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Abstract— Since the proposal of turbo codes in 1993, many
studies have appeared on this simple and new type of codes
which give a powerful and practical performance of error
correction. Although experimental results strongly support the
efficacy of turbo codes, further theoretical analysis is necessary,
which is not straightforward. It is pointed out that the iterative
decoding algorithm of turbo codes shares essentially similar ideas
with low-density parity-check (LDPC) codes, with Pearl’s belief
propagation algorithm applied to a cyclic belief diagram, and
with the Bethe approximation in statistical physics. Therefore the
analysis of the turbo decoding algorithm will reveal the mystery
of those similar iterative methods. In this paper, we recapture
and extend the geometrical framework initiated by Richardson
to the information geometrical framework of dual affine con-
nections, focusing on both of the turbo and LDPC decoding
algorithms. The framework helps our intuitive understanding of
the algorithms and opens a new prospect of further analysis. We
reveal some properties of these codes in the proposed framework,
including the stability and error analysis. Based on the error
analysis, we finally propose a correction term for improving the
approximation.

Index Terms— belief propagation, information geometry, low-
density parity-check (LDPC) codes, perturbation analysis, turbo
codes.

I. I NTRODUCTION

T HE properties of turbo codes have been extensively
studied since it was introduced in 1993 [1], [2]. Although

the encoding process and the iterative decoding algorithm are
simple, theoretical analysis is not straightforward, and the
main results so far obtained are mostly empirical. In addition
to the experimental studies, clues have been sought in other
methods. Since there are some iterative methods which are
closely related to turbo codes, theoretical analysis of those
methods were expected to give further understanding. One of
them is another class of error correcting codes, low-density
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parity-check (LDPC) codes, which was originally proposed
by Gallager [3], [4] and was rediscovered by MacKay [5].
Other methods have been found even in different fields, such
as artificial intelligence and statistical physics. McEliece et
al. showed that the turbo decoding algorithm is equivalent to
Pearl’s belief propagation algorithm [6], applied to a belief
diagram with loops [7], and MacKay demonstrated that the
LDPC decoding algorithm (the sum-product algorithm) is
also equivalent to the belief propagation algorithm [5], while
Kabashima and Saad pointed out that the iterative process
of the Bethe approximation in statistical physics is the same
as that of the belief propagation algorithm [8]–[10] (see also
Yedidia et al. [11].). Although these results have shown that
the turbo decoding algorithm shares the same idea with these
methods, the efficacies of them are not fully understood
theoretically, either.

Recently, some pathways for theoretical analysis of the
decoding algorithms have been shown. One is the geomet-
rical framework of the turbo decoding algorithm initiated by
Richardson [12]. The existence of fixed points, a condition of
the fixed point to be unique, and its local stability are studied
in this framework. Another pathway is the density evolution
[13] applied to the LDPC decoding algorithm. The density
evolution describes the time evolution of message distribution.
The prospects of these studies are promising, and further
studies along these approaches are necessary.

In this article, we propose not only a new interpretation
of the geometrical framework, but also an extension of it,
with the help of information geometry [14], [15]. Information
geometry studies intrinsic geometrical structures existing in
families of probability distributions by using the two dual
criteria of geometrical flatness (exponential ore–flatness and
mixture or m–flatness) coupled with the Fisher information
metric. We build a unified information geometrical framework
to analyze the decoding algorithms of turbo and LDPC codes,
which helps our intuitive understanding. The framework is
general so that main results are applicable to related iterative
algorithms.

The ideal goal of turbo and LDPC decodings is the max-
imization of the posterior marginals (MPM), which achieves
the minimum bit error rate. However, since the exact MPM
decoding is computationally intractable, it is approximated
with iterative methods. The unified geometrical structure of
the algorithms is elucidated by means of thee– and m–
projections in information geometry together with the gen-
eralized Pythagorean theorem. Here, the Kullback-Leibler
divergence, the Fisher information, and the skewness tensor
play fundamental roles. The equilibrium of the iterative al-
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gorithms is analyzed and its local stability condition is given
in information geometrical terms. These are not only a new
formulation and elucidation of Richardson’s framework from a
more general standpoint, but open a prospect to integrate wide
varieties of iterative inference methods extensively studied
in these years in the areas of information theory, statistical
physics, statistical inference, neural networks, and artificial
intelligence.

We further analyze the accuracy of soft decoding results of
the iterative decoding algorithms in terms of thee– andm–
curvatures. Hard decoding results are of primary interest in
many studies, but for some applications, such as multiple user
applications [16]–[19], the accuracy of soft decoding results
is also important. In this paper, the error will be given by
asymptotic expansion, so that the terms can be used to improve
the results. We give an explicit algorithm for the improvement.
The error analysis also gives insights into a design principle of
LDPC codes, and shows why LDPC codes work so well. We
finally touch upon the “free energy” in the statistical physics
approach [10], [11].

The outline of the paper is as follows. In section II, we
give the original schemes of turbo and LDPC codes. The
basic strategy of the MPM decoding is given in section
III. Section IV introduces the information geometry. Sections
V and VI describe the information geometry of turbo and
LDPC decodings, respectively. Decoding errors are analyzed
in section VII, and finally conclusion is given with some
discussions for future perspectives in section IX.

II. ORIGINAL DEFINITIONS OFTURBO AND LDPC CODES

A. Turbo Codes
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-

Turbo Decoder

Decoder 1 ξ2

Decoder 2ξ1

x̃, ỹ1
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Fig. 1. Structure of turbo codes.

1) Encoding:The idea of turbo codes is illustrated in Fig.1.
Let x = (x1, · · · , xN )T , xi ∈ {−1, +1} be the information
bits to be transmitted. We assume a binary symmetric channel
(BSC) with bit-error rateσ, and it is easy to generalize
the results to any memoryless channel (see Appendix I).
Turbo codes use two encoders, Encoders 1 and 2 in the
figure, which generate two sets of parity bits in the en-
coding process. We denote them byy1 = (y11, · · · , y1L)T

and y2 = (y21, · · · , y2L)T , y1j , y2j ∈ {−1,+1}. Each set
of parity bits yr, r = 1, 2, is a function of x and is
represented asyr(x) when an explicit expression is necessary.
The set of these codes(x, y1,y2) are transmitted through the
BSC, and a receiver observes their noisy version,(x̃, ỹ1, ỹ2),
x̃i, ỹ1j , ỹ2j ∈ {−1, +1}.

2) Decoding:Turbo codes handle the case where the direct
decoding with (ỹ1, ỹ2) as a single set of parity bits is
intractable, while the soft decoding with each ofỹ1, ỹ2 is
tractable. Two decoders are used for the decoding, Decoders
1 and 2 in the figure. Decoder 1 infers the original information
bits, x, from (x̃, ỹ1), and Decoder 2 does the same from
(x̃, ỹ2). The inferences of these two decoders may differ
initially, and a better inference is searched for through iterative
information exchanges.

Let us define the following variables corresponding to the
marginal log-likelihood ratios (see for example [12], [20]) with
the use of the conditional probabilitiesp(x̃|x) and p(ỹr|x),
r = 1, 2,

lxi =
1
2

ln

∑
{x:xi=+1} p(x̃|x)∑
{x:xi=−1} p(x̃|x)

=
1
2

ln
p(x̃i|xi = +1)
p(x̃i|xi = −1)

,

lyrj =
1
2

ln

∑
{x:yrj=+1} p(ỹr|x)∑
{x:yrj=−1} p(ỹr|x)

=
1
2

ln
p(ỹrj |yrj = +1)
p(ỹrj |yrj = −1)

,

Lrx = F (lx, lyr) =
1
2

ln

∑
{x:xi=+1} p(x̃|x)p(ỹr|x)∑
{x:xi=−1} p(x̃|x)p(ỹr|x)

. (1)

Here, the factor1/2 is introduced to have consistency with
our framework, and the functionF (lx, lyr) is calculated effi-
ciently by BCJR algorithm[21]. The turbo decoding algorithm
makes use of two slack variables,ξ1, ξ2∈<N , called the
“extrinsic variables,” for exchanging information between the
decoders. The algorithm is given as follows. Its meaning will
be explained later from the geometrical point of view.

Turbo decoding (Original)
1) Setξ1 =  and t = 1.
2) CalculateL1x

(t) = F ((lx + ξ1), ly1) from (1) and
updateξ2 as follows.

ξ2 = L1x
(t) − (lx + ξ1).

3) CalculateL2x
(t) = F ((lx + ξ2), ly2) from (1) and

updateξ1 as follows.

ξ1 = L2x
(t) − (lx + ξ2).

4) Iterate 2 and 3 by increasingt by one, untilL1x
(t) =

L2x
(t) = L1x

(t+1) = L2x
(t+1).

Ideally, steps 2 and step 3 would be iterated until convergence
is achieved, but in practice, the number of iterations is fixed
at less than 20.

B. LDPC Codes

1) Encoding: Figure 2 illustrates the structure of LDPC
codes. Lets = (s1, · · · , sM )T , si ∈ {0, 1}, be the information
bits. Although we use notations different from those of turbo
codes, it will soon become clear that the problems are formu-
lated in a unified view, i.e., estimatingx from an observed
ỹ. To compose the generator and parity check matrices, two
sparse matrices,C1 ∈ {0, 1}K×M and C2 ∈ {0, 1}K×K are
prepared, whereC2 is invertible in the modulo 2 arithmetic.
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Fig. 2. Structure of LDPC codes.

They are shared by the sender and the receiver. The parity
check matrix is

H = (C1 C2), H ∈ {0, 1}K×N ,

whereN = M +K. The generator matrix,GT ∈ {0, 1}N×M ,
is given by

GT =
(

EM

C−1
2 C1

)
mod 2,

where EM is an identity matrix of sizeM . The codeword,
u = (u1, · · · , uN )T , is generated froms:

u = GT s mod 2.

From the definition ofGT , the firstM bits of u are identical
to s, andu is sent through a channel. We also assume a BSC
with bit-error rateσ. Codewordu is disturbed and received as
ũ. Let x = (x1, · · · , xN )T , xi ∈ {0, 1} be the noise vector,
and received codeword̃u is

ũ = u + x mod 2.

The LDPC decoding estimates noise vectorx, which yields
an estimate ofs, sinces is given by the firstM bits of ũ+x
(mod 2). In the decoding process, the parity check matrixH =
{hij} = (C1 C2) ∈ {0, 1}K×N is used; it satisfies the equality
HGT = O. Syndrome vectory = (y1, · · · , yK)T is calculated
by usingy = Hũ. When noise isx, the syndromey is

y(x) = Hũ = H(u + x) = HGT s + Hx = Hx mod 2.

When ỹ is the observed syndrome, the decoding problem is
to estimatex that satisfies̃y = y(x).

2) Decoding: The detailed descriptions of the iterative
decoding algorithm for LDPC codes are found elsewhere [3],
[5], and we describe it briefly here. The decoding algorithm
consists of two steps: the “horizontal step” and the “vertical
step,” which are iterated alternately. A set of probability
distributions is updated in each step, that is,{q(0)

ri , q
(1)
ri } and

{p(0)
ri , p

(1)
ri }, respectively, where

q
(0)
ri + q

(1)
ri = 1, p

(0)
ri + p

(1)
ri = 1,

for pairs of indices(r, i), r = 1, · · · , K, i = 1, · · · , N ,
such thathri = 1. The quantityq

(x)
ri represents a guess of

the probability thatyr is observed whenxi = x, where the
distribution of x other thanxi is assumed to be given by
p
(x)
ri . The sum ofq(0)

ri and q
(1)
ri is not necessarily 1, but it is

normalized for simplicity. The quantityp(x)
ri is a guess of the

probability of xi to bex when yr is observed. The updating
rule is described below.

