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Abstract

Information geometry is applied to mean field approximation for elucidating its

properties in the spin glass model or the Boltzmann machine. The α-divergence is

used for approximation, where α-geodesic projection plays an important role. The

naive mean field approximation and TAP approximation are studied from the point

of view of information geometry, which treats the intrinsic geometric structures of

a family of probability distributions. The bifurcation of the α-projection is studied,

at which the uniqueness of the α-approximation is broken.

1 Introduction

Mean field approximation uses a simple tractable family of probability distributions to

calculate quantities related to a complex probability distribution including mutual inter-

actions. Information geometry, on the other hand, studies intrinsic geometrical structure

existing in the manifold of probability distributions (Chentsov, 1982; Amari, 1985; Amari

and Nagaoka, 2000). It was used for analyzing performances of learning in the Boltz-

mann machine (Amari, Kurata and Nagaoka, 1992), the EM algorithm (Amari, 1995),

multilayer perceptrons (Amari, 1998), etc. A number of new works appeared recently
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which treated mean field approximation from the point of view of information geome-

try (Tanaka [this volume], Tanaka [2000], Kappen [this volume], and Bhattacharyya and

Keerthi [1999, 2000]).

The present article studies the relation between mean field approximation and infor-

mation geometry in more detail. We treat a simple spin model like the SK model or the

Boltzmann machine, and study how the mean values of spins can be approximated. It

is known (Tanaka, this volume) that, given a probability distribution including complex

mutual interactions of spins or neurons, the mean value of each spin is kept constant when

it is projected by the m-geodesic to the submanifold consisting of independent probability

distributions. On the other hand, the m-projection is computationally intractable for a

large system. Instead, its projection by the e-geodesic is easy to calculate. However, the

mean value is changed by this, so that only an approximate value is obtained. This gives

the naive mean field approximation.

A family of divergence measures named the α-divergence is defined invariantly in the

manifold of probability distributions (Amari, 1985; Amari and Nagaoka, 2000). The

α = −1 divergence is known as the Kullback-Leibler divergence or cross entropy, α = 1

as the reverse of the K-L divergence, and α = 0 as the Hellinger distance. This con-

cept is closely related to the Rényi entropy (R’enyi, 1961; see also Chernoff, 1952; the

f-divergence of Csiszár, 1975). These divergence functions give a unique Riemannian met-

ric to the manifold of probability distributions. It moreover gives a family of invariant

affine connections named the α-connections where α- and −α-affine connections are du-

ally coupled to each other with respect to the Riemannian metric (Nagaoka and Amari,

1982; Amari, 1985; Amari and Nagaoka, 2000). The α-geodesic is defined in this context.

It should be remarked that the Tsallis entropy (Tsallis, 1988) is closely connected to the

α-geometry.

We use the α-geodesic projection to elucidate various mean field approximations. The

α-projection is the point in the tractable subspace consisting of independent distributions

that minimizes the α-divergence from a given true distribution to the subspace. It is given

by the α-geodesic that is orthogonal to the subspace at the α-projected point. This gives
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a family of the α-approximations, where α = −1 is the distribution giving the true mean

value and α = 1 is the naive mean approximation. Therefore, it is interesting to know

how the α-approximation depends on α. We also study the TAP approximation in this

framework.

We can prove that the m-projection (α = −1) is unique, while α-projection (α �= −1) is

not necessarily so. The e-projection (α = 1), that is the naive mean field approximation, is

not necessarily uniquely solved. Therefore, it is interesting to see how the α-approximation

bifurcates depending on α. We calculate the Hessian of the α-approximation which shows

the stability or the local minimality of the projection.

2 Geometry of Mean Field Approximation

Let us consider a system of spins or Boltzmann machine, where x = (x1, · · · , xn) ; xi = ±1

denotes the values of n spins. The equilibrium probability distribution is given by

q(x ; W,h) = exp {W ·X + h · x − ψq} , (1)

where W = (wij) and X = (xixj) are symmetric matrices and

W ·X =
1

2

∑
wijxixj (wii = 0) , (2)

h · x =
∑

hixi. (3)

Here, W denotes the mutual interactions of the spins, h the outer field, and e−ψq is the

normalization constant, Z = eψq is the partition function, and ψq = ψq(W,h) is called

the free energy in physics or the cumulant generating function in statistics.

