
Acceleration of the EM algorithm

Shiro Ikeda
PRESTO, Japan Science and Technology Corporation (JST)

July 25, 2001

Abstract

The EM algorithm is used for many applications in-
cluding Boltzmann machine, stochastic Perceptron and
HMM. This algorithm gives an iterating procedure for
calculating the MLE of stochastic models which have
hidden random variables. It is simple, but the conver-
gence is slow. We also have “Fisher’s scoring method”.
Its convergence is faster, but the calculation is heavy.
We show that by using the EM algorithm recursively,
we can connect these two methods and accelerate the
EM algorithm. Also Louis, Meng and Rubin showed
they can accelerate the EM algorithm, but our algo-
rithm is simpler. We show some numerical simulations
with our algorithm.

Keywords EM algorithm, Fisher’s scoring method,
maximum likelihood estimate, Louis turbo

1 Introduction

The EM (Expectation Maximization) algorithm[9] was
originally proposed by Dempster et al.[4] for estimating
the MLE(Maximum Likelihood Estimate) of stochas-
tic models which have hidden random variables. The
algorithm is now used in many applications such as
HMM (Hidden Markov Model)[10] and some neural
networks including Boltzmann Machine[2], stochastic
Perceptron, and mixture of expert networks[5][6][7].
This algorithm gives an iterative procedure for each

model to obtain the MLE. The practical form of each
step is usually simple but the convergence speed is slow.
There are some works to accelerate the convergence
speed of the EM algorithm [8], but the procedure is
usually not easy and need a lot of calculations. Meng
and Rubin[11] proposed a practical method for realizing
the acceleration algorithm but it is still difficult to be
carried out.
On the other hand, there is an algorithm which is

called the Fisher’s scoring method[9]. This algorithm
is also used to estimate the MLE with some iterative
method. It is know that the Fisher’s scoring converges
faster than the EM algorithm but the calculation of
each step is heavy. For the models like HMM or Neural
Networks it is difficult to apply this method.
In this paper, we first show the relation between the

EM algorithm and the Fisher’s scoring. Based on the

result, we propose the way to approximate the Fisher’s
scoring by applying the EM algorithm recursively. This
procedure is simple and gives a fast convergence speed.
The algorithm consists of two parts. First, it applies
one EM step with the given data set. After that, draw
data from the updated model and apply another EM
step with this new data set. We show that we can
obtain better parameters through the process. We show
some results of numerical simulations and the algorithm
converges faster than the original EM algorithm.

2 The EM algorithm and the
Fisher’s scoring

2.1 The EM algorithm

When we estimate the parameters of Boltzmann
machine[2] or stochastic Perceptron[1], what makes the
estimation difficult is the hidden random variables in
the models. Let us define their random variables as
x = (y, z), where y is the visible variable (output cells),
and z is the hidden variable (output of the hidden lay-
ers). With these variables, we can define the model as
p(x;θ) = p(y, z;θ). For the estimation of their parame-
ters, what is available is only an empirical distribution
of y, {y1, · · · , yN}. Let us define this empirical dis-
tribution of y as q̂(y) =

∑N
s=1 δ(ys)/N . We want to

estimate θ from q̂(y).
The marginal distribution p(y;θ) is defined from

p(x;θ) as

p(y;θ) = Ep(z;θ) [p(x;θ)] =
∫
p(x;θ)dµ(z).

Let l(y;θ) = log p(y;θ), and the log-likelihood function
is

L(Y N ;θ) def=
1
N

N∑
s=1

l(ys;θ)

=
∫
q̂(y)l(y;θ)dµ(y) = Eq̂(y) [l(y;θ)].

The definition of the maximum likelihood estimate
is the parameter θ̂ which maximizes this function
L(Y N ;θ).

θ̂ = argmax
θ

L(Y N ;θ). (1)

1

If the model has a hidden variable z, it is difficult to cal-
culate MLE by solving (1) directly. The EM algorithm
is useful in such cases.
In this paper, p(x;θ) is an exponential family where

the probability density function is written as

p(x;θ) = exp

(
n∑

i=1

θiri(x)− k(r(x))− ψ(θ)
)
.