LDPC decoding (Original)
Initialization:

Set p(0)
ri = 1 − σ and p

(1)
ri = σ for pairs of indices

(r, i) such thathri = 1.
Horizontal step:

Update{q(0)
ri , q

(1)
ri } as follows. Note that summations

and products are taken over pairs(r, i) for which
hri = 1.

lqri = ln

∑
x:xi=1

{
p(ỹr|x)

∏
i′:i′ 6=i,hri′=1 p

(xi′ )
ri′

}
∑
x:xi=0

{
p(ỹr|x)

∏
i′:i′ 6=i,hri′=1 p

(xi′ )
ri′

} ,

q
(0)
ri =

1
elqri + 1

, q
(1)
ri =

elqri

elqri + 1
.

Vertical step:
Update{p(0)

ri , p
(1)
ri } as follows.

lpri = ln
σ

1− σ
+ ln

∏
r′:r′ 6=r,hr′i=1 q

(1)
r′i∏

r′:r′ 6=r,hr′i=1 q
(0)
r′i

,

p
(0)
ri =

1
elpri + 1

, p
(1)
ri =

elpri

elpri + 1
.

Convergence:
Stop when the followinglpi, i = 1, · · · , N , con-
verges

lpi = ln
σ

1− σ
+ ln

∏
r:hri=1 q

(1)
ri∏

r:hri=1 q
(0)
ri

.

When the algorithm achieves convergence, the estimate of
x is obtained by the hard decision as

x̂i =
{

1, for lpi ≥ 0
0, for lpi < 0

, i = 1, · · · , N.

III. F ORMULATION OF MPM DECODING

A. Unified View of Turbo and LDPC Decoding

The goal for both of turbo and LDPC decodings is the MPM
decoding. We first define the MPM decoding in a unified
setting, and its specific form in each of turbo and LDPC
decodings is explained in the following subsections. For the
rest of the paper, we use the bipolar, i.e.,{−1,+1}, expression
for each bitxi, yi, x̃i, and ỹi rather than the binary ({0, 1}).

The decoding problem is generally solved based on the pos-
terior distribution ofx conditioned on the observed codeword
or syndrome vector, i.e.,p(x|x̃, ỹ1, ỹ2) in turbo codes and
p(x|ỹ) in LDPC codes. The posterior distribution ofx is
expressed as

q(x) = C exp(c0(x) + c1(x) + · · ·+ cK(x)), (2)

where c0(x) consists of the linear terms of{xi}; cr(x),
r = 1, · · · , K, contain higher order interactions of{xi},
and the terms depend on the observed information,x̃, ỹ.
In the case of turbo codes,K = 2, and c1(x) and c2(x)
represent interactions in each of the two decoders, while in
the case of LDPC codes,cr(x) represents each parity bit. In
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the general graphical model, they correspond to cliques. We
assumecr(x) 6= cr′(x) for r 6= r′. Decoding is to estimate
the information bits,x, based onq(x). One natural approach
is the MPM decoding. The MPM estimator minimizes the
expected number of wrong bits in the decoded word. The
MPM decoding in the bipolar case is achieved by taking the
expectation ofx with respect toq(x). Let η = (η1, · · · , ηN )T

be the expectation ofx, andx̂ be the decoded MPM estimator.
Then

η =
∑
x

q(x)x, x̂ = sgn(η), (3)

wheresgn(·) works in a bitwise manner. Theη gives the “soft
decoding,” and the sign of each soft bitηi gives the “hard
decoding,”x̂i.

Let q(xi) be the marginal distribution of one componentxi

in q(x), and letΠ denote the operator of the marginalization
that mapsq(x) to a factorizable distribution having the same
marginal distributions:

Π◦q(x) =
N∏

i=1

q(xi).

The soft bit ηi depends only on the marginal distribution
q(xi). Sinceq(xi) is a Bernoulli distribution,ηi has a one-to-
one correspondence toq(xi). Therefore, the soft decoding is
equivalent to the marginalization ofq(x). The marginalization
of q(x) generally needs summation over all possiblex but one
xi, and it is computationally not tractable in the case of turbo
and LDPC codes, where the length ofx is more than a few
hundred. Instead of marginalizing the entireq(x) in (2), we
make use of simple submodels,pr(x; ζr), r = 1, · · · ,K,

pr(x; ζr) = exp(c0(x) + ζr · x + cr(x)− ϕr(ζr)), (4)

whereϕr(ζr) is the normalization factor. Eachpr(x; ζr) in-
cludes only one nonlinear termcr(x), and the linear partc0(x)
of x is adjusted further throughζr, which takes the effect of
the othercr′(x)’s, r′ 6= r into account by approximating them
by the linear termζr ·x. We thus haveK component decoders,
each of which decodespr(x; ζr), r = 1, · · · ,K. The parameter
ζr plays the role of a window through which information from
the other decoders,r′ 6=r, is exchanged. The idea is to adjust
{ζr} through iterative information exchange to approximate
the overallΠ◦q(x) with Π◦pr(x; ζr). We assume that the
marginalization or the soft decoding is tractable for any
pr(x; ζr).

B. Turbo Decoding

In this subsection, the concrete forms of (2) and (4) for turbo
codes are derived. In turbo codes, the receiver observes a noisy
version of (x,y1, y2) as (x̃, ỹ1, ỹ2). We can easily derive
the following relation from the assumption of a memoryless
channel,

p(x̃, ỹ1, ỹ2|x) = p(x̃|x)p(ỹ1|x)p(ỹ2|x).

The Bayes posterior distributionp(x|x̃, ỹ1, ỹ2) is defined with
a prior distributionω0(x) of x. In this paper, we consider the

uniform prior, whereω0(x) = 1/2N , and the Bayes posterior
distribution is derived as,

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)ω0(x)∑
x p(x̃, ỹ1, ỹ2|x)ω0(x)

=
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

. (5)

Since we consider BSC, where each bit is flipped indepen-
dently with probabilityσ, p(x̃|x) andp(ỹr|x) have the form
of

p(x̃|x) = exp(βx̃ · x−Nψ(β)), ψ(β) = ln(e−β + eβ)
p(ỹr|x) = exp(βỹr · yr(x)− Lψ(β)), r = 1, 2.

Here,β is a positive real number called the inverse temperature
in statistical physics and is related toσ by

σ =
1
2
(1− tanh β),

whereβ → 0 as σ → 1/2, and β → ∞ as σ → 0. Let us
define

c0(x) = βx̃ · x, cr(x) = βỹr · yr(x), r = 1, 2,

where c0(x) is linear in x, and ỹr · yr(x) are polynomials
in x, representing higher order correlational components of
manyxi’s. The Bayes posterior distribution (5) is rewritten as

p(x|x̃, ỹ1, ỹ2) = C exp(c0(x) + βỹ1 · y1(x) + βỹ2 · y2(x))
= C exp(c0(x) + c1(x) + c2(x)),

C =
1∑

x exp(c0(x) + c1(x) + c2(x))
,

whereC is the normalization factor. This distribution corre-
sponds toq(x) in (2), whereK = 2.

In the turbo decoding algorithm, each of the two constituent
decoders marginalizes its own posterior distribution ofx
derived from p(x̃, ỹr|x) = p(x̃|x)p(ỹr|x), where a prior
distribution of the form

ω(x; ζr) = exp(ζr · x− ψ(ζr)),

ζr ∈ <N , ψ(ζr) =
N∑

i=1

ln
(
e−ζi

r + eζi
r
)
,

is used for taking information from the other decoder. The
vectorsζr, r = 1, 2 correspond to the extrinsic variables in the
original turbo decoding algorithm, that isζ1 = ξ2 and ζ2 =
ξ1. The prior distributionω(x; ζr) is a factorizable distribution
in which the guess of the other decoder is represented. The
posterior distribution of the decoderr is defined as

pr(x; ζr) = p(x|x̃, ỹr; ζr) =
p(x̃, ỹr|x)ω(x; ζr)∑
x p(x̃, ỹr|x)ω(x; ζr)

= exp(c0(x) + cr(x) + ζr · x− ϕr(ζr)),

ϕr(ζr) = ln
∑
x

exp(c0(x) + cr(x) + ζr · x), r = 1, 2.

Here,ϕr(ζr) is the normalization factor which is a function
of ζr. It is clear thatζr plays the role of the window of
information exchange, and that the information is used as a
prior. This distribution is of the form of (4).
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C. LDPC Decoding

We reformulate the LDPC decoding problem in this subsec-
tion. The vectorss, u, ũ, ỹ, andx are treated in the bipolar
form, whileGT andH are still in the binary, i.e.,{0, 1}, form.
Note that0 in the binary form corresponds to+1 in the bipolar
form, and vice versa. Each bityr of a syndrome vectory(x)
is written as a higher order correlational product of{xi} in
the bipolar form, that is, as a monomial inx:

yr(x) =
∏

j∈Lr

xj , Lr = {j | hjr = 1},

wherehjr are elements of the parity-check matrixH.
We now consider the “softened” probability distribution of

ỹ conditioned onx:

p(ỹ|x) = exp(ρỹ · y(x)−Kψ(ρ))
= exp(c1(x) + · · ·+ cK(x)−Kψ(ρ)), (6)

cr(x) = ρỹryr(x), ρ ∈ <, ρ > 0.

In this article, we discuss the “soft constraint” which infers
x based on the probability distributionp(ỹ|x) in (6) where
a positive real numberρ is finite. More precisely, the MPM
decoding is carried out by usingp(x|ỹ) obtained from (6).
However, the LDPC decoding algorithm generally uses the
“hard constraint” which searches for thex that exactly satisfies
the parity check equations:

ỹ = y(x).

As ρ becomes larger, the probabilityp(ỹ|x) is concentrated on
x satisfying ỹ = y(x), and the “soft constraint” approaches
the “hard constraint”. See Appendix II where how hard de-
coding results depend onρ is analyzed. Empirical studies have
shown that the “soft constraint” with a fixedρ has a sufficiently
good performance [5]. The reason we introduce a finiteρ
is to keepp(ỹ|x) strictly positive for anyx ∈ {−1, +1}N .
This is necessary to build a common information geometrical
framework for turbo and LDPC decodings (see section IV-A).

Note that noisex is bitwise independent, and that its error
rate is given byσ = (1/2)(1 − tanh β). Consequently, we
have the prior distributionω0(x):

ω0(x) = exp(βN · x−Nψ(β))
= exp(c0(x)−Nψ(β)) (7)

c0(x) = βN · xi, N = (1, · · · , 1︸ ︷︷ ︸
N

)T .

As a result, the Bayes posterior distribution becomes

p(x|ỹ) =
p(ỹ|x)ω0(x)∑
x p(ỹ|x)ω0(x)

= C exp(c0(x) + c1(x) + · · ·+ cK(x)).

This is equivalent toq(x) in (2).
In the horizontal and vertical steps of the LDPC decoding

algorithm, marginalization is carried out based on distribu-
tion pr(x; ζr), which is calculated fromp(ỹr|x) and prior
ω(x; ζr). The parameter specifying the priorζr is obtained

through the window for taking information from the other
decodersr. We have

p(ỹr|x) = exp(cr(x)− ψ(β)),
ω(x; ζr) = exp((βN + ζr) · x− ψ(βN + ζr)),

pr(x; ζr) = p(x|ỹr; ζr) =
p(ỹr|x)ω(x; ζr)∑
x p(ỹr|x)ω(x; ζr)

= exp(c0(x) + cr(x) + ζr · x− ϕr(ζr)),

ϕr(ζr) = ln
∑
x

exp(c0(x) + cr(x) + ζr · x),

ζr ∈ <N , r = 1, 2, · · · , K.

This coincides with the formulation in (4). The above argu-
ment shows that the LDPC decoding problem falls into the
general framework given in section III-A.

IV. I NFORMATION GEOMETRY OFPROBABILITY

DISTRIBUTIONS

The preliminaries from information geometry [14], [15] are
given in this section.

A. Manifolds of Probability Distributions:e–flat andm–flat
Submanifolds

Consider the family of all the probability distributions over
x. We denote it byS:

S =
{

p(x)
∣∣∣ p(x) > 0, x ∈ {−1, +1}N ,

∑
x

p(x) = 1
}

.