Let S be the family of probability distributions of the above form (1), where (W,h)

forms a coordinate system to specify each distribution in S. Let Eq be the expectation

operator with respect to q. Then, the expectations of X and x,

Kq = Eq[X] = (Eq [xixj]) , m[q] = Eq[x] = (Eq [xi]) . (4)

form another coordinate system of S. Our theory is based on information geometry and

is applicable to many other general cases, but for simplicity’s sake, we stick on this simple

problem of obtaining a good approximation of m[q] for a given q.
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Let us consider the subspace E of S such that xi’s are independent or W = 0. A

distribution p ∈ E is written as

p(x,h) = exp {h · x − ψp} . (5)

This is a submanifold of S specified by W = 0, and h is its coordinates. The expectation

m = Ep[x] (6)

is another coordinate system of E.

Physicists know that it is computationally difficult to calculate m[q] from q(x,W,h).

It is given by

m[q] =
∂

∂h
ψq(W,h) (7)

but the partition function Zq = e−ψq is difficult to obtain when the system size is large.

On the other hand, for p ∈ E, it is easy to obtain m = Ep[x] because xi are indepen-

dent. Hence, the mean field approximation tries to use quantities obtained in the form of

expectation with respect to some relevant p ∈ E.

Physicists established the method of approximation, called the mean field theory,

including the TAP approximation. The problem is formulated more naturally in the

framework of information geometry (Tanaka [this volume], Kappen [this volume] and

Bhattacharyya and Keerthi [2000]). The present paper tries to give another way to eluci-

date this problem by information geometry of the α-connections introduced by Nagaoka

and Amari [1982], Amari [1985] and Amari and Nagaoka [2000].

3 Concepts from Information Geometry

Here, we introduce some concepts of information geometry without entering in details.

Let y be a discrete random variable taking values on a finite set {0, 1, · · · , N − 1}, and

let p(y) and q(y) be two probability distributions. In the case of spins, y represents 2nx’s

where N = 2n.
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α-divergence

The α-divergence from q to p is defined by

Dα[q : p] =
4

1 − α2

(
1 −

∑
y

q
1−α

2 p
1+α

2

)
, α �= ±1 (8)

and for α = ±1

D−1[q : p] =
∑

q log
q

p
, (9)

D1[q : p] =
∑

p log
p

q
. (10)

The latter two are the Kullback-Leibler divergence and its reverse. When α = 0, it is the

Hellinger distance,

D0[q : p] = 2
∑

(
√
p−√

q)2 . (11)

The divergence satisfies

Dα[q : p] ≥ 0, (12)

with equality when and only when q = p. However, it is not symmetric except for α = 0,

and it satisfies

Dα[q : p] = D−α[p : q]. (13)

The α-divergence may be calculated in the following way. Let us consider a curve of

probability distributions parameterized by t,

p(y, t) = e−ψ(t)q
1−t
2 p

1+t
2 = exp

{
1

2
log pq +

t

2
log

p

q
− ψ(t)

}
, (14)

which is an exponential family connecting q and p. Here, e−ψ(t) is the normalization

constant. We then have

Dα[q : p] =
4

1 − α2

(
1 − eψ(α)

)
, α �= ±1. (15)

We also have

ψ′(α) =
1

2
Eα

[
log

p

q

]
, (16)

ψ′′(α) = Eα

[
1

4

(
log

p

q

)2
]
− {ψ′(α)}2

, (17)

ψ′′′(α) =
1

8
Eα

[{(
log

p

q

)
− Eα

[
log

p

q

]}3
]
, (18)
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where Eα denotes expectation with respect to p(y, α). For α = ±1, ψ(±1) = 0. By taking

the limit, we have

Dα = 2αψ′(α), α = ±1. (19)

The family of the α-divergences gives invariant measures provided by information

geometry.