(2)

where, r(x) = (r1(x), · · · , rn(x))T , θ = (θ1, · · · , θn)T

(natural parameter), and ψ(θ) is the normalization
term which is a function of the natural parameter.
Various models are included in the exponential fam-
ily, such as Boltzmann machine, stochastic Perceptron,
HMM, and Gaussian mixture[1][2]. Even when p(x;θ)
belongs to the exponential family, the marginal distri-
bution p(y;θ) is not always included in the exponential
family.
The EM algorithm is an iterative algorithm to calcu-

late the MLE by generating, from an initial point θ0,
a sequence {θt} of estimates, t = 1, 2, 3, · · · . Each step
consists of the following two sub-steps.

• E-step: Given observation q̂(y) and current esti-
mate, evaluate Q(θ,θt), which is defined as,

Q(θ,θt) = Eq̂(y)p(z|y;θt) [l(y, z;θ)]

=
N∑

s=1

∫
p(z|ys;θt)l(ys, z;θ)dµ(z).

• M-step: Find the θt+1 that maximizes Q(θ,θt),

θt+1 = argmax
θ

Q(θ,θt)

After a cycle of E-step and M-step, we obtain θt+1

from θt and it is shown[4] that

L(Y N ;θt+1) ≥ L(Y N ;θt).

By iterating EM steps, the algorithm converges to the
parameters which should be the MLE. The difference
of the parameters between before and after one EM
step can be approximated as (3) (The proof is shown
in [9](3.76),[12]). Here, we have to note that this ap-
proximation is not true for the curved exponential fam-
ily(Appendix A).

θt+1 � θt +GX
−1(θt)∂L(Y N ;θt), (3)

where ∂ = (∂1, · · · , ∂n)T = (∂/∂θ1, · · · , ∂/∂θn)T and
GX(θ) = (gXij(θ)) is the Fisher information matrix of
p(x;θ). The definition is

gXij(θ) = Ep(x;θ) [∂il(x;θ)∂jl(x;θ)]
= −Ep(x;θ) [∂i∂j l(x;θ)].

This result shows that the EM algorithm is updating
the parameter along the steepest decent direction with
the metric defined by GX .

2.2 The Fisher’s scoring

In this section, we derive the relation between the
Fisher’s scoring and the EM algorithm. The Fisher’s
scoring is also an iterative algorithm to have the MLE.
The updating rule is,

θt+1 = θt +GY
−1(θt)∂L(Y N ;θt). (4)

It looks similar to the EM algorithm but it is known
that the convergence is faster than the EM algorithm.
This comes from the difference between GX(θ)−1 in (3)
and GY (θ)−1 in (4). GY (θ) = (gY ij(θ)) is the Fisher
information matrix of p(y;θ).

gY ij(θ) = Ep(y;θ) [∂il(y;θ)∂jl(y;θ)]
= −Ep(y;θ) [∂i∂j l(y;θ)].

There is a following relation between GX(θ) and
GY (θ).

−l(y;θ) = −l(x;θ) + l(z|y;θ)
−Ep(y;θ) [∂i∂j l(y;θ)] = −Ep(x;θ) [∂i∂j l(x;θ)]

+Ep(x;θ) [∂i∂j l(z|y;θ)]
GY (θ) = GX(θ)−GZ|Y (θ) (5)

GZ|Y = (gZ|Y ij
(θ)) is also a conditional Fisher infor-

mation matrix defined as

gZ|Y ij
(θ) = −Ep(y;θ)

[
Ep(z|y;θ) [∂i∂j l(z|y;θ)]

]
= Ep(y;θ)

[
gZ|yij

(θ)
]
.

Generally, GY , GX and GZ|Y are positive definite sym-
metric matrices.
One step of the Fisher’s scoring changes the param-

eters into the Fisher efficient estimator. However, cal-
culation of GY

−1 is intractable in many models. Here,
we show the following expansion which is the key of our
algorithm.