This is the set of all the distributions over2N atomsx. The
family S has (2N − 1) degrees of freedom and is a(2N −
1)–dimensional manifold belonging to the exponential family
[15], [22].

In order to prove this, we introduce random variables

δi1···iN
(x) =

{
1, whenx = (i1, · · · , iN )T

0, otherwise
,

whereik ∈ {−1, +1}, k = 1, · · · , N.

Any p(x) ∈ S is expanded in the following form:

p(x) =
∑

i1···iN

pi1···iN δi1···iN (x), (8)

where pi1···iN = Pr(x1 = i1, · · · , xN = iN ), which shows
p(x) ∈ S is parameterized by2N variables{pi1···iN

}. Since∑
x p(x) = 1, the familyS has(2N − 1) degrees of freedom.
Similarly, ln p(x) is expanded:

ln p(x) =
∑

i1···iN

(ln pi1···iN
)δi1···iN

(x).

Since the degrees of freedom are(2N − 1), we set θ =
{θi1···iN

| (i1 · · · iN ) 6= (−1 · · · − 1)},
θi1···iN = ln

pi1···iN

p−1···−1

and rewrite (8) as

p(x; θ) = exp
( ∑

i1···iN

θi1···iN δi1···iN (x)− ϕ(θ)
)
,
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where
ϕ(θ) = − ln Pr(x1 = · · · = xN = −1).

This showsS is an exponential family whose natural, or
canonical, coordinate system isθ.

The expectations of random variablesδi1···iN
(x) are

ηi1···iN
= Ep[δi1···iN

(x)] = pi1···iN
.

They form another coordinate system ofS that specifiesp(x),

η = {ηi1···iN
| (i1 · · · iN ) 6= (−1 · · · − 1)}.

SinceS is an exponential family, it naturally has two affine
structures: the exponential– ore–affine structure and the
mixture– or m–affine structure. These structures were also
adopted implicitly by Richardson [12] without resorting to
the Riemannian structure and duality, stated in the following.
When manifoldS is regarded as an affine space inln p(x), it is
e–affine, andθ gives thee–affine coordinate system. Similarly,
when manifoldS is regarded as an affine space inp(x),
it is m–affine, andη gives them–affine coordinate system.
They are dually coupled with respect to the Riemannian
structure given by the Fisher information matrix, which will
be introduced below.

First we define thee–flat andm–flat submanifolds ofS.
e–flat submanifold:

SubmanifoldM⊂S is said to bee–flat, when the
following r(x; t) belongs toM for all t ∈ [0, 1],
q(x), p(x) ∈ M .

ln r(x; t) = (1− t) ln q(x) + t ln p(x) + c(t),

where c(t) is the normalization factor. Obviously,
{r(x; t) | t ∈ [0, 1]} is an exponential family
connecting two distributions,p(x) and q(x). In
particular, when ane–flat submanifold is a one–
dimensional curve, it is called ane–geodesic. The
above{r(x; t) | t ∈ [0, 1]} is the e–geodesic con-
necting p(x) and q(x). In terms of thee–affine
coordinates,θ, a submanifoldM is e–flat when it
is linear inθ.

m–flat submanifold:
SubmanifoldM⊂S is said to bem–flat when the
following mixture r(x; t) belongs toM for all t ∈
[0, 1], q(x), p(x) ∈ M .

r(x; t) = (1− t)q(x) + tp(x).

When anm–flat submanifold is a one–dimensional
curve, it is called anm–geodesic. Hence, the above
mixture family is them–geodesic connecting them.
In terms of them–affine coordinates,η, a submani-
fold M is m–flat when it is linear inη.

B. Kullback-Leibler divergence, Fisher Metric, and General-
ized Pythagorean Theorem

Manifold S has a Riemannian metric given by the Fisher
information matrix I. We begin with the Kullback-Leibler
(KL) divergence,D[·; ·], defined by

D[q(x); p(x)] =
∑
x

q(x) ln
q(x)
p(x)

.

The KL–divergence satisfiesD[q; p] ≥ 0, and D[q; p] = 0
when and only whenq(x) = p(x) holds for everyx. Although
symmetry D[q; p] = D[p; q] does not hold generally, it is
regarded as an asymmetric squared distance.

Consider two nearby distributionsp(x;θ) andp(x;θ+dθ),
specified by coordinatesθ and θ + dθ in any coordinate
system. From the Taylor expansion, their KL–divergence is
given by the quadratic form

D[p(x; θ); p(x; θ + dθ)] =
1
2
dθT I(θ)dθ,

whereI(θ) is the Fisher information matrix defined by

I(θ) =
∑
x

p(x;θ)∂θ ln p(x;θ)(∂θ ln p(x;θ))T

= −
∑
x

p(x; θ)∂θθ ln p(x; θ),

where∂θ represents the gradient operator (differentiation with
respect to the components ofθ). When the squared distance
of a small line elementdθ starting fromθ is given by the
quadratic form

ds2 = dθT G(θ)dθ,

the space is called a Riemannian manifold with the Rieman-
nian metric tensorG(θ), which is a positive-definite matrix
depending onθ. In the present case, the Fisher information
matrix I(θ) plays the role of the Riemannian metricG(θ).
Hence, the infinitesimal KL–divergence is regarded as a half
the squared Riemannian distance.

The Riemannian metric, giving a definition of the inner
product to the tangent spaces, also defines the orthogonality
of two intersecting curves. Letp(x;θ1(t)) andp(x; θ2(t)) be
two curves intersecting att = 0, that is,θ1(0) = θ2(0). The
tangent vectors of the curves att = 0 are represented bẏθ1(t)
and θ̇2(t) by using the coordinates, wherėθi(t) = dθi(t)/dt.
The two curves are said to be orthogonal at their intersection
t = 0, when their inner product with respect to the Riemannian
metric vanishes,

〈θ̇1(0), θ̇2(0)〉 = θ̇1(0)T I(θ)θ̇2(0) = 0.

Now we state the generalized Pythagoras theorem and
the projection theorem, which hold in a general dually flat
manifold [15], and show the dual nature of thee– and m–
structures with the Riemannian metric.

Theorem 1:Let p(x), q(x), andr(x) be three distributions
in S. When them–geodesic connectingp(x) and q(x) is
orthogonal atq(x) to the e–geodesic connectingq(x) and
r(x), the following relation holds

D[p(x); r(x)] = D[p(x); q(x)] + D[q(x); r(x)].
Next we define them–projection. Thee–projection is also

defined in a dual manner, by replacingD[q(x); p(x)] with
D[p(x); q(x)], but we do not state the details here.

Definition 1: Let M be ane–flat submanifold inS, and let
q(x) ∈ S. The point inM that minimizes the KL–divergence
from q(x) to M is denoted by

ΠM◦q(x) = argmin
p(x)∈M

D[q(x); p(x)],
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and is called them–projection ofq(x) to M .
Finally, them–projection theorem follows.

Theorem 2:Let M be ane–flat submanifold inS, and let
q(x) ∈ S. Them–projection ofq(x) to M is unique and given
by the point inM such that them–geodesic connectingq(x)
andΠM◦q is orthogonal toM at this point.

C. Legendre Transformation and Local Structure

Let θ be the e–affine coordinate system ofS. Every
exponential family has the form

p(x; θ) = exp(c(x) + θ · x− ϕ(θ)).

The functionϕ(θ) is a convex function which is called the
cumulant generating function in statistics, and the free energy
in statistical physics. Them–affine coordinate systemη is
given by its gradient,

η = ∂θϕ(θ),

where∂θ = ∂/∂θ is the gradient operator. There is a dualistic
structure described by the Legendre transformation; the dual
potential,φ(η) is given by

ϕ(θ) + φ(η)− θ · η = 0

and is the negative of the Shannon entropy,

φ(η) =
∑
x

p(x; η) ln p(x;η).

The Fisher information matrix is given by the second deriva-
tive of ϕ,

I(θ) = ∂θθϕ(θ),

which is positive-definite. We have shown that the square of
the local distance is given by

D[p(x;θ); p(x;θ + dθ)] = D[p(x; θ + dθ); dθ]

=
1
2
dθT I(θ)dθ.

The third derivative of the potentialϕ,

T = ∂θθθϕ(θ),

is called the skewness tensor. It is a symmetric tensor of order
three, and its components are calculated as

Tijk = Ep[(xi − ηi)(xj − ηj)(xk − ηk)],

where Ep[·] denotes expectation with respect top(x). The
KL–divergence is expanded as

D[p(x;θ); p(x;θ + dθ)] =
1
2
dθT I(θ)dθ +

1
6
(dθ)3 ◦ T (θ),

where
(dθ)3 ◦ T (θ) =

∑

i,j,k

dθidθjdθkTijk(θ)

in the component form. This shows the local asymmetry of
the KL–divergence:

D[p(x; θ); p(x;θ + dθ)]−D[p(x; θ + dθ); p(x;θ)]

=
1
3
(dθ)3 ◦ T (θ).

The skewness tensor plays a fundamental role in the analysis
of decoding error.

D. Important Submanifolds and Marginalization

Now, we consider a submanifold,MD, in which every joint
distribution is decomposed as

p(x) =
N∏

i=1

p(xi), p(x) ∈ MD.

All the bits of x are independent for every distribution inMD.
Since each bit takes one of{−1, +1}, p(xi) is a Bernoulli
distribution, andp(x) belongs to an exponential family of the
form

p(x; θ) =
N∏

i=1

p(xi; θi) =
N∏

i=1

exp(θixi − ϕ(θi))

= exp(θ · x− ϕ(θ)), (9)

ϕ(θ) =
N∑

i=1

ϕ(θi) = ln
N∑

i=1

(e−θi + eθi), θ ∈ <N .

The submanifoldMD is N -dimensional, with itse–affine
coordinate systemθ = (θ1, · · · , θN )T , which are the natural
or canonical parameters inMD. The other parameter (m–
affine coordinate system) is the expectation parameterη =
(η1, · · · , ηN )T defined by

η = Ep[x] =
∑
x

p(x; θ)x.

This is equivalent to the soft decoding in (3). There is a simple
one-to-one correspondence betweenθ andη:

∂θϕ(θ) = η, ηi = tanh(θi), θi =
1
2

ln
1 + ηi

1− ηi
,

i = 1, · · · , N.

Proposition 1: MD is ane–flat submanifold ofS.
Proof: MD is a submanifold ofS. Let θ,θ′ ∈ <N and

p(x; θ), p(x;θ′) ∈ MD. For anyθ,θ′,

ln r(x; t) = (1− t) ln p(x; θ) + t ln p(x; θ′) + c(θ, θ′; t)
= ((1− t)θ + tθ′) · x + c(θ,θ′; t).

Let u(t) = (1−t)θ+tθ′, andr(x; t) = exp(u(t)·x−ϕ(u(t)))
belongs toMD.

We now define a number ofe–flat submanifolds which play
important roles in the decoding algorithms. The first is the
submanifold ofp0(x;θ) defined by

M0 =
{

p0(x;θ) = exp(c0(x) + θ · x− ϕ0(θ))
∣∣∣ x ∈ {−1,+1}N , θ ∈ <N

}
.

Since c0(x) is linear in {xi}, M0 is identical toMD. Let
c0(x) = α ·x, whereα = βx̃ for turbo codes andα = βN

for LDPC codes. The new coordinateθ is obtained by shifting
the old one,θold, in (9) by α:

θ = θold −α, ϕ0(θ) = ϕ(θ + α).

We use the new coordinatesθ as a coordinate system of
M0, in which information from the constituent decoders is
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integrated. We define the expectation parameter asη0(θ),
which is another coordinate system ofM0 and is dual toθ:

η0(θ) =
∑
x

p0(x;θ)x = ∂θϕ0(θ). (10)

Next, we consider the submanifold primarily responsible for
only onecr(x). The submanifold,Mr, r = 1, · · · ,K (K = 2
for turbo codes), is defined by

Mr =
{

pr(x; ζr) = exp(c0(x) + cr(x) + ζr · x− ϕr(ζr))∣∣∣ x ∈ {−1, +1}N , ζr ∈ <N
}

.