4 Parametric model and Fisher information

When p(y) is specified by a coordinate system ξ, it is written as p(y, ξ). The N − 1

quantities

pi = Prob{y = i}, i = 1, · · · , N − 1 (20)

form coordinates of p(y). There are many other coordinate systems. For example

θi = log
pi
p0

(21)

is another coordinate system. Let

δi(y) =

⎧⎨
⎩ 1, y = i,

0, otherwise.
(22)

Then, we have

p(y, ξ) =
∑

piδi(y) + p0δ0(y), (23)

p(y, θ) = exp
{∑

θiδi(y) + log p0

}
. (24)

The α-divergence for two nearby distributions p(y, ξ) and p(y, ξ + dξ) is expanded as

Dα [p(y, ξ) : p(y, ξ + dξ)] =
1

2

∑
i,j

gij(ξ)dξidξj , (25)

where the right-hand side does not depend on α. The matrix G(ξ) = (gij(ξ)) is positive-

definite and symmetric, given by

gij(ξ) = E

[
∂ log p(y, ξ)

∂ξi

∂ log p(y, ξ)

∂ξj

]
. (26)

This is called the Fisher information. It gives the unique invariant Riemannian metric to

the manifold of probability distributions.
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α-projection

Let M be a submanifold in S. Given q ∈ S, the point p∗ ∈ M is called the α-projection

of q to M , when function Dα[q, p], p ∈ M takes a critical value at p∗, that is

∂

∂ξ
Dα [q : p(y, ξ)] = 0, (27)

at p∗ where ξ is a coordinate system of M . The minimizer of Dα[q : p], p ∈ M , is the

α-projection of q to M . We denote it by

p∗ =
∏
α

q. (28)

M
�
�
�
�p

q

-geodesic

α

α

*

S

Figure 1: α-projection

In order to characterize the α-projection, we need to define the α-affine connection

and α-geodesic derived therefrom. We do not explain them here (see Amari, 1985; Amari

and Nagaoka, 2000). We show the following fact. See Fig.1.

Theorem 1. A point p∗ ∈ M is the α-projection of q to M , when and only

when the α-geodesic connecting q and p∗ is orthogonal to M in the sense of the Fisher

Riemannian metric G.
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-geodesic

��
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q

p
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α
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Figure 2: Pythagoras’ theorem

Exponential family

A family of distributions is called an exponential family, when its probability distributions

are written as

p(y, θ) = exp
{∑

θiki(y)− ψ(θ)
}

(29)

by using an appropriate coordinate system θ, where k = ki(y) are adequate functions of

y. The spin system or Boltzmann machine (1) is an exponential family, where

θ = (W,h) (30)

and k consists of

k = (X,x). (31)

The exponential family forms an α = ±1 flat manifold, that is, α = ±1 Riemann-

Christoffel curvatures vanish identically, but this is a non-Euclidean space. There exist

α = ±1 affine coordinate systems in such a manifold. The above θ is an α = 1 affine

coordinate system, called the e-affine (exponential-affine), because the log probability is
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linear in θ. An e-geodesic (α = 1 geodesic) is linear in θ. More generally, for any two

distributions p(y) and q(y), the e-geodesic connecting them is given by

log p(y, t) = (1 − t) log p(y) + t log q(y)− ψ(t). (32)

Let us denote the expectation of k by η,

η = E[k]. (33)

It is known that this η forms another coordinate system of an exponential family. This is

an α = −1 affine coordinate system, or m-affine (mixture affine) coordinate system. The

two coordinate systems are connected by the Legendre transformation,

η =
∂

∂θ
ψ(θ), (34)

θ =
∂

∂η
ϕ(η), (35)

where ϕ(η) is the negative of entropy function, and

ψ(θ) + ϕ(η)− θ · η = 0 (36)

holds. Any linear curve in η is an m-geodesic.

An important property is given by the following theorem. See Fig.2.

Theorem 2. Let p, q, r be three probability distributions in an ±α-flat manifold S.