Theorem 1. GY
−1 can be expanded with GX

−1 and
GZ|Y as

GY
−1 =

(
I +

∞∑
i=1

(GX
−1GZ|Y)i

)
GX

−1. (6)

Proof. (6) is easily obtained be simultaneous diagonal-
ization of GY , GX and GZ|Y [9].

Using this result, (4) can be rewritten as,

θt+1 = θt +GY
−1∂L(Y N ;θt)

= θt +GX
−1∂L(Y N ;θt)

+GX
−1GZ|YGX

−1∂L(Y N ;θt)

+(GX
−1GZ|Y)2GX

−1∂L(Y N ;θt)
+ · · · . (7)

(7) shows that the EM algorithm is the first order ap-
proximation of the Fisher’s scoring.

2

3 Proposed algorithm

We have shown that the Fisher’s scoring update the pa-
rameters into the Fisher efficient direction. However,
GY

−1 is intractable especially for the model such as
neural networks or HMM. Here, we propose an algo-
rithm to approximate the Fisher’s scoring by using the
tractable EM algorithm recursively.
Suppose the case we have applied one EM step to θt

and have obtained an estimate θt+1. This new estimate
θt+1 gives a probability distribution p(y;θt+1). Let us
draw N ′ samples from p(y;θt+1) as {ȳ1, ȳ2, · · · , ȳN ′} ∼
p(y;θt+1) and use this data set for estimation. After
one EM step applied to θt, we have a new estimate
θ̄t+1. This parameter is different from θt nor θt+1. It
can be shown that we can make a better estimate with
θt, θt+1 and θ̄t+1 (Fig.1). First, we show the following
theorem which describes the feature of θ̄t+1.

Figure 1: Flowchart of the proposed algorithm

Theorem 2. Let θ̄t+1 be the parameter estimated from
θt taking p(y;θt+1) as the target distribution and ap-
plied one EM step. Then we have the following approx-
imation,

θ̄t+1 − θt � GX
−1GYGX

−1∂L(Y N ;θt). (8)

Proof. See Appendix B.

From (3), (5) and (8), we can derive

θ̄t+1 − θt

� GX
−1(GX −GZ|Y)GX

−1∂L(Y N ;θt)

� (θt+1 − θt)−GX
−1GZ|YGX

−1∂L(Y N ;θt).
(9)

The second order approximation of the Fisher’s scoring
in (7) is

GX
−1GZ|YGX

−1∂L(Y N ;θt)
� (θt+1 − θt)− (θ̄t+1 − θt) = θt+1 − θ̄t+1.

Therefore, the approximation of the Fisher’s scoring up
to the second order is

θ′ = 2θt+1 − θ̄t+1

= θt + (θt+1 − θt) + (θt+1 − θ̄t+1)
� θt +GX

−1(I +GZ|YGX
−1)∂L(Y N ;θt).

We can use the similar process to approximate higher
orders of the Fisher’s scoring.

Collorary 1. Apply one EM step to θt and estimate
θ̄t+i where p(y; θ̄t+i−1) is the target distribution (θ̄t =
θt+1, i = 1, 2, · · ·), θ̄t+i has the following property.

θ̄t+i − θt � (GX
−1GY)iGX

−1∂L(Y N ;θt)
= (I −GX

−1GZ|Y)iGX
−1∂L(Y N ;θt)

Proof. The proof is similar to Theorem 2 (Appendix
B)

This result shows that we can approximate
(GX

−1GZ|Y)iGX
−1∂L(Y N ;θt) and the Fisher’s scor-

ing up to ith order by θ̄t, · · · , θ̄t+i and θt. But since
we need to use some Monte Carlo method when the
target distribution is a continuous distribution, approx-
imation of the order higher than 2 will not be effective.
For a discrete distribution, we can use the density

function itself for the EM algorithm and we only have
to calculate up to i = n for the higher order approxima-
tions since we can calculate the higher orders by linear
combinations. Let us define gi as follows

g0 = GX
−1∂L(Y N ;θ)

...
gn = (GX

−1GZ|Y)nGX
−1∂L(Y N ;θ).