Here, ζr is the e–affine coordinate system or the natural
parameters ofMr, through which information of the other
decoders is integrated.Mr is also ane–flat submanifold ofS.
However,Mr 6= M0 and Mr 6= Mr′ , r 6= r′, becausecr(x)
includes higher order correlations of{xi} andcr(x) 6=cr′(x).
The expectation parameter forMr is defined as

ηr(ζr) =
∑
x

pr(x; ζr)x = ∂ζr
ϕr(ζr). (11)

We show that the soft decoding is them–projection toM0 of
the posterior distribution. Let us consider them–projection of
q(x) to M0. The derivative ofD[q(x); p0(x;θ)] with respect
to θ is

∂θD[q(x); p0(x;θ)] = ∂θϕ0(θ)−
∑
x

q(x)x

= η0(θ)−
∑
x

q(x)x.

By the definition of them–projection, this vanishes at the pro-
jected point. Hence, them–affine coordinate of the projected
point θ∗ is given byη0(θ∗) =

∑
x q(x)x,

η0,i(θ∗i ) =
∑
x

q(x)xi =
∑
xi

q(xi)xi,

which shows that them–projection ofq(x) does not change
the expectation ofx. This is equivalent to the soft decoding
defined in (3) (Fig.3).

�

���

�����
	 �
� � � � � ���

�����������
� �� �!#"�$

%'& (�)

Fig. 3. Information geometry of MPM decoding.

V. I NFORMATION GEOMETRY OFTURBO DECODING

The goal of the turbo decoding is to obtain a good ap-
proximation to the MPM decoding forq(x) = p(x|x̃, ỹ1, ỹ2).
Although obtaining them–projection ofq(x) to M0 is not
tractable, evaluation of them–projection of any distribution
pr(x; ζr) ∈ Mr, r = 1, 2 to M0 is tractable with BCJR
algorithm. Since eachpr(x; ζr), r = 1, 2, is derived from
p(x̃, ỹr|x) and a priorω(x; ζr) ∈ MD, we can describe the
turbo decoding as a method to approximate them–projection
of q(x) to M0 by evaluating the prior ofpr(x; ζr) iteratively
and projectingpr(x; ζr) to M0.

A. Information Geometrical Definition of Turbo Decoding

We rewrite the turbo decoding algorithm in section II-A
in the information geometrical framework. It is convenient to
use an adequatee–affine coordinate system ofM for the m–
projection ofq(x) to M . Let πM◦q(x) denote the coordinates
θ of M corresponding to them–projected distribution:

πM◦q(x) = argmin
θ∈<N

D[q(x); p(x;θ)].

Turbo decoding (information geometrical view)

1) Let ζt
2 =  for t = 0. For t = 0, 1, 2, · · · , compose

p2(x; ζt
2) ∈ M2 with prior ζt

2.
2) Perform the m–projection of p2(x; ζt

2) to M0 as
πM0◦p2(x; ζt

2), and updateζt+1
1 by using

ζt+1
1 = πM0◦p2(x; ζt

2)− ζt
2. (12)

3) Composep1(x; ζt+1
1 ) ∈ M1. Perform them–projection

of p1(x; ζt+1
1 ) to M0 as πM0◦p1(x; ζt+1

1 ) and update
ζt+1
2 by using

ζt+1
2 = πM0◦p1(x; ζt+1

1 )− ζt+1
1 . (13)

4) If πM0◦p1(x; ζt+1
1 ) 6= πM0◦p2(x; ζt+1

2 ), go to step 1.

To clarify this procedure, we introduce three auxiliary
parametersθ, ξ1, andξ2:

θ = ζ1 + ζ2, ξ1 = θ − ζ1 = ζ2, ξ2 = θ − ζ2 = ζ1,

whereξ1 andξ2 are equivalent to the extrinsic parameters in
section II-A. The intuition behind this framework is as follows.
Each of the higher order correlation terms,c1(x) or c2(x),
is included only in Decoder 1 or Decoder 2, respectively.
Decoders 1 and 2 calculate, using them–projection, the linear
approximationsξ1 ·x andξ2 ·x of c1(x) andc2(x) and send
messagesξ1 and ξ2 to the other decoders. In the interactive
procedures, Decoder 1 forms the distributionp1(x; ζ1), in
which the nonlinear effect other thanc1(x) (that is,c2(x) in
the turbo decoding case ofK = 2) is replaced by the estimate
ζ1, which is equal to the messageξ2 sent from Decoder 2. In
the general case ofK > 2, ζ1 summarizes all the messages,
ξ2, · · · , ξK , from the other decoders. The same explanation
holds for Decoder 2. The total linear estimate to the overall
higher order termc1(x)+c2(x) is given byθ·x = ξ1·x+ξ2·x.
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Fig. 4. Information geometrical view of turbo decoding.

The idea of the turbo decoding is schematically shown in
Fig.4. The projected distribution is written as

p0(x;θ) = exp(c0(x) + θ · x− ϕ0(θ))
= exp(c0(x) + ξ1 · x + ξ2 · x− ϕ0(θ)).

B. Equilibrium of Turbo Decoding

Assume that the decoding algorithm converges to a distri-
bution p0(x;θ∗), where∗ is used to denote the equilibrium
point. The distributionp0(x;θ∗) is the approximation of the
m–projection of q(x) to M0. The estimated parameterθ∗

satisfiesθ∗ = πM0◦p1(x; ζ∗1 ) = πM0◦p2(x; ζ∗2 ) and θ∗ =
ξ∗1 + ξ∗2 = ζ∗1 + ζ∗2 from the definition of the algorithm.

The converged distributionsp1(x; ζ∗1 ), p2(x; ζ∗2 ), and
p0(x;θ∗) satisfy the two conditions:

1) m–condition:

πM0◦p1(x; ζ∗1 ) = πM0◦p2(x; ζ∗2 ) = θ∗.

2) e–condition:

θ∗ = ξ∗1 + ξ∗2 = ζ∗1 + ζ∗2 . (14)

Them–condition can be rewritten with the expectation param-
eter defined in (10) and (11) as

η1(ζ∗1 ) = η2(ζ∗2 ) = η0(θ∗).

In order to give an information geometrical view of these
conditions, we define two submanifolds inS. The first is the
m–flat submanifold,M(θ), which we call the equimarginal
submanifold, attached to eachp0(x; θ) ∈ M0. It is defined by

M(θ) =
{

p(x)
∣∣∣ p(x) ∈ S,

∑
x

p(x)x =
∑
x

p0(x;θ)x = η0(θ)
}

.

�
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�����
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Fig. 5. Equimarginal submanifoldM(�).

The expectation ofx is equal toη0(θ) for anyp(x) ∈ M(θ).
Hence, them–projection of anyp(x) ∈ M(θ) to M0 coincides
with p0(x; θ). In other words,M(θ) is the inverse image
of p0(x; θ) of the m–projection. For everyθ, there exist
unique p1(x; ζ1) ∈ M1 and p2(x; ζ2) ∈ M2 such that the
expectations ofx with respect topr(x; ζr) andp0(x;θ) satisfy

η1(ζ1) = η2(ζ2) = η0(θ).

We denote the parameters that satisfy this equation byζ1(θ)
and ζ2(θ). In other words, we defineζ1(θ) = πM1 ◦
p0(x;θ) andζ2(θ) = πM2◦p0(x; θ). Obviously,p1(x; ζ1(θ)),
p2(x; ζ2(θ)) ∈ M(θ), and πM0 ◦ p1(x; ζ1(θ)) = πM0 ◦
p2(x; ζ2(θ))) = θ; however generally,ζ1(θ) + ζ2(θ) 6= θ
except for the equilibrium pointθ∗. The projection theorem
shows thatM(θ) is orthogonal toM0, M1, andM2 (Fig.5),
and thatpr(x; ζr(θ)) is the intersection ofMr andM(θ).

In order to elucidate thee–condition, we next define ane–
flat submanifoldE(θ) connectingp0(x;θ), p1(x; ζ1(θ)), and
p2(x; ζ2(θ)) in a log-linear manner:

E(θ) =
{

p(x) = Cp0(x; θ)t0p1(x; ζ1(θ))t1p2(x; ζ2(θ))t2

∣∣∣ tr ∈ <,

2∑
r=0

tr = 1
}

, C : normalization factor.

This manifold is a two-dimensionale–affine subspace ofS.
Apparently,p0(x; θ), p1(x; ζ1(θ)), andp2(x; ζ2(θ)) belongs
to E(θ). Moreover, at the equilibriumθ∗, q(x) is included in
E(θ∗). This is easily proved by settingt0 = −1, t1 = t2 = 1,
and (14)

C
p1(x; ζ∗1 )p2(x; ζ∗2 )

p0(x; θ∗)
= C exp(2c0(x) + c1(x) + c2(x) + (ζ∗1 + ζ∗2 ) · x

− (c0(x) + θ∗ · x))
= C exp(c0(x) + c1(x) + c2(x)) = q(x).

This discussion is summarized in the following theorem.
Theorem 3:At the equilibrium of the turbo decoding al-

gorithm, p0(x;θ∗), p1(x; ζ∗1 ), and p2(x; ζ∗2 ) belong to the
equimarginal submanifoldM(θ∗), while its e–flat version,
E(θ∗), includesp0(x; θ∗), p1(x; ζ∗1 ), p2(x; ζ∗2 ), andq(x).

The theorem shows the information geometrical structure of
the equilibrium point. IfM(θ∗) includesq(x), p0(x; θ∗) gives
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S

M(θ∗)

E(θ∗)

M0

M1

M2

p0(x; θ∗)

Π0◦q(x)

p1(x; ζ∗

1
)

p2(x; ζ∗

2
)

q(x)

m–projection

Fig. 6. M(�∗) and E(�∗) of turbo decoding:Π0◦q(x) is the directm–
projection of q(x) to M0, which corresponds to the true “soft decoding”
based onq(x), while p0(x;�∗) is the equilibrium of the turbo decoding.
The discrepancy between two submanifolds causes the decoding error.

the MPM decoding based onq(x), since the soft decoding
of q(x) is equivalent to them–projection of q(x) to M0,
andM(θ∗) is orthogonal toM0 at p0(x;θ∗). However, since
the m–flatness and thee–flatness do not coincide in general,
M(θ∗) does not necessarily includeq(x), while its e–flat
version,E(θ∗), includesq(x) instead ofM(θ∗). This shows
that the turbo decoding approximates the MPM decoding by
replacing them–flat manifoldM(θ∗) with thee–flat manifold
E(θ∗). It should be noted thatp0(x;θ∗) is not thee–projection
of q(x) to M0 either, becauseE(θ∗) is not necessarily
orthogonal toM0. When it is orthogonal, it minimizes the
KL–divergenceD[p0(x;θ); q(x)], θ ∈ <N , which gives the
naive mean field approximation [23], [24]. The replacement of
them–projection by thee–projection shares the similar idea of
the mean field approximation [10], [23]–[26]. Generally, there
is a discrepancy betweenM(θ∗) andE(θ∗), which causes a
decoding error (Fig.6). This suggests a possibility of a new
method to improve the iterative decoding. We will study this
in section VII.

C. Local Stability Analysis of Equilibrium Point

We discuss the local stability condition in this subsection.
Let I0(θ) be the Fisher information matrix ofp0(x; θ), and
Ir(ζr) be that ofpr(x; ζr), r = 1, 2. Since they belong to the
exponential family, we have the following relations:

I0(θ) = ∂θθϕ0(θ) = ∂θη0(θ),
Ir(ζr) = ∂ζrζrϕr(ζr) = ∂ζrηr(ζr), r = 1, 2.

Note thatI0(θ) is a diagonal matrix whose diagonal elements
are

[I0(θ)]ii = 1− η2
0,i.