When the α-geodesic connecting p and q is orthogonal at q with respect to the Riemannian

metric to the −α-geodesic connecting q and r,

Dα[p : q] + Dα[q : r] = Dα[p : r]. (37)

From this follows

Theorem 3. Let M be a smooth submanifold in an ±α-flat manifold S, and let p∗

be the α-projection from q to M . Then, the α-geodesic connecting q and p∗ is orthogonal

to M and vice versa.
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5 Geometry of E

Since E consists of all the independent distributions, it is easy to show the geometry of

E. Moreover, E itself is an exponential family,

p(x, h̄) = exp
{
h̄ · x − ψ0(h̄)

}
, (38)

where

eψ0(�̄) =
∏
i

(
eh̄i + e−h̄i

)
(39)

or

ψ0(h̄) =
∑
i

log
(
eh̄i + e−h̄i

)
. (40)

This h̄ =
(
h̄1, · · · , h̄n

)
is the e-affine coordinates of E. Its m-affine coordinates are

given by

m = Ep[x] =
∂

∂h̄
ψ0(h̄), (41)

which is easily calculated as

mi = Ep[xi] =
∂

∂h̄i
ψ0(h̄) =

eh̄i − e−h̄i

eh̄i + e−h̄i
= tanh h̄i. (42)

This is solved as

eh̄i =

√
1 +mi

1 −mi
. (43)

In terms of m, the probability is written as

p(x,m) =
∏ 1 +mixi

2
, xi = ±1. (44)

The Riemannian metric or the Fisher information G = (gij) is

gij =
∂mi

∂h̄j

=
(
1 −m2

i

)
δij. (45)

Its inverse Ḡ = G−1 = (ḡij) is

ḡij =

(
1

1 −m2
i

)
δij. (46)

Let l(x,m) = log p(x,m). We then have

∂mil =
xi −mi

1 −m2
i

, (47)

∂2
mi
l = − (∂mi l)

2 . (48)
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6 The α-projection and mean field approximation

Given q ∈ S, its α-projection to E is given by

p̄α =
∏
α

q = arg min
p∈�

Dα[q : p]. (49)

We denote by mα[q] the expectation of x with respect to p̄α, that is Ep̄α[x]. Then it is

given by

∂

∂m
Dα [q : p (x,mα)] = 0. (50)

From the point of view of information geometry,
∏

α q = p (x,mα) ∈ E is the α-geodesic

projection of q to E in the sense that the α-geodesic connecting q and p is orthogonal to

E at p = p (x,mα).

When α = −1, p̄−1 is the m-projection (α = −1-projection) of q to E. We have

m−1 = m[q] (51)

which is the quantity we want to obtain. This relation is directly calculated by solving

∂

∂m
D−1 [q : p (m−1)] = 0, (52)

because this is equivalent to

∂

∂m

∫
q log p(x,m)dx = 0, (53)

or

∂

∂m
Eq [l(x,x)] = 0 = constEq [x − m] . (54)

Hence,

m−1 = Eq[x] (55)

which is the quantity we have searched for. But we cannot calculate Eq[x] explicitly, due

to the difficulty in calculating Z or ψq for q.

Physicists tried to obtain m−1 by mean field approximation in an intuitive way. If we

use the e-projection of q to E instead of the m-projection, we have the naive mean field
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approximation (Tanaka, 2000). To show this, we calculate the e-projection (1-projection)

of q to E. For α = 1,

D1[q : p] = D−1[p : q] = Ep
[
h̄ · x − ψp − (WX + h · x − ψq)

]
= h̄ · m − ψp −W ·M − h · m + ψq (56)

because of M = Ep[X] = mmT . Hence,

∂D1

∂m
=

∂h̄

∂m

∂

∂h̄

(
h̄ · m − ψp

)−Wm − h

= tanh−1m −Wm − h. (57)

This gives

m1[q] = tanh [Wm1[q] + h] , (58)

known as the “naive” mean-field approximation. In the component form, this is

mi = tanh
(∑

wijmj + hi
)
. (59)

This equation can have a number of solutions. It is necessary to check which solution

minimizes D1[q : p]. The minimization may be attained at the boundary of mi = ±1.