Because θ is an n dimensional vector, g1, · · · , gn are
linearly dependent. Therefore, we have the following
relation

gn = a1g1 + · · ·+ an−1gn−1.

gn+1 is written with a1, · · · , an as

gn+1 = (GX
−1GZ|Y)n+1GX

−1∂L(Y N ;θ)
= a1g2 + · · ·+ an−1gn.

And it is the same for any higher orders.
We proposed a new algorithm which uses the EM al-

gorithm recursively. First, we apply one EM step using
the original given data set. After that we apply another
EM step using the data generated by the model. And
finally, we make a better estimate.

4 Numerical Simulations

4.1 Log-linear model

First, we show a result of the proposed algorithm ap-
plied to a log-linear Model.

3

..

.

..

.
..
.

A

B
C

1

I

1

J

1

K

..

.

..

.

..

.

Pi|k

Pj|k

Pk

Figure 2: Definition of the model

The model (Fig.2) has three random variables
(A,B,C), where A, B and C take values on {Ai} (i =
1, · · · , I), {Bj} (j = 1, · · · , J) and {Ck} (k = 1, · · · ,K)
respectively. Therefore the density function is discrete.
We can observe two variables A,B of them, but cannot
observe C (latent variable). We make an assumption
that the probability distribution has the form,

P (A,B,C) = P (A|C)P (B|C)P (C). (10)

The distributions of A and B is independent condi-
tional to C.
When we observe data, we cannot know the true fre-

quency distribution of A, B and C, but the marginal
distribution of A and B. Empirical distribution of
A and B is written as, mij = nij/

∑
i′j′ ni′j′ , where

nij is the frequency of observing (A = Ai, B = Bj).
From the assumption, we can write this distribution as
P (Ai, Bj) =

∑
k Pi|kPj|kPk. We want to estimate Pi|k

and Pj|k and Pk from mij . Since we have a latent vari-
able Pk, we can apply the EM algorithm. We made a
numerical simulation with a model which is I = J = 5,
and K = 2. Therefore, p(Ai, Bj) is multinomial distri-
bution of 25 elements. If we have 24 parameters, we
can describe the given distribution precisely, but now
we only have (K − 1) + K(I − 1) + K(J − 1) = 17
parameters. The target distribution was made at ran-
dom, and the problem is to estimate the parameter to
fit the target distribution.
Fig.3 is the result using the original EM algorithm

and the proposed algorithm which approximate the
scoring up to the 2nd and the 3rd order. You can see
that if we use the 2nd or 3rd order approximation, the
convergence speed is much faster than the original EM
algorithm.

4.2 Gaussian Mixture

The log-linear model was a discrete distribution, and
we did not have to draw data from the distribution.
But when the density function is continuous, we need a
sampled data set {ȳ1, · · · , ȳN ′} drawn from p(y;θt+1)
in order to have θ̄t+1. To test if this Monte Carlo pro-
cedure works, we did a simulation using the mixture of
2-dimensional Gaussian distributions[13].

-0.15

-0.14

-0.13

-0.12

-0.11

-0.10

-0.09

-0.08

-0.07

0 2 4 6 8 10 12
Iteration

log P

ML

EM algorithm
2nd order
3rd order

Figure 3: The increase of the log-likelihood

-5
0

5x -5

0

5

y
0

0.01
0.02
0.03

-5
0

5x

(x,y)

-5
0

5x -5

0

5

y
0

0.0005
0.001

0.0015

-5
0

5x

(x,y)

True model Initial model for learning

Figure 4: The true model and the initial model for
learning

Fig.4 shows the density functions of the true dis-
tribution and the initial model for learning. Both of
them consists of 6 Gaussian distributions. In the ini-
tial model, since the covariances are large, each of 6
cannot be observed clearly.
We don’t show the exact form of the EM algorithm,

but it is simple and calculation is not heavy. We applied
the proposed algorithm on this model as follows.