In order to discuss the local stability, we give a sufficiently
small perturbation,∆ζ2, to ζ∗2 and apply one step of the
decoding procedure. Letζ′2 = ζ∗2 + ∆ζ′2 be the parameter
after one step of the turbo decoding algorithm. From step 2,
we haveθ∗ + ∆θ = πM0◦p2(x; ζ∗2 + ∆ζ2), such that

η0(θ∗ + ∆θ) = η2(ζ∗2 + ∆ζ2).

By a simple expansion, we have

η0(θ∗) + I0(θ∗)∆θ = η2(ζ∗2 ) + I2(ζ∗2 )∆ζ2

∆θ = I0(θ∗)−1I2(ζ∗2 )∆ζ2.

Thus,ζ1 in step 2 becomes

ζ1 = ζ∗1 + (I0(θ∗)−1I2(ζ∗2 )− EN )∆ζ2.

Following the same line for step 3,∆ζ′2 is given by

∆ζ′2 = (I0(θ∗)−1I1(ζ∗1 )− EN )(I0(θ∗)−1I2(ζ∗2 )− EN )∆ζ2

= Tturbo∆ζ2,

where

Tturbo = (I0(θ∗)−1I1(ζ∗1 )− EN )(I0(θ∗)−1I2(ζ∗2 )− EN ).

This shows that initial perturbation∆ζ2 becomesTturbo∆ζ2

after one iteration.
Theorem 4:When |λi| < 1 for all i, where λi are the

eigenvalues of the matrixTturbo, the equilibrium point is
locally stable.
This theorem coincides with the result of Richardson [12].

VI. I NFORMATION GEOMETRY OFLDPC DECODING

A. Information Geometry of Decoding Process

The LDPC decoding algorithm in subsection II-B is rewrit-
ten in the information geometrical framework as follows.

LDPC decoding (information geometrical view)
Initialization:

For t = 0, set ζ0
r = , r = 1, · · · ,K. For t =

0, 1, 2, · · ·, composepr(x; ζt
r) ∈ Mr.

Horizontal step:
Calculate them−projection ofpr(x; ζt

r) to M0 and
defineξt+1

r , r = 1, · · · ,K as

ξt+1
r = πM0◦pr(x; ζt

r)− ζt
r. (15)

Vertical step:
Updateζt+1

r , r = 1, · · · ,K andθt+1:

θt+1 =
K∑

r=1

ξt+1
r , ζt+1

r = θt+1 − ξt+1
r .

Convergence:
If θt does not converge, repeat the process by incre-
mentingt by 1.

Here, ξr is a message from decoderr that expresses the
contribution of cr(x), and θ integrates all the messages.
Each decoder summarizes the information from all the other
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decoders in the form of the priorω(x; ζr). For turbo decoding,
K is equal to2, andξ1 = ζ2 andξ2 = ζ1. Therefore, (12) and
(13) are both equivalent to (15). The main difference between
the turbo and LDPC decodings is that the turbo decoding
updatesζr sequentially, while the LDPC decoding updates
them simultaneously.

B. Equilibrium and Stability

The equilibrium of the LDPC decoding algorithm satisfies
the two conditions:

1) m–condition:

πM0◦pr(x; ζ∗r ) = θ∗, r = 1, · · · ,K.

which can be rewritten with the expectation parameters
as,

η0(θ∗) = η1(ζ∗1 ) = · · · = ηK(ζ∗K).

2) e–condition:

θ∗ =
K∑

r=1

ξ∗r =
1

K − 1

K∑
r=1

ζ∗r .

Theorem 3 holds for the LDPC decoding, in which the
definitions of submanifoldE(θ) must be extended as follows:

E(θ) =
{

p(x)
∣∣∣ p(x) = Cp0(x;θ)t0

K∏
r=1

pr(x; ζr(θ))tr ,

tr ∈ <,

K∑
r=0

tr = 1
}

C : normalization factor,

whereζr(θ) is defined as

ζr(θ) = πMr◦p0(x; θ), r = 1, · · ·,K.

At the converged point,q(x) is included inE(θ∗), which can
be proved by settingt0 = −(K − 1), t1 = t2 = · · · = 1:

C

∏K
r=1 pr(x; ζ∗r )

p0(x; θ∗)K−1

= C exp
(
Kc0(x) +

K∑
r=1

cr(x) +
K∑

r=1

ζ∗r · x

− (K − 1)c0(x)− (K − 1)θ∗ · x
)

= C exp(c0(x) + c1(x) + · · ·+ cK(x)) = q(x).

The above equation proves that Theorem 3 holds for the LDPC
decoding.

We next show the local stability condition for the LDPC
decoding. Consider a case in which a sufficiently small per-
turbation is added to the equilibrium:ζr = ζ∗r + ∆ζr. The
next state after a vertical step and a horizontal step is denoted
by ζ′r = ζ∗r +∆ζ′r. After the perturbation is added, the vertical
step givesξr = ξ∗r + ∆ξr, where

∆ξr = I0(ξ∗)−1Ir(ζ∗r )∆ζr −∆ζr

= (I0(θ∗)−1Ir(ζ∗r )− EN )∆ζr.

Following the horizontal step, we have

∆ζ′r =
K∑

r 6=s

(I0(θ∗)−1Is(ζ∗s )− EN )∆ζs.

The local stability condition of the LDPC decoding is sum-
marized as follows.

Theorem 5:The linearization of the dynamics of the LDPC
decoding around the equilibrium is




∆ζ′1
...

∆ζ′K


 = TLDPC




∆ζ1

...

∆ζK


 ,

where

TLDPC =




O I−1
0 I2 − EN · · · I−1

0 IK − EN

I−1
0 I1 − EN O

...
...

. ..
...

I−1
0 I1 − EN · · · · · · O




,

I0 = I0(θ∗), and Ir = Ir(ζ∗r ). The equilibrium is locally
stable when every eigenvalue,λi, i = 1, · · · , NK, of TLDPC

satisfies|λi| < 1.
The local stability condition generally depends on the

syndrome vector̃y. However, intuitively speaking, ifIr≈I0,
all the eigenvalues ofTLDPC are small, which leads to a
stable and quick convergence. When the final guess by the
decoderr is close to the integrated guess byp0(x;θ∗), it is
expected thatI−1

0 Ir ≈ EN . From simulations of LDPC codes,
we observe good convergence in many cases which implies
Ir≈I0. This property originates from the sparsity of the parity
check matrix.

VII. A NALYSIS OF DECODING ERRORS

A. Framework of Error Analysis

We have described the information geometrical framework
of the decoding algorithms and have shown how the MPM
decoding is approximated by these decoding algorithms. In
this section we analyze the error of the approximation and
give a correction term for improving the approximation [27],
[28]. We also provide an explanation why the sparsity, i.e.,
low density, of the parity check matrix has an advantage.

For the following discussion, we define an extended family
of distributions,

MS = {p(x;θ,v)},
by using two sets of parameters:θ = (θ1, · · · , θN )T ∈ <N

andv = (v1, · · · , vK)T ∈ <K .

p(x; θ, v) = exp
(
c0(x) + θ · x +

K∑
r=1

vrcr(x)− ϕ(θ,v)
)

= exp(c0(x) + θ · x + v · c(x)− ϕ(θ,v)),

ϕ(θ, v) = ln
∑
x

exp(c0(x) + θ · x + v · c(x)),

c(x) = (c1(x), · · · , cK(x))T .
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The familyMS is a(K +N)–dimensional exponential family.
The manifoldsM0 = {p0(x;θ)} and Mr = {pr(x; ζr)} are
submanifolds ofMS since M0 = {p(x;θ, v)|v = } and
Mr = {p(x; θ, v)|v = er}, whereer is the unit vector

er = (0, · · · , 0, 1
↑
r

, 0, · · · , 0)T .

It also includesq(x), when we setθ =  andv = K :

K = (1, · · · , 1︸ ︷︷ ︸
K

)T =
K∑

r=1

er.

We denote the expectation parameter ofp(x; θ, v) ∈ MS by
η(θ, v) = (η1(θ,v), · · · , ηN (θ, v))T , which is given by

η(θ, v) = ∂θϕ(θ, v) =
∑
x

p(x; θ, v)x.

B. Analysis of Equimarginal SubmanifoldM(θ∗)
Let p(x;θ,v) be the distributions included in the

equimarginal submanifoldM(θ∗), where

η(θ, v) = η(θ∗, ) = η(θ∗).

This constraint makesθ an implicit function ofv, which is
denoted byθ(v). Note thatθ∗ = θ(). More precisely,

η(θ(v), v) = η(θ(), ) = η(θ∗),

for any v. We analyze howθ changes fromθ∗ asv changes
from  and finally becomesK . In the following, we resort to
the perturbation analysis and evaluate the derivatives ofθ(v)
up to the second order. We start by introducing the derivative
D/∂v alongM(θ):

 =
D

∂v
η(θ, v) =

∂η

∂θ

∂θ

∂v
+

∂η

∂v
. (16)

The structural quantities∂η/∂θ and ∂η/∂v are the parts
of the Fisher information matrix ofMS , becauseη =
∂ϕ(θ, v)/∂θ. We use the index notation in which suffixesi, j,
and k are for θ and r, s, and t are for v. In the component
form, Gθθ = (∂η/∂θ) andGθv = (∂η/∂v) are defined as

gij(θ) =
∂ηi

∂θj
= Gij(θ), gir(θ) =

∂ηi

∂vr
.

Note thatGθθ = I0(θ∗) at θ = θ∗, v = . From (16),Gθθ,
andGθv we have

 = I0(θ)
∂θ

∂v
+ Gθv(θ)

∂θ

∂v
= −I−1

0 (θ)Gθv(θ), G̃θv = −∂θ

∂v
, (17)

which gives the first-order derivative. We defined̃Gθv as the
negative of it. Similarly, from

D2

∂v∂v
η(θ, v) = 0,

we have

I0(θ)
∂2θ

∂v∂v′
= −Tθvv′ − Tθθθ

∂θ

∂v

∂θ

∂v′

− Tθθv′
∂θ

∂v
− Tθθv

∂θ

∂v′
, (18)

where

Tθθθ =
∂3ϕ

∂θ∂θ∂θ
, Tθθv =

∂3ϕ

∂θ∂θ∂v
, Tθvv′ =

∂3ϕ

∂θ∂v∂v′
.

More explicitly, by using the index notation, we have

∑

j

gij
∂2θj

∂vr∂vs
= −Tirs −

∑

j,k

Tijk
∂θj

∂vr

∂θk

∂vs

−
∑

j

Tijr
∂θj

∂vs
−

∑

j

Tijs
∂θj

∂vr
.

By replacing∂θ/∂v in (18) with the result of (17), we get

I0(θ)
∂2θ

∂v∂v′
= −Tθvv′ − TθθθG̃θvG̃θv′

+ TθθvG̃θv′ + Tθθv′G̃θv.

We evaluate∂θ/∂v = −G̃θv(θ) and ∂2θ/∂v2 at (θ, v) =
(θ∗,) and approximateθ(v) with the second order Taylor
series expansion with respect tov around the point. The
differential operatorD/dv at (θ, v) = (θ∗, ) is written as

D

dv

∣∣∣
(θ∗,)

= B =
∂

∂v

∣∣∣
v=

− G̃θv(θ∗)
∂

∂θ

∣∣∣
θ=θ∗

,

In the component form, it is

Br =
∂

∂vr

∣∣∣
v=

−
∑

i

g̃ir(θ∗)
∂

∂θi

∣∣∣
θ=θ∗

.

Following some calculations, we have

∂2θ

∂v∂v

∣∣∣
(θ∗,)

= −I0(θ∗)−1B2η(θ∗).

We denote the(r, s) component ofB2 by Brs = BrBs. Note
that B2η(θ∗) 6=  while (D2/∂v∂v)η(θ∗) = .

The second-order approximation ofθ(v) around(θ∗, ) is
given by

θ(v) = θ∗ +
∂θ

∂v

∣∣∣
(θ∗,)

v +
1
2
vT ∂2θ

∂v∂v

∣∣∣
(θ∗,)

v

= θ∗ − G̃θv(θ∗)v − 1
2
vT I−1

0 (θ∗)(B2η(θ∗))v.