Similarly, we have the α-projection mα[q] by solving

∂

∂m
Dα [q : p(x,m)] = 0. (60)

However, it is not tractable to obtain mα explicitly except for α = 1.

7 α-trajectory

For a fixed q, its α-projection mα[q] is considered as a path in E connecting the true

m−1 = m[q] and the mean-field approximation m1[q]. This is called the α-trajectory of

q in E. See Fig.3.

The tangent direction of the trajectory is given by dmα/dα. This is given from

∂mDα [q : p (mα)] = 0, (61)

∂mDα+dα [q : p (mα + dmα)] = 0 (62)
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mα[q ]

�
�
�
�

�
�
�
�

S

E

q

α α=-1

Figure 3: α-trajectory

so that, by Taylor expansion,

∂m∂αDαdα + ∂2
mDαdmα = 0. (63)

Here, ∂m = ∂/∂m and ∂α = d/dα. We then have

dmα

dα
= −{∂2

mDα

}−1
∂m∂αDα. (64)

Starting from the naive approximation, we may improve it by the expansion

mα[q] = m1[q] +
dmα

dα
(α− 1) +

1

2

d2mα

dα2
(α− 1)2 + · · · (65)

where the derivatives are evaluated at α = 1, provided they are calculated easily. Another

idea is to integrate dmα/dα, provided the derivative at α can be calculated. We cannot

solve these methods now.

In order to study the α-trajectory, we show some preliminary calculations. The α-

divergence from q to p(x,m) ∈ E is written as

Dα [q : p(m)] =
4

1 − α2

(
1 − eψ(α,�)

)
(66)
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where

ψ(α,m) = log
∑

q
1−α

2 p
1+α

2 = logEp

[(
q

p

) 1−α
2

]
. (67)

We first calculate ∂mψ, since mα is given by

∂mψ (α,mα) = 0. (68)

We have

∂mψ =
1 + α

2
e−ψ(α,�)

∑
q

1−α
2 p−

1−α
2 ∂mp

=
1 + α

2
e−ψEp

[
∂ml

(
q

p

) 1−α
2

]
. (69)

We then have

∂2
mψ = − (∂mψ)

2
+

1 + α

2
e−ψ∂mEp

[
∂ml

(
q

p

)1−α
2

]
, (70)

where ∂2
mψ is a matrix and (∂mψ)2 implies (∂mψ) (∂mψ)T . At m = mα, the first term

vanishes and

∂2
mψ =

1 + α

2
e−ψEp

[(
(∂ml)

2 + ∂2
ml
)(q

p

) 1−α
2

− 1 − α

2
(∂ml)

2

(
q

p

) 1−α
2

]
. (71)

We also have

∂m∂αψ(α,m) =
1 + α

4
e−ψEp

[
∂ml log

p

q

(
q

p

)1−α
2

]
+

1

1 + α
∂mψ

=
1 + α

4
e−ψEp

[
∂ml log

p

q

(
q

p

)1−α
2

]
. (72)

From this we have

dmα

dα
= −1

2
A−1Ep

[
∂ml log

p

q

(
q

p

) 1−α
2

]
(73)

A = Ep

[(
(∂ml)

2 + ∂2
ml
)(q

p

) 1−α
2

− 1 − α

2
(∂ml)

2

(
q

p

)1−α
2

]
. (74)

For α = 1, we have

dmα

dα
= −1

2

Ep
[
∂ml {log(p/q)}2]

Ep
[{

(∂ml)
2 + ∂2

ml
}

log(p/q) + (∂ml)
2] . (75)
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8 α-Hessian

The α-projection mα[q] is given by the point p̄α in E that is the orthogonal projection

of q to E by the α-geodesic. Such projection is not necessarily unique. The projection is

not necessarily the minimizer of Dα[q : p] but is a saddle or even the maximizer of Dα.