1. Prepare 1000 samples from the true distribution.
Let the parameter of the initial model be θ0.

2. Using the data, apply one EM step to θt and cal-
culate θt+1.

3. Generate 1000 new data according to p(y;θt+1).

4. Using the newly generated data, apply one EM
step to θt and calculate θ̄t+1.

5. Let θnew = 2θt+1 − θ̄t+1 and θt = θnew, then go
to 2.

Fig.6 shows the estimated models by the EM algorithm
and the proposed algorithm. Also the profile of the log-
likelihood during the iterations is shown in Fig.5. Since
the proposed algorithm includes a sort of Monte Carlo
method, it does not converge but keep fluctuating. This
is the reason why we did not test any of higher order
approximations. The result shows that the proposed
algorithm has a better performance.

4

-3.70

-3.65

-3.60

-3.55

-3.50

-3.45

0 50 100 150 200 250 300 350 400
Iteration

log P

ML

EM algorithm
2nd order

Figure 5: The transition of the log-likelihood according
to the iteration

-5
0

5x -5

0

5

y
0

0.01
0.02
0.03

-5
0

5x

(x,y)

-5
0

5x -5

0

5

y
0

0.01
0.02
0.03

-5
0

5x

(x,y)

EM algorithm Proposed algorithm

Figure 6: Results of learning

We have to reconsider this result taking the amount
of the calculations into account. One step of the pro-
posed algorithm includes two EM steps. When we com-
pare the speed of the convergence, it is better to include
this factor. We show the result in Fig.7. This result
shows that the proposed algorithm still converges faster
than the EM algorithm.
Finally, we add one modification to the proposed al-

gorithm to suppress the fluctuation. The idea is to
switch the proposed algorithm to the ordinary EM al-
gorithm. We determine the switching point by a func-
tion λ(t) which is defined as follows.

λ(t) = ηλ(t − 1) + (1− η)L(Y N ;θt), t = 1, · · · ,
λ(0) = L(Y N ;θ0). (11)

When λ(t) decreases, we switch to the original EM al-
gorithm automatically. We defined η as 0.7, and the
result is shown in Fig. 8. This result shows that our
algorithm converges about 3 times faster than the orig-
inal EM algorithm.

5 Discussion

It is shown that the proposed algorithm improves the
performance of the EM algorithm through numerical
simulations. But there is a practical problem. In order
to have the second order approximation, we have to use
two EM steps. Therefore we hope that the proposed

-3.70

-3.65

-3.60

-3.55

-3.50

-3.45

0 50 100 150 200 250 300 350 400
Iteration

log P

ML

EM algorithm
2nd order

Figure 7: The transition of the log-likelihood according
to the iteration considering the amount of the calcula-
tion

-3.70

-3.65

-3.60

-3.55

-3.50

-3.45

0 50 100 150 200 250 300 350 400
Iteration

log P

ML

EM algorithm
combined algorithm

Figure 8: Combining the proposed algorithm and the
EM algorithm

algorithm works twice faster than the original EM al-
gorithm. However, it is not always true. For Gaussian
mixture, it converges more than two times faster, but
for the log-linear model, it is not the case.

Let θnew be the parameter which is obtained by
the proposed algorithm of the second order approxi-
mation, and θt+2 be the parameter obtained after two
EM steps. Generally, θnew
= θt+2. We want to com-
pare L(Y N ;θnew) with L(Y N ;θt+2). When θt, θ̄t, θt+1

and θt+2 are close to each others, the result of section
3 gives the following approximation of L(Y N ;θnew)

L(Y N ;θnew) = L(Y N ; 2θt+1 − θ̄t+1)
� L(Y N ;θt) + ∂Lt

TGX(θt)−1∂Lt

+∂Lt
TGX(θt)−1GZ|Y (θt)GX(θt)−1∂Lt.