By pluggingv = K into the formula, we have

θi(K) = θ∗i −
∑

r

g̃ir(θ∗)− 1
2
(I−1

0 (θ∗))ii

(∑
r,s

Brs

)
ηi(θ∗),

(19)
which shows the point at whichM(θ∗) intersects the submod-
els{p(x;θ,K)}. Sinceq(x) is given byp(x; ,K), θ(K)
is related to the discrepancy ofq(x) and the iterative decoding
result.

This result is based on the perturbation analysis, of which
justification is outlined below. Whenε is small, the Taylor
expansion for functionf(x) is

f(ε) = f(0) + f ′(0)ε +
1
2
f ′′(0)ε2 + O(ε3).

When we rescalev = x/ε,

f(v) = f(0) + εf ′(0)v +
1
2
ε2f ′′(0)v2 + O(ε3).
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In our analysis of iterative decoding,x = ε corresponds to
vr = 1, where thek-th derivative is of orderεk. We have
assumed that the effects ofv are small, and we take the
expansion with respect tov in terms ofε. We finally setε = 1,
and the results are valid in the above sense.

So far, we have only considered them–condition in order to
obtain the perturbation expansion ofθ(v). However, in view
of the small-ε expansion described above, as well as thee–
condition, θ∗ itself is a small quantity. This is because the
“true” posteriorp(x; , εK) tends top(x; , ) asε → 0, so
that the iterative decoding resultθ∗ should also tends to in
the limit ε → 0. In order to obtain the expansion which readily
shows thatθ∗ is a small quantity in the sense mentioned above,
we invoke thee–condition, which is expressed as

θ∗ = −
K∑

r=1

(ζ∗r − θ∗). (20)

In order to conclude our analysis of the decoding error based
on perturbation analysis, we consider two distributions:

p(x; θ∗, ) = exp(c0(x) + θ∗ · x− ϕ(θ∗, ))
p(x; ζr, εer) = exp(c0(x) + ζr · x + εcr(x)− ϕ(ζr, εer)).

Note thatp(x; θ∗, ) ≡ p0(x;θ∗), and p(x; ζr, εer)
∣∣
ε=1

=
pr(x; ζ∗r ). Let p(x; ζr, εer), r = 1, · · · ,K, be included in
M(θ∗). From the result of (19),ζr − θ∗ is approximated in
the power series ofε:

ζr − θ∗ ' −G̃θv(θ∗)erε− 1
2
I−1
0 (θ∗)Brrη(θ∗)ε2.

This gives the approximation ofζ∗r − θ∗ as ε → 1:

ζ∗r − θ∗ ' −G̃θv(θ∗)er − 1
2
I−1
0 (θ∗)Brrη(θ∗).

Hence, from (20),θ∗ satisfies

θ∗ = −
K∑

r=1

(ζ∗r − θ∗)

' G̃θv(θ∗)K +
1
2
I−1
0 (θ∗)

∑
r

Brrη(θ∗). (21)

Consider another distribution,

p(x; u, εK) = exp(c0(x) + u · x
+ εK · c(x)− ϕ(u, εK)).

which is included inM(θ∗). Note thatp(x;, εK)
∣∣
ε=1

=
q(x) and that p(x; u, εK) is included in M(θ∗). As ε
increases from 0 to 1,u becomesu∗, and generallyu∗ 6= ,
which meansq(x) is generally not included inM(θ∗).

From the result of (19), we have

u∗ − θ∗ ' −G̃θv(θ∗)K − 1
2
I−1
0 (θ∗)

∑
r,s

Brsη(θ∗). (22)

From (21) and (22), we have

u∗ ' −1
2
I−1
0 (θ∗)

∑

r 6=s

Brsη(θ∗).

From the Taylor expansion, we have

η(, K) ' η(u∗,K)−∇θη(θ∗)u∗

= η(θ∗) +
1
2

∑

r 6=s

Brsη(θ∗). (23)

Note thatη(, K) is the expectation ofx with respect to
q(x) which is equivalent to the soft decoding based onq(x).
Therefore, (23) shows the difference between the ultimate goal
of the decoding and the result of the iterative decoding.

We summarize the above analysis:
Theorem 6:Let ηMPM = η(,K) be the expectation of

x with respect toq(x), and η(θ∗) be the expectation with
respect to the distribution obtained by the iterative decoding.
Then,ηMPM is approximated by the decoding resultη(θ∗)
as follows

ηMPM ' η(θ∗) +
1
2

∑

r 6=s

Brsη(θ∗). (24)

C. Remark onBrsηi

We remark here that the error term is related to the curvature
of M(θ∗) without giving details about the definition of the
e– and m–curvatures. See Amari and Nagaoka [15] for the
mathematical details. We have shown thatM(θ) is m–flat.
This implies that the embeddingm–curvature tensor vanishes;
that is,

H(m)i
rs =

D2

∂vr∂vs
ηi(v) = 0.

On the other hand,M(θ) is not e–flat, so the embeddinge–
curvature is given by

H(e)i
rs =

D2

∂vr∂vs
θi(v).

Its covariant version is given by

H(e)i
rs = Brsηi,

which shows that the error term is directly related to thee–
curvature ofM(θ∗).

VIII. I MPROVING DECODING ERRORS FORLDPC CODES

A. Structural Terms

The termsBrsηi are given by the structural tensorsG and
T at p0(x; θ) ∈ M0. For LDPC codes, they are given by

gir = Ep0 [(xi − ηi)(cr(x)− c̄r)],
Tijr = Ep0 [(xi − ηi)(xj − ηj)(cr(x)− c̄r)],

whereEp0 denotes the expectation with respect top0(x;θ),
and

c̄r = Ep0 [cr(x)] = ρỹr

∏

j∈Lr

ηj .

Because thexi’s are independent with respect top0(x; θ), the
following relations hold and are used for further calculation:

Ep0 [xicr(x)] =





ηic̄r, when i /∈ Lr

1
ηi

c̄r, when i ∈ Lr

Ep0 [cr(x)cs(x)] =
1

Prs
c̄r c̄s,



14

where

Prs =





∏

j∈Lr∩Ls

η2
j , whenLr ∩ Ls 6= ∅

1, whenLr ∩ Ls = ∅
.

The explicit forms ofG andT are given in Appendix III.

B. Algorithm to Calculate Correction Term

From the result of Theorem 6, the soft-decodedη∗ is
improved by

ηMPM = η(θ∗) +
1
2

∑

r 6=s

Brsη(θ∗).

By calculatingBrsηi for (r 6= s), (see Appendix IV), we give
the algorithm to calculate correction termBrsηi as follows.

1) Calculate
c̄r = Ep0 [cr(x)].

2) Giveni, search for the pair(r, s) which includesi, that
is, i ∈ Lr and i ∈ Ls. Calculate

Brsηi = 2
1− η2

i

ηi
c̄r c̄s

∑

j 6=i

1− η2
j

η2
j

hjrhjs. (25)

3) Given i, search for the pair(r, s) such thati ∈ Lr and
i /∈ Ls. Calculate

Brsηi = c̄r c̄s
1− η2

i

ηi

(
−1− Prs

Prs
+

∑

j

1− η2
j

η2
j

hjrhjs

)
.

(26)
4) The correction term is given by summing up over all

(r, s) in the above two cases.

The summation in (25) runs overj ∈ Lr ∩ Ls \ i, and that
in (26) runs overj ∈ Lr ∩ Ls. Thus, when the parity-check
matrix is designed such that, for anyr ands,

hirhis = 1

holds for at most onei, that is, any two columns of the parity-
check matrix have at most one overlapping positions of1, all
the principal terms of the correction vanish [29], which leads
to the following theorem for LDPC codes.

Theorem 7:The principal term of the decoding error van-
ishes when parity-check matrixH has no pair of columns with
an overlap of1 more than once.

It is believed [5] that the average probability of a decoding
error is small, when any two columns of parity-check matrix
H do not have an overlap of1 more than once. Intuitively,
this avoidance prevents loops with length4 from appearing
in the graphical representation. Results of many experiments
indicate that short loops are harmful for iterative decodings;
that is, they worsen the decoding errors. Our result in Theorem
7 analytically supports this indication: the principal term of the
decoding error vanishes when the parity-check matrix is sparse
and there are no two columns with an overlap of1 more than

once. Loops longer than4 do not contribute to the decoding
error at least via the principal term (although they may have
effects via higher order terms). Many LDPC codes have been
designed to satisfy this criterion [5]. The analysis presented
here can be extended in a straightforward manner to higher
order perturbation analysis in order to quantify these effects.

It should be noted that our approach is different from the
approaches commonly used to analyze the properties of itera-
tive decoders since we do not consider anyensembleof codes.
A typical reasoning found in the literature (e.g., [4]) is first
to consider an ensemble of random parity-check matrices and
show that the probability (over the ensemble) of short loops in
the associated graph decreases to zero as the codelength tends
to infinity while the column and row weights are kept finite.
This means that the behavior of iterative decoders for codes
with longer loops is the same as that in the loop-free case.
The statistical-mechanical approach to performance analysis
of Gallager-type codes [30] also assumes random ensembles.
Our analysis, on the other hand, does not assume ensembles
but allows the evaluation of the performance of the iterative
decoders with anysingle instanceof a the parity-check matrix
with a finite codelength.

IX. D ISCUSSION ANDCONCLUSION

We have discussed the mechanism of the iterative decoding
algorithms from the information geometrical viewpoint. We
built a framework for analyzing the algorithms and used it to
reveal their basic properties.

The problem of the turbo and LDPC decodings is summa-
rized as a unified problem of marginalizing the probability
distribution q(x) in (2). This problem is common to the
belief propagation for the loopy belief diagram in artificial
intelligence [7] and the Bethe approximation in statistical
physics [9]–[11]. In all of them, the direct marginalization
of q(x) is intractable, and only the marginalization of partial
distributionspr(x; ζr), r = 1, · · · ,K, in (4), is possible.

The marginalization ofq(x) is approximated through itera-
tive processes of adjusting{ζr}, marginalizingpr(x; ζr), and
integrating them into the approximated parameterθ. Both of
the decoding algorithms were redefined with the information
geometrical terms, and the conditions of the equilibrium were
derived. They revealed an intuitive information geometrical
meaning of the equilibrium point, which is summarized in
Theorem 3. In the information geometrical terms, the ideal
goal is to have the cross section ofM0 and an m–flat
submanifoldM(θ) includingq(x): however, instead ofM(θ),
an e–flat manifoldE(θ) is used to obtain the decoding result.
A new prospect arose from the theorem: the discrepancy
betweenM(θ) andE(θ) gives the decoding error.

The principal term of the discrepancy was obtained through
perturbation analysis, which is summarized in Theorem 6. The
decoding error was given in (24), and the correction term gives
a method for improving the existing decoding algorithms.
Moreover, since the correction term strongly depends on the
encoders, it gives a new suggestion for designing the codes.
We have done the perturbation analysis up to the second order,
and it is possible to extend it to higher order analysis in a
straightforward fashion.
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We also derived the local stability conditions in Theorems
4 and 5. Although Theorem 4 coincides with the results of
Richardson [12], Theorem 5 presents a new result for the local
stability condition of LDPC codes. The global convergence
property is another issue [31] which is one of our future works.

The belief propagation algorithm is not directly connected
to the gradient method of minimizing a cost function. It has
been pointed out that the final result is at the critical point of
the Bethe free energy [10], [11].

For ζ1, · · · , ζK , andθ, we define the following function of
{ζr} andθ:

F({ζr},θ) = D[p0(x; θ); q(x)]−
K∑

r=1

D[p0(x; θ); pr(x; ζr)].

The first term is rewritten as

D[p0(x; θ); q(x)] = Ep0 [c0(x)] + θ·η0(θ)− ϕ0(θ)

−
( K∑

r=0

Ep0 [cr(x)] + ln C
)
.