To elucidate this we calculate the Hessian Hα =
(
Hα
ij

)
Hα
ij =

∂2

∂mi∂mj
Dα[q : p(m)] (76)

at the α-projection mα[q]. When Hα is positive-definite, the α-projection mα gives a

local minimum, but it is otherwise a saddle or local maximum. We have

Hα
ij = − 2

1 + α
Ep

[{
1 + α

2
∂il∂jl + ∂i∂jl

}
fα

]

= −Ep
[{

∂il∂jl +
2

1 + α
∂i∂jl

}
fα

]
, (77)

where ∂i = ∂/∂mi and fα = 2
1−α

(
q
p

)1−α
2

. From

∂il =
1

1 −m2
i

(xi −mi) , (78)

∂i∂jl = −δij 1

(1 −m2
i )

2 (xi −mi)
2
, (79)

we finally have

Hα
ij =

−1

(1 −m2
i )
(
1 −m2

j

)Ep [(xi −mi) (xj −mj) fα]

= −ḡiiḡjj {Ep [xixjfα] −mimj} , i �= j (80)

because of

mα
i [q] = Ep [xifα] (81)

and for i �= j

Hα
ii =

1 − α

1 + α
(ḡii)

2Ep
[
(xi −mi)

2 fα
]
. (82)

We calculate the two special cases α = ±1. For α = −1,

H−1
ij = ∂i∂j

∫
q log

q

p
dx

= (ḡii)
2 δijEq

[
(xi −mi)

2] (83)

= ḡiiδij = Ḡ,
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where Ḡ is the inverse of the Fisher information matrix of E. This is diagonal and positive-

definite. Because E is e-flat, we know that α = −1-projection gives the global minimum,

is unique (that is no other critical points) and gives the true solution m−1[q] = Eq[x].

For α = 1, we have

H1
ij = ∂i∂j

∫
p log

p

q
dx

= ḡiiδij − Ep [(∂i∂jl + ∂il∂jl) log q] . (84)

Hence,

H1
ii = ḡii =

1

1 −m2
i

, (85)

H1
ij = −ḡiiḡjjEp [(xi −mj) (xj −mj) log q]

= −ḡiiḡjjEp
[
(xi −mi) (xj −mj)

{∑
wklxkxl

+
∑

hkxk − ψq

}]
= −wij. (86)

This shows that H1 is not necessarily positive-definite. This fact is related to the α-

curvature of E. When n = 2 (two neurons), it is positive definite when and only when

w = w12 satisfies

w2 <
1

1 −m2
1

1

1 −m2
2

. (87)

Otherwise, it is a saddle. When h1 = h2, there exist one or two local minima other than

this.

This fact implies that the naive mean field approximation might give a pathological

solution in some cases. When |w| is large, the above two-spin system is dynamically

bistable, having two stable solutions x1 = x2 = 1, x1 = x2 = −1 (w > 0) or x1 =

−x2 (w < 0).

When α = −1, the α-projection m−1 is unique. Starting from α = −1, the α-

trajectory mα bifurcates at some α, and then bifurcates further, depending on W . See

Fig.4. When W is large, the naive mean field approximation (59) may have an exponen-

tially large number of solutions. It is interesting to study the diagram of bifurcation for

the α-trajectory.
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Figure 4: Bifurcation

9 Small w approximation of the α-trajectory

We give an explicit formula for the α-projection mα assuming that wij are small. The

TAP solution corresponds to m−1[q] under this approximation.

Let us consider an exponential family {p(x, θ)}. For two nearby distributions q =

p(x, θ + dθ) and p = p(x, θ), we have

Dα(q, p) = Dα(θ + dθ, θ) =
1

2

∑
gijdθ

idθj +
3 − α

12

∑
Tijkdθ

idθjdθk, (88)

where

gij =
∂2

∂θi∂θj
ψ(θ), Tijk =

∂3

∂θi∂θj∂θk
ψ(θ) =

∂

∂θk
gij . (89)

In our case, θ = (W,h), and for q = q(x, dW,h) and p = p(x, 0, h̄), we have

dθ = (dW, dh) , (90)

where W = dW is assumed to be small and dh = h− h̄. We can calculate gij and Tijk at

p ∈ E, for example, for I = (i, j) and j = (k, l),

gIJ = Ep [(xixj −mimj) (xkxl −mkml)] . (91)
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The metric G consists of the three parts gIJ , gIk, gkl where I, J etc are index pairs

corresponding to dW I = wij, and small letter indices i, j etc refer to dhi = hi − θi.