(12)

5

Here, Lt = L(Y N ;θt). On the other hand,

L(Y N ;θt+2) = L(Y N ;θt+2 − θt+1 + θt+1)
� L(Y N ;θt) + ∂Lt

TGX(θt)−1∂Lt

+∂Lt
TGX(θt+1)−1∂Lt

−∂Lt
TGX(θt+1)−1GY (θt)GX(θt)−1∂Lt

= L(Y N ;θt) + ∂Lt
TGX(θt)−1∂Lt

+∂Lt
TGX(θt+1)−1GZ|Y (θt)−1GX(θt)−1∂Lt.

(13)

In the equations, we used the following defini-
tions: GY (θt) = −∑N

s=1 ∂
2l(ys;θt), GZ|Y (θt) =

−∑N
s=1Ep(z|ys;θt)

[
∂2l(z|ys;θt)

]
. It is not clear which

of (12) and (13) is larger in general cases. Qualitatively
speaking, if the model is close to the convergence point,
GX(θt+1) �GX(θt) and GZ|Y (θt)�GZ|Y (θt), and two
EM steps are almost equivalent to the proposed algo-
rithm. And also if GZ|Y (θt) and GZ|Y (θt) are close to
O, both of them are almost equivalent. This is the case
where almost all information of z is observed through
y. For example, if the mean of each Gaussian distribu-
tion is far from each other compared to the variance of
each distribution, it is easy to have the information of
the latent variable z. In these cases, the EM algorithm
and the Fisher’s scoring are almost equivalent, and the
proposed algorithm gives almost the same result as the
EM algorithm.
Let us consider the case where L(Y N ;θnew) is larger

than L(Y N ;θt+2). When GX(θt) and GX(θt+1) are al-
most the same, it depends on the matrices GZ|Y (θt) and
GZ|Y (θt). This is the case where the given data {ys}
includes more information of z than {ȳs} ∼ p(y;θt+1).
This is not clear generally. This is also true for higher
order approximations.
In the continuous distributions, we used a sort of

Monte Carlo method and it gives fluctuation. We want
to estimate the variance of the fluctuation using the
result of Appendix B. When we generate N ′ sam-
ples by Monte Carlo methods, and N ′ is sufficiently
large, asymptotically θnew follows a normal distribu-
tion. Let the mean of θnew be θ∗

new, and its variance is
approximated as GX

−1GY (θt+1)GX
−1/N ′. Let Lnew

= L(Y N ;θnew) and L∗
new = L(Y N ;θ∗

new), neglecting
the higher orders, expand Lnew around θ∗

new. If N
′ is

sufficiently large, θnew −θ∗
new will be sufficiently small,

and we can have the following approximation

Lnew � L∗
new + ∂L∗

new
T (θnew − θ∗

new). (14)

Expectation of Lnew is almost L∗
new. Its variance is

∂L∗
new

T (GX
−1GY (θt+1)GX

−1)∂L∗
new/N

′. This is in-
versely proportional to N ′. We should take care of N ′

depending on the problem.
We proposed a method of switching using a param-

eter η. If the variance of L(Y N ; θt) is the same and t
is large, finally the expectation of the variance of λ(t)
converges to (1 − η)2/(1 − η2) times of the variance
of Lnew. Therefore the method switches at the point

where (1−η)2/(1−η2) times of the variance is roughly
equivalent to (12). When η = 0.7, (1− η)2/(1− η2) =
9/51.

6 Conclusion

A lot of acceleration algorithms have been proposed
for the EM algorithm. Most of them is based on
the same expansion of the Fisher’s scoring as the pro-
posed algorithm. Usually they define the Jacobian J of
the function θt+1 = EM(θt), and J and (θt+1 − θt)
are used for approximating the Fisher’s scoring. J
corresponds to GX