The second term is rewritten as
K∑

r=1

D[p0(x; θ); pr(x; ζr)]

= K(Ep0 [c0(x)] + θ · η0(θ)− ϕ0(θ))

−
K∑

r=1

(Ep0 [c0(x)] + Ep0 [cr(x)] + ζr · η0(θ)− ϕr(ζr)).

These three equations give

F({ζr}, θ) = (K − 1)ϕ0(θ)−
K∑

r=1

ϕr(ζr)− ln C

+
K∑

r=1

ζr · (η0(θ)− ηr(ζr)).

Sinceln C is a constant, we neglect it and redefineF({ζr};θ):

F({ζr}, θ) = (K − 1)ϕ0(θ)−
K∑

r=1

ϕr(ζr)

+
K∑

r=1

ζr · (η0(θ)− ηr(ζr)).

When thep0(x;θ), pr(x; ζr) ∈ M(θ), the last term vanishes,
and this function with constraintζr = ζr(θ) or ηr(ζr) =
η0(θ) coincides with the free energy introduced by Kabashima
and Saad [10] from the statistical physical viewpoint.

The advantage of the information geometrical framework
lies in its generality. The framework is common not only to
turbo and LDPC codes, but is also generally valid for the Bethe
approximation, the belief propagation applied to a loopy belief
diagram, and its variants such as TRP [32]. We have used this
framework to integrate the statistical-mechanical method and
an interesting idea of the CCCP algorithm [33] in a separate
paper [34]. Another important extension will be found when
we use different models of channels. It is easy to extend the
result for any memoryless channel (see Appendix I), and by
employing more complicated channels, which is one of our

future works, we can derive wide varieties of the turbo and
the LDPC type decoding algorithms.

This study is a first step toward information geometrical un-
derstanding of turbo and LDPC codes. By using the framework
presented in this paper, we expect that further understanding
will appear and new improvements will emerge.

APPENDIX I
EXTENSION TO GENERAL MEMORYLESSCHANNEL

The information geometrical framework in this paper can
be easily extended to the case where the channel is a general
binary-input memoryless channel, which includes various im-
portant channels, such as AWGN and Laplace channels. We
show that the Bayes posterior distribution is expressed in the
form of (2) for turbo codes. Its extension to LDPC codes is
also simple.

The information bitsx = (x1, · · · , xN )T , xi ∈ {−1,+1}
and two sets of parity bitsy1 = (y11, · · · , y1L)T , y2 =
(y21, · · · , y2L)T , y1j , y2j ∈ {−1, +1} are transmitted through
a memoryless channel. The receiver observes their noisy
version as(x̃, ỹ1, ỹ2). Since the channel is memoryless the
following relation holds

p(x̃, ỹ1, ỹ2|x) = p(x̃|x)p(ỹ1|x)p(ỹ2|x). (27)

The Bayes posterior with the uniform prior is

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

= Cp(x̃, ỹ1, ỹ2|x)

= Cp(x̃|x)p(ỹ1|x)p(ỹ2|x). (28)

For memoryless channels, each conditional distribution on the
right hand side of (27) is formulated as

p(x̃|x) =
N∏

i=1

p(x̃i|xi), p(ỹr|x) =
L∏

j=1

p(ỹrj |yrj(x)), (29)

for r = 1, 2. Let us viewp(x̃i|xi) as a function ofxi, where
x̃i is fixed. By definingλi as

λi =
1
2

ln
p(x̃i|xi = +1)
p(x̃i|xi = −1)

,

p(x̃i|xi) is rewritten as

p(x̃i|xi) ∝ exp(λixi). (30)

Note that λi is a function of x̃i. We can also rewrite
p(ỹrj |yrj(x)) as follows.

p(ỹrj |yrj(x)) ∝ exp(µrjyrj), (31)

where

µrj =
1
2

ln
p(ỹrj |yrj = +1)
p(ỹrj |yrj = −1)

, r = 1, 2.

From (29), (30), and (31), we can rewrite (28) as

p(x|x̃, ỹ1, ỹ2) = C exp(λ · x + µ1 · y1(x) + µ2 · y2(x)),
λ = (λ1, · · · , λN )T , µr = (µr1, · · · , µrL)T , (32)

which has the identical form to (2), wherec0(x) = λ ·x, and
cr(x) = µr ·yr(x). Other distributionsp0(x; θ) andpr(x; ζr)
are also expressed withc0(x) and cr(x), which shows the
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information geometrical framework is valid for general binary-
input memoryless channels.

Finally, we give practical form ofλ andµr for an AWGN
channel. Let the noise variance of an AWGN channel beς2

andp(x̃|x) becomes

p(x̃|x) = (2πς2)−N/2 exp
(
−

N∑

i=1

(x̃i − xi)2

2ς2

)

= (2πς2)−N/2 exp
(−1

2ς2

N∑

i=1

(x2
i − 2x̃ixi + x̃2

i )
)
.

Sincex2
i = 1 holds, it becomes

p(x̃|x) = (2πς2)−N/2 exp
( 1

2ς2
(2x̃ · x−N − |x̃|2)

)
.

Following the same line forp(ỹr|x), the Bayes posterior with
the uniform prior is

p(x|x̃, ỹ1, ỹ2) = C exp(λ · x + µ1 · y1(x) + µ2 · y2(x)),

λ =
1
ς2

x̃, µr =
1
ς2

ỹr,

which is identical to (32).

APPENDIX II
SOFT CONSTRAINT AND HARD CONSTRAINT

The LDPC decoding was reformulated with a positive real
numberρ in section III-C. Since the “soft constraint” defined
with a finiteρ differs from the “hard constraint,” it is important
to discuss the influence ofρ on the hard decoding results.
In this section, we show both constraints give the same hard
decoding result for a sufficiently large but finiteρ.

The posterior probability ofx conditional to ỹ in (6) is
rewritten as

p(x|ỹ) = C exp(βN · x + ρỹ · y(x)).

Let ηρ be the expectation ofx with respect top(x|ỹ) andx̂ρ

be the hard decoding result

ηρ =
∑
x

p(x|ỹ)x, x̂ρ = sgn(ηρ).

The ultimate goal of the LDPC decoding based on the “hard
constraint” is to calculatêx∞ defined as

x̂∞ = sgn(η∞) = sgn
(

lim
ρ→∞

ηρ

)
.

If x̂ρ = x̂∞ holds for a finiteρ, both constraints give the
same hard decoding result.

Let us defineXY as a set ofx which satisfyỹ = y(x). As
ρ →∞, p(x|ỹ) concentrates onx ∈ XY , andη∞ is redefined
as

η∞ = lim
ρ→∞

∑
x

p(x|ỹ)x =

∑
x∈XY eβN ·xx∑
x∈XY eβN ·x .

Now, ηρ is rewritten as

ηρ =
∑
x

p(x|ỹ; ρ)x

=
∑

x∈XY
CeβN ·xeρKx +

∑

x/∈XY
CeβN ·xeρỹ·y(x)x

= CeρKη∞
∑

x∈XY
eβN ·x + C

∑

x/∈XY
eβN ·xeρỹ·y(x)x.

(33)

A component ofx̂ρ is different from that ofx̂∞, when the
second term in (33) dominates the first term with the opposite
sign. Such a case cannot occur if

eρK∆∞ >

∑
x/∈XY eβN ·xeρỹ·y(x)

∑
x∈XY eβN ·x , (34)

where∆∞ is the smallest absolute value of the components
of η∞.

A. Strict Bound

Sinceỹ·y(x) ≤ K−2 for x /∈ XY and from (34),̂xρ = x̂∞
is guaranteed forρ > ρ0, whereρ0 is defined as

eρ0K∆∞ =
eρ0(K−2)

∑
x/∈XY eβN ·x

∑
x∈XY eβN ·x

=
eρ0(K−2)ω0(x /∈ XY)

ω0(x ∈ XY)

ρ0 =
1
2

{
ln

( (1− ω0(x ∈ XY))
ω0(x ∈ XY)

)
− ln ∆∞

}
.

Here,ω0(x) is the prior ofx defined in (7). Roughly speaking,
asN increases,ln(1− ω0(x ∈ XY)) becomes negligible, and
ln ω0(x ∈ XY) increases proportional to−N , and the positive
numberρ0 grows proportional toN .

B. Approximate stochastic bound ofρ for Large N and K

We show by probabilistic arguments that a finiteρ, not
increasing in proportion toN , is sufficient to guarantee that a
component of̂xρ is equal to that of̂x∞, whenN andK are
large. LetT be the set of the typical sequences ofx,

T =
{

x
∣∣∣ 1

N

N∑

i=1

xi ' (1− 2σ)
}

,

of which cardinality is |T | = eNH(σ), where σ is the
probability of each bit to be flipped through the BSC and
H(σ) is the entropy. It is known [5] that, whenN is large,
with probability almost equal to 1, the vector satisfying the
“hard constraint” exists uniquely inT . Let x0 be the vector,
and η∞ = x̂∞ = x0. In the following, we neglect terms of
relatively exponentially small order,e−CN , by stating “except
for small order terms.” We can rewrite (34) as

eρK >

∑
x∈T ,x 6=x0

eρỹ·y(x)eβN(1−2σ)

eβN(1−2σ)
=

∑

x∈T ,x 6=x0

eρỹ·y(x).

(35)
Here, the summation is taken only forx ∈ T by neglecting
exponentially small order terms, and∆∞ = 1 is used. Now,
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we evaluateeρỹ·y(x). We consider a regular LDPC codes,
wherehri of the parity check matrixH is randomly chosen
and non-zero elements per row inH is fixed toQ. Since

ỹryr(x) =
∏

i∈Lr

(x0ixi),

it is 1 when the number ofx0ixi = −1, i ∈ Lr, is even, and
is −1 when it is odd. LetR and 1 − R be the probability
of ỹryr(x) = −1 and ỹryr(x) = +1, respectively. Then, we
can easily write down the probabilities which stay to be finite
as N → ∞. Sincex0 and x are typical sequences, whenσ
is small, the probability thatLr does not include thosei for
which x0ixi = −1 is given by

((1− σ)2 + σ2)Q ' 1− 2Qσ.

The probability that the number ofx0ixi = −1 is two is much
smaller. Hence, for a sufficiently smallσ,

1−R = Prob[ỹryr(x) = +1] ' 1− 2Qσ,

R = Prob[ỹryr(x) = −1] ' 2Qσ.

Because of the law of large numbers,

ỹ · y(x) ' KE[ỹryr(x)] = K(1− 2R).

Now, we rewrite (35) as,

eρK >
∑

x∈T ,x 6=x0

eρỹ·y(x) ' eρK(1−2R) · eNH(σ),

where,eNH(σ) is the number of typical sequences. This shows
when

ρ >
NH(σ)
2KR

,

the probability that a component of̂x∞ is different from that
of x̂ρ is negligibly small. Whenσ and Q are small, this
reduces to

ρ >
NH(σ)
4KQσ

' N

4KQ
.

SinceN andK are of the same order, the right-hand side does
not grow withN .

APPENDIX III
EXPLICIT FORMS OFG AND T

Metric tensor G :
for gij :

gij = Ep0 [(xi − ηi)(xj − ηj)] = (1− η2
i )δij ,

which is the diagonal matrixI0(θ∗).
for gir :

gir = Cov[xi, cr(x)] =
1− η2

i

ηi
c̄rhir,

g̃ir = (I−1
0 (θ∗)Gθv)ir =

1
ηi

c̄rhir.