Note that

gij = E [(xi −mi) (xj −mj)] (92)

Tijk = E [(xi −mi) (xj −mj) (xk −mk)] (93)

etc. By using this, we have the following expansion,

Dα[q, p] =
1

2
gIJdw

IdwJ +
1

2
gijdh

idhj + gIkdw
Idhk

+
3 − α

12

{
TIJKdw

IdwJdwK + 3TIjkdw
Idhjdhk

+3TIJkdw
IdwJdhk + Tijkdh

idhjdhk
}
, (94)

where the summation convention is used for repeated indices. In order to obtain the

α-projection, we solve

∂Dα

∂h̄i
= 0, (95)

where indices i of dθi are decomposed into indices pairs I = (i, j), etc. for W I = wij and

single indices i, j, · · · for hi. For example, we have

0 = −gildhi − gIldw
I − 1 − α

4

(
TIJldw

IdwJ

+Tijldh
idhj + 2TIkldw

Idhk
)

+O
(
w3
)
, (96)

where we used

∂

∂h̄l
dhi = −δil. (97)

The first-order solution to (96) does not depend on α,

hi − h̄i = gilgIldw
I (98)

or

θi = hi +
∑

wijmj (99)

which is the naive mean field approximation.
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In order to calculate higher-order corrections, we note

gij = δij
(
1 −m2

i

)
(100)

gIk =
(
1 −m2

i

) {δkimj + δkjmi} , I = (j, j) (101)

gIJ = E [(xixj −mimj) (xkxl −mkml)] , I = (i, j), J = (k, l) (102)

etc. Quantities T can be calculated similarly. The second-order correction term Al, which

is given by the second term of (96), is obtained after painful calculations as

Al = ml

∑
(wlk)

2 (1 −m2
k

)
. (103)

Some easy terms are

Tijldh
idhj = −2ml

(
1 −m2

l

) (
dwlkmk

)2
(104)

TIkldw
Idhl = 2ml

(
1 −m2

l

) (
dwlkmk

)2
− (1 −m2

l

) (
1 −m2

k

)
dwlkdwksms. (105)

After all, we have

h̄l = ml +
∑

wlkmk +
1 − α

2
ml

∑
(wlk)

2 (1 −m2
k

)
. (106)

or

mα
l = tanh

(
hl +

∑
wekm

α
k +

1 − α

2
mα
l

∑
(wlk)

2 (1 −mα2
k

))
. (107)

This gives the α-projections in terms of parameter α, where α = 1 is for the naive

approximation and α = −1 is for the TAP approximation. This is small w approximation

of the α-trajectory and is valid for small w.

Conclusions

The present article studies the geometrical structure underlying mean field approximation.

Information geometry is used for this purpose which has the Riemannian metric together

with dual pairs of affine connections. Information geometry gives the α-structure to

the manifold of probability distributions of the SK-spin glass system or the Boltzmann
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machine. The α-divergence is defined in the manifold which is invariant under a certain

criterion.

The mean field approximation is a method of calculating quantities related to a com-

plex probability distribution, by using a simple tractable model such as the family of

independent distributions. The α = −1 projection of the distribution to submanifold

consisting of independent distributions is known to give the correct answer, but it is

intractable. The α = 1 approximation is tractable, but it gives only an approximation.

We search for possibility of using the α-approximation that minimizes the α-divergence.

It is unfortunately difficult to calculate. But its properties are studied for future study.

We have also shown the information-geometric meaning of the TAP approximation.

We have elucidated the fact that α = −1 projection is unique, giving the true solution

but α-approximation (α �= −1) is not necessarily unique. When we study the trajectory

consisting of the α-projections, there are a number of bifurcations where the α-projection

bifurcates. It is an interesting problem to study the properties of such bifurcation and its

implications.

The present article is preliminary to further studies on interesting problems connecting

information geometry and statistical physics.
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