cos θ + |a10/a11|2

× 1 − |φ∞|2
1 + |φ∞|2 − 2|φ∞| cos θ

dθ.
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It is known in the theory of Fourier series expansion (see, for example, Mardia and Jupp
(1999, p.51)) that

1 − ρ2

1 + ρ2 − 2ρ cos θ
= 1 + 2

∞
∑

j=1

ρj cos(jθ), −1 < ρ < 1.

Applying this property, it holds for 0 ≤ ρ1, ρ2 < 1 that
∫ π

−π
cos θ

1 − ρ2
1

1 + ρ2
1 − 2ρ1 cos θ

· 1 − ρ2
2

1 + ρ2
2 + 2ρ2 cos θ

dθ

=

∫ π

−π
cos θ







1 + 2

∞
∑

j=1

ρj
1 cos(jθ)







{

1 + 2

∞
∑

k=1

(−ρ2)
k cos(kθ)

}

dθ

=

∫ π

−π
cos θdθ + 2

∞
∑

j=1

ρj
1

∫ π

−π
cos θ cos(jθ)dθ + 2

∞
∑

k=1

(−ρ2)
k

∫ π

−π
cos θ cos(kθ)dθ

+4
∞

∑

j,k=1

ρj
1(−ρ2)

k

∫ π

−π
cos θ cos(jθ) cos(kθ)dθ

= 2ρ1π + 2(−ρ2)π + 4
∞

∑

j=2

ρj
1(−ρ2)

j−1 · π

2
+ 4

∞
∑

j=1

ρj
1(−ρ2)

j+1 · π

2

= 2π

{

ρ1 − ρ2 −
1

ρ2

( −ρ1ρ2

1 + ρ1ρ2
+ ρ1ρ2

)

− ρ2
−ρ1ρ2

1 + ρ1ρ2

}

=
2π(ρ1 − ρ2)

1 + ρ1ρ2
. (18)

Similarly,
∫ π

−π
cos2 θ

1 − ρ2
1

1 + ρ2
1 − 2ρ1 cos θ

· 1 − ρ2
2

1 + ρ2
2 + 2ρ2 cos θ

dθ

=

∫ π

−π

cos 2θ + 1

2

1 − ρ2
1

1 + ρ2
1 − 2ρ1 cos θ

· 1 − ρ2
2

1 + ρ2
2 + 2ρ2 cos θ

dθ

=
1 − ρ2

1ρ
2
2 + (ρ1 − ρ2)

2

1 + ρ1ρ2
. (19)

From equations (18) and (19), it follows that

E
{

Re(W̃m)Re(W̃n)
}

=
(a00a10 + a01a11)(|φ∞| − |a10/a11|)
(|a11|2 − |a10|2)(1 + |φ∞a10/a11|)

+
(a00a11 + a01a10){1 − |φ∞a10/a11|2 + (|φ∞| − |a10/a11|)2}

2(|a11|2 − |a10|2)(1 + |φ∞a10/a11|)
.

The other elements of E(ṼjṼ
′
k) are obtained in a similar manner as

E{Im(W̃m)Im(W̃n)} =
(a00a11 − a01a10)(1 − |φ∞|2 − |a10/a11|2 + |φ∞a10/a11|2)

2(|a11|2 − |a10|2)(1 + |φ∞a10/a11|)
,

E{Re(W̃m)Im(W̃n)} = E{Im(W̃m)Re(W̃n)} = 0.

Therefore we have

E(VjV
′
k) = QE(ṼjṼ

′
k)Q

′ = Q

(

a 0
0 b

)

Q′.
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