Skewness tensorT :
for Tijk :

Tijk = Ep0 [(xi − ηi)(xj − ηj)(xk − ηk)]
= −2ηi(1− η2

i )δijk,

where δijk is equal to1 when i = j = k and 0
otherwise. Hence, it is diagonal.

for Tijr :

Tiir = −2hir(1− η2
i )c̄r,

Tijr = hirhjr

(1− η2
i )(1− η2

j )
ηiηj

c̄r.

for Tirs (r 6= s) :

Tirs = Ep0 [(xi−ηi)(cr(x)− c̄r)(cs(x)− c̄s)]. (36)

WhenLr ∩ Ls = ∅, Tirs = 0. For Lr ∩ Ls 6= ∅, we
consider three cases.

case 1) i /∈ Lr,Ls: In this case, xi and
(cr(x), cs(x)) are independent:

Tirs = 0.

case 2)i ∈ Lr, i ∈ Ls: Careful calculation of (36)
gives

Tirs = −2
1− η2

i

ηi
c̄r c̄s.

case 3)i ∈ Lr, i /∈ Ls or i /∈ Lr, i ∈ Ls: Careful
calculation gives

Tirs = c̄r c̄s

{
−1− η2

i

ηi
+

1− η2
i

ηi

1
Prs

}
.

APPENDIX IV
EXPLICIT FORM OF Brsηi FOR r 6= s

First, we give the form ofBrsηi as follows,

Brsηi = −Tirs −
∑

jk

TijkG̃jrG̃ks

+
∑

j

(
TijrG̃js + TijsG̃jr

)
.

for i /∈ Lr, i /∈ Ls:

Brsηi = 0.

for i ∈ Lr, i ∈ Ls :

Tirs = −2
1− η2

i

ηi
c̄r c̄s,

∑

jk

TijkG̃jrG̃ks = TiiiG̃irG̃is = −2
1− η2

i

ηi
c̄r c̄s,

∑

j

TijrG̃js = TiirG̃is +
∑

j 6=i

TijrG̃js

= −2
1− η2

i

ηi
c̄r c̄s

+
∑

j∈Lr∩Ls\i

(1− η2
i )(1− η2

j )
ηiη2

j

c̄r c̄s.

Hence

Brsηi = 2
∑

j∈Lr∩Ls\i

(1− η2
i )(1− η2

j )
ηiη2

j

c̄r c̄s,
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which vanishes whenLr ∩ Ls does not include any
j other thani.

for i ∈ Lr, i /∈ Ls (or i ∈ Ls, i /∈ Lr):

Tirs = c̄r c̄s
1− η2

i

ηi

( 1
Prs

− 1
)
,

TijkG̃jrG̃ks = 0, TijsG̃jr = 0,

∑

j

TijrG̃js =
∑

j∈Lr∩Ls

(1− η2
i )(1− η2

j )
ηiη2

j

c̄r c̄s.

Hence,

Brsηi =
1− η2

i

ηi
c̄r c̄s

(
−1− Prs

Prs
+

∑

j∈Lr∩Ls

1− η2
j

η2
j

)
.

WhenLr ∩ Ls = {j}, Prs = η2
j , which reduces to

Brsηi = 0.

ACKNOWLEDGMENT

The authors gratefully acknowledge Chiranjib Bhat-
tacharyya, Yoshiyuki Kabashima, and Motohiko Isaka for
helpful discussions. The authors also wish to thank the Editor
and the anonymous reviewers for their valuable comments.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” inProc. IEEE Int.
Conf. on Communications, Geneva, Switzerland, May 1993, pp. 1064–
1070.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,”IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, Oct. 1996.

[3] R. G. Gallager, “Low density parity check codes,”IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[4] ——, Low density parity check codes, ser. Research Monograph series.
Cambridge, MA: MIT Press, 1963.

[5] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431,
Mar. 1999.

[6] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo. CA: Morgan Kaufmann, 1988.

[7] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as
an instance of Pearl’s “belief propagation” algorithm,”IEEE J. Select.
Areas Commun., vol. 16, no. 2, pp. 140–152, Feb. 1998.

[8] Y. Kabashima and D. Saad, “Belief propagation vs. TAP for decoding
corrupted messages,”Europhysics Lett., vol. 44, no. 5, pp. 668–674,
Dec. 1998.

[9] ——, “Statistical mechanics of error-correcting codes,”Europhysics
Lett., vol. 45, no. 1, pp. 97–103, Jan. 1999.

[10] ——, “The TAP approach to intensive and extensive connectivity
systems,” inAdvanced Mean Field Methods – Theory and Practice,
M. Opper and D. Saad, Eds. Cambridge, MA: MIT Press, 2001, ch. 6,
pp. 65–84.

[11] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Bethe free energy, Kikuchi
approximations, and belief propagation algorithms,” Mitsubishi Electric
Research Laboratories, Tech. Rep. TR2001–16, May 2001.

[12] T. J. Richardson, “The geometry of turbo-decoding dynamics,”IEEE
Trans. Inform. Theory, vol. 46, no. 1, pp. 9–23, Jan. 2000.

[13] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,”IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[14] S. Amari, Differential-Geometrical Methods in Statistics, ser. Lecture
Notes in Statistics. Berlin, Germany: Springer-Verlag, 1985, vol. 28.

[15] S. Amari and H. Nagaoka,Methods of Information Geometry. Provi-
dence, Rhode Island: AMS and Oxford University Press, 2000.

[16] A. Amraoui, S. Dusad, and R. Urbanke, “Achieving general points in the
2-user Gaussian MAC without time-sharing or rate-splitting by means of
iterative coding,” inProc. of 2002 IEEE Int. Symp. Information Theory,
Lausanne, Switzerland, Jun./Jul. 2002, p. 334.

[17] A. de Baynast and D. Declercq, “Gallager codes for multiple user
applications,” in Proc. 2002 IEEE Int. Symp. Information Theory,
Lausanne, Switzerland, Jun./Jul. 2002, p. 335.

[18] R. Müller, G. Caire, and T. Tanaka, “Density evolution and power profile
optimization for iterative multiuser decoders based on individually
optimum multiuser detectors,” inProc. 40th Allerton Conf. Commun.,
Contr., Comput., Monticello, IL, Oct. 2002.

[19] G. Caire, R. M̈uller, and T. Tanaka, “Iterative multiuser joint decoding:
optimal power allocation and low-complexity implementation,” 2003,
submitted to IEEE Trans. Inform. Theory.

[20] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,”IEEE Trans. Inform. Theory, vol. 42, no. 2,
pp. 429–445, Mar. 1996.

[21] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,”IEEE Trans. Inform. Theory,
vol. 20, pp. 284–287, Mar. 1974.

[22] S. Amari, “Information geometry on hierarchy of probability distribu-
tions,” IEEE Trans. Inform. Theory, vol. 47, no. 5, pp. 1701–1711, Jul.
2001.

[23] T. Tanaka, “Information geometry of mean-field approximation,”Neural
Computation, vol. 12, no. 8, pp. 1951–1968, Aug. 2000.

[24] ——, “Information geometry of mean-field approximation,” inAdvanced
Mean Field Methods – Theory and Practice, M. Opper and D. Saad, Eds.
Cambridge, MA: MIT Press, 2001, ch. 17, pp. 259–273.

[25] S. Amari, S. Ikeda, and H. Shimokawa, “Information geometry and mean
field approximation: Theα-projection approach,” inAdvanced Mean
Field Methods – Theory and Practice, M. Opper and D. Saad, Eds.
Cambridge, MA: MIT Press, 2001, ch. 16, pp. 241–257.

[26] H. J. Kappen and W. J. Wiegerinck, “Mean field theory for graphical
models,” in Advanced Mean Field Methods – Theory and Practice,
M. Opper and D. Saad, Eds. Cambridge, MA: MIT Press, 2001, ch. 4,
pp. 37–49.

[27] S. Ikeda, T. Tanaka, and S. Amari, “Information geometrical frame-
work for analyzing belief propagation decoder,” inAdvances in Neural
Information Processing Systems 14, T. G. Dietterich, S. Becker, and
Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 407–414.

[28] ——, “Information geometry of turbo codes,” inProc. 2002 IEEE Int.
Symp. Information Theory, Lausanne, Switzerland, Jun./Jul. 2002, p.
114.

[29] T. Tanaka, S. Ikeda, and S. Amari, “Information-geometrical significance
of sparsity in Gallager codes,” inAdvances in Neural Information
Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. Cambridge, MA: MIT Press, 2002, pp. 527–534.

[30] T. Murayama, Y. Kabashima, D. Saad, and R. Vicente, “Statistical
physics of regular low-density parity-check error-correcting codes,”
Physical Review E, vol. 62, no. 2, pp. 1577–1591, Aug. 2000.

[31] D. Agrawal and A. Vardy, “The turbo decoding algorithm and its phase
trajectories,”IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 699–722,
Feb. 2001.

[32] M. Wainwright, T. Jaakkola, and A. Willsky, “Tree-based reparame-
terization for approximate inference on loopy graphs,” inAdvances in
Neural Information Processing Systems 14, T. G. Dietterich, S. Becker,
and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 1001–
1008.

[33] A. L. Yuille, “CCCP algorithms to minimize the Bethe and Kikuchi
free energies: Convergent alternatives to belief propagation,”Neural
Computation, vol. 14, no. 7, pp. 1691–1722, Jul. 2002.

[34] S. Ikeda, T. Tanaka, and S. Amari, “Stochastic reasoning, free energy
and information geometry,” to appear in Neural Computation.



19

Shiro Ikeda (M’00) received the B. Eng., M. Eng., and Dr. Eng. degrees
in information physics from the University of Tokyo, Tokyo, Japan, in 1991,
1993, and 1996, respectively.

From 1996 to 2001, he was with the Brain-Style Information Systems Re-
search Group, RIKEN Brain Science Institute, Saitama, Japan, former half as a
Special Postdoctoral Researcher of RIKEN, and the latter half as a Reseacher
of Japan Science and Technology Agency. He was an Associate Professor
at Kyushu Institute of Technology, Fukuoka, Japan from 2001 to 2003 and
since February 2003, he has been an Associate Professor at the Institute of
Statistical Mathematics, Tokyo. He is now visiting the Gatsby Computational
Neuroscience Unit, University College London, London, United Kingdom,
under the fellowship between the Royal Society and the Japan Society for
the Promotion of Science. His research interests are in the areas of statistical
signal processing, learning theory, and information geometry.

Dr. Ikeda received the Best Research Award and Best Paper Award from
Japan Neural Network Society, in 1999 and 2001, respectively.

Toshiyuki Tanaka (S’90-M’93) received the B. Eng., M. Eng., and Dr. Eng.
degrees in electronics engineering from the University of Tokyo, Tokyo, Japan,
in 1988, 1990, and 1993, respectively.

In 1993, he joined the Department of Electronics and Information En-
gineering, Tokyo Metropolitan University, Tokyo, where he is currently an
Associate Professor. His research interests are in the interdisciplinary areas of
information and communication theory, learning theory, information geometry,
and statistical mechanics.

Dr. Tanaka received the DoCoMo Mobile Science Award in 2002.

Shun-ichi Amari (M’71-M’88-F’94) graduated from the University of Tokyo,
Tokyo, Japan, in 1958, majoring in mathematical engineering, and received
the Dr. Eng. degree from the University of Tokyo in 1963.

He was an Associate Professor at Kyushu University, Fukuoka, Japan,
an Associate and then Full Professor at the Department of Mathematical
Engineering and Information Physics, University of Tokyo, and is now
Professor-Emeritus at the University of Tokyo. He is the Director of RIKEN
Brain Science Intsitute, Saitama, Japan. He has been engaged in research in
wide are as of mathematical engineering and applied mathematics, such as
topological network theory, differential geometry of continuum mechanics,
pattern recognition, mathematical foundations of neural networks, and infor-
mation geometry.

Dr. Amari served as President of the International Neural Network
Society, Council member of Bernoulli Society for Mathematical Statistics
and Probability Theory, and is President-Elect of the Institute of Electrical,
Information and Communication Engineers, Japan. He was founding Co-
Editor-in-Chief of Neural Networks. He has been awarded the Japan Academy
Award, IEEE Neural Networks Pioneer Award, IEEE Emanuel R. Piore Award,
Neurocomputing best paper award, IEEE Signal Processing Society best paper
award, and NEC C&C Prize, among many others.