−1GZ|Y in our formulation. The
Aitken acceleration is one of the methods to calculate
J . This method approximate J directly from the func-
tion θt+1 = EM(θt)[9], and the cost of calculation can
be roughly the same as our proposed method but the
eigen values of J does not always stay between 0 and
1.
Another popular acceleration algorithm is Louis

turbo[8]. Louis turbo itself does not give any practi-
cal method to obtain J . Meng and Rubin proposed
a method to obtain J by using the EM algorithm[11].
In their method, they need to apply the EM algorithm
as many times as the number of the parameters. Once
you obtain J , you can approximate the Fisher’s scoring
up to any order, but in order to have the second order
approximation, you need to apply the EM algorithm
more than twice. On the other hand, our method only
needs two EM steps. For higher order approximations,
if the order is less or equal to the number of the param-
eters, we need to apply the EM steps as much as the
order. Therefore, the proposed algorithm needs equal
or less calculation than Meng and Rubin.
We are planning to apply proposed algorithm to Neu-

ral Networks, HMM and on-line learning.

Acknowledgment

The author thanks Shun-ichi Amari and Noboru Mu-
rata in BSI, RIKEN for very useful discussions on this
work.

References

[1] S. Amari. “Dualistic geometry of the manifold of
higher-order neurons.” Neural Networks, Vol. 4,
No. 4, pp. 443–451, 1991.

[2] S. Amari, K. Kurata, and H. Nagaoka. “Infor-
mation geometry of Boltzmann machines.” IEEE
Trans. Neural Networks, Vol. 3, No. 2, pp. 260–
271, March, 1992.

[3] S. Amari. “Information Geometry of the EM and
em Algorithms for Neural Networks.” Neural Net-
works, Vol. 8, No. 9, pp. 1379–1408, 1995.

6

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin.
“Maximum likelihood from incomplete data via
the EM algorithm.” J. R. Statistical Society, Se-
ries B, Vol. 39, pp. 1–38, 1977.

[5] R. A. Jacobs and M. I. Jordan. “Adaptive mix-
tures of local experts.” Neural Computation,
Vol. 3, No. 1, pp. 79–87, Spring 1991.

[6] M. I. Jordan and R. A. Jacobs. “Hierarchical mix-
tures of experts and the EM algorithm.” Neural
Computation, Vol. 6, No. 2, pp. 181–214, March
1994.

[7] M. I. Jordan and L. Xu. “Convergence results for
the EM approach to mixture of experts architec-
tures.” Neural Networks, Vol. 8, No. 9, pp. 1409–
1431, 1995.

[8] T. A. Louis. “Finding the observed information
matrix when using the EM algorithm.” J. R. Sta-
tistical Society, Series B, Vol. 44, No. 2, pp. 226–
233, 1982.

[9] G. J. McLachlan and T. Krishnan. “The EM Algo-
rithm and Extensions.” Wiley series in probability
and statistics. John Wiley & Sons, Inc., 1997.

[10] L. R. Rabiner, S. E. Levinson, and M. M. Sondhi.
“On the application of vector quantization and
hidden Markov models to speaker-independent,
isolated word recognition.” The Bell System Tech-
nical Journal, Vol. 62, No. 4, pp. 1075–1105, April
1983.

[11] M. A. Tanner. “Tools for Statistical Inference –
Observed Data and Data Augmentation Methods,”
Vol. 67 of Lecture Notes in Statistics. Springer-
Verlag, 1991.

[12] D. M. Titterington. “Recursive Parameter Estima-
tion using Incomplete Data,” J. R. Statist. Soc. B,
Vol. 46, No. 2, pp. 257–267, 1984.

[13] L. Xu and M. I. Jordan. “On convergence prop-
erties of the EM algorithm for Gaussian mixture.”
A.I.Memo No.1520, C.B.C.L. Paper No.111, 1995.

A Curved Exponential Family

For curved exponential family, generally (3) does not
hold. For the proof of (3), we used the fact that second
derivative of Q(θ,θt) can be written with the Fisher’s
information matrix as,

∂∂Q(θ,θt)
∣∣∣
θ=θt

= Eq̂(y)p(z|y;θt) [∂∂l(y, z;θt)]

= Eq̂(y)p(z|y;θt) [−∂∂ψ(θt)]
= −∂∂ψ(θt)
= −GX(θt). (15)

This is true for exponential family but not always for
curved exponential family. Suppose an exponential
family with an n-dimensional parameter θ, and θ is a
function of u = (u1, · · · , um), (θ = θ(u)), and m < n.
In this case, second derivative of Q(u,ut) respect to u,
is,

∂2Q(u,ut)
∂uk∂ul

∣∣∣∣
u=ut

= Eq̂(y)p(z|y;ut)

[
∂2l(y, z;u)
∂uk∂ul

∣∣∣∣
u=ut

]

=
∑

i

∂2θi(u)
∂uk∂ul

Eq̂(y)p(z|y;ut) [ri(x) − ∂iψ(θ(ut))]

− ∂2ψ(θ(u))
∂uk∂ul

∣∣∣∣
u=ut

. (16)

The first term of (16) is generally not equal to 0, there-
fore this is not equal to the Fisher’s Information matrix
as (15). The exceptional case is when θ is a linear func-
tion of u. In this case, first term of (16) is 0 and the
approximation (16) can work.

B Proof of theorem 2

From (3), we have the following approximation,

θt+1 − θt � GX
−1∂L(Y N ;θt)

= GX
−1∂

(
Eq̂(y) [l(y;θ)]

)∣∣∣
θ=θt

.

We can derive the following equation by replacing q̂(y)
with p(y;θt+1) in (3),

θ̄t+1 − θt � GX
−1∂

(
Ep(y;θt+1) [l(y;θ)]

)∣∣∣
θ=θt

= GX
−1

∫
p(y;θt+1)∂l(y;θ)

∣∣∣
θ=θt

dµ(y).

(17)

Here, we use the following approximation of p(y;θt+1)
as,

p(y;θt+1) � p(y;θt)

+p(y;θt) (∂l(y;θt))
T (θt+1 − θt).

Using this formulation, (17) is approximated as,

θ̄t+1 − θt

� GX
−1

∫ (
p(y;θt)∂l(y;θt)

+p(y;θt)∂l(y;θt)∂l(y;θt)T (θt+1 − θt)
)
dµ(y)

= GX
−1

(∫
p(y;θt)∂l(y;θt)∂l(y;θt)Tdµ(y)

)
·(θt+1 − θt)

= GX
−1GY (θt+1 − θt)

� GX
−1GYGX

−1∂L(Y N ;θt).

7

And this gives the proof of theorem 2. Here, we used
the following fact,∫

p(y;θt)∂l(y;θt)dµ(y) = 0.

When we use the proposed algorithm for continuous
distribution, we have to use a Monte Carlo sampling
method and θ̄t+1 does not converge to a point but fluc-
tuate according to some distribution. We give the form
of the asymptotic distribution of θ̄t+1. When N ′ sam-
ples are drawn according to p(y;θt+1) as {ȳ1, · · · , ȳN ′}
and N ′ is sufficiently large, we define p̂(y;θt+1) as,

p̂(y;θt+1) =
1
N ′

N ′∑
s=1

δ(y − ȳs).

And we also denote the MLE as θ∗
t+1, when the target

distribution is p̂(y;θt+1). Take the 2nd expansion of
(17), and we get,∫

p̂(y;θt+1)∂l(y;θ)
∣∣∣
θ=θt

dµ(y).

� Ep̂(y;θt+1)

[
∂l(y;θ∗

t+1)
]

(18)

−Ep̂(y;θt+1)

[
∂2l(y;θ∗

t+1)
]
(θ∗

t+1 − θt). (19)

The first term which is shown as (18) is 0, and
asymptotically Ep̂(y;θt+1)

[
∂2l(y;θ∗

t+1)
]
is equivalent to

−GY (θt+1), and θ∗
t+1 will normally distribute with

θt+1 as its mean, and GY (θt+1)−1/N ′ as its vari-
ance. From these results, we can see that the
covariance matrix of the distribution of θ̄t+1 is
GX

−1GY (θt+1)GX
−1/N ′.

8

