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Abstract—Since the proposal of turbo codes in 1993, many parity-check (LDPC) codes, which was originally proposed
studies have appeared on this simple and new type of codespy Gallager [3], [4] and was rediscovered by MacKay [5].
which give a powerful and practical performance of error  qgner methods have been found even in different fields, such

correction. Although experimental results strongly support the e 1 . - . .
efficacy of turbo codes, further theoretical analysis is necessary, as artificial intelligence and statistical physics. McEliece et

which is not straightforward. It is pointed out that the iterative = al- Showed that the turbo decoding algorithm is equivalent to
decoding algorithm of turbo codes shares essentially similar ideas Pearl’s belief propagation algorithm [6], applied to a belief
with low-density parity-check (LDPC) codes, with Pearl’s belief diagram with loops [7], and MacKay demonstrated that the
propagation algorithm applied to a cyclic belief diagram, and | ppc decoding algorithm (the sum-product algorithm) is

with the Bethe approximation in statistical physics. Therefore the . . . . .
analysis of the turbo decoding algorithm will reveal the mystery &ISO €quivalent to the belief propagation algorithm [5], while

of those similar iterative methods. In this paper, we recapture Kabashima and Saad pointed out that the iterative process
and extend the geometrical framework initiated by Richardson of the Bethe approximation in statistical physics is the same
to the information geometrical framework of dual affine con-  as that of the belief propagation algorithm [8]-[10] (see also
nections, focusing on both of the turbo and LDPC decoding vyegigia et al. [11].). Although these results have shown that

algorithms. The framework helps our intuitive understanding of . . . .
the algorithms and opens a new prospect of further analysis. We the turbo decoding algorithm shares the same idea with these

reveal some properties of these codes in the proposed framework, Methods, the efficacies of them are not fully understood
including the stability and error analysis. Based on the error theoretically, either.

analysis, we finally propose a correction term for improving the  Recently, some pathways for theoretical analysis of the
approximation. decoding algorithms have been shown. One is the geomet-
Index Terms— belief propagation, information geometry, low- rical framework of the turbo decoding algorithm initiated by
density parity-check (LDPC) codes, perturbation analysis, turbo Rjchardson [12]. The existence of fixed points, a condition of
codes. the fixed point to be unique, and its local stability are studied
in this framework. Another pathway is the density evolution
|. INTRODUCTION [13] applied to the LDPC decoding algorithm. The density

olution describes the time evolution of message distribution.

. . ev
HE properties of tl.”bo COdeS.’ have been extensweT;he prospects of these studies are promising, and further
studied since it was introduced in 1993 [1], [2]. Althoug@tudies along these approaches are necessary.

the encoding process and the iterative decoding algorithm are  this article. we propose not only a new interpretation

simple, theoretical analysis is not straightforward, and tr&ﬁ the geometrical framework, but also an extension of it,

e e e e sl the help ofmormaton gecmety (14, (15, mormation
P ' 9 Sometry studies intrinsic geometrical structures existing in

methods. Since there are some iterative methods which % ilies of probability distributions by using the two dual

closely related to turbo codes, theoretical analysis of thogﬁ eria of geometrical flatness (exponentialeofflatness and
methods were expected to give further understanding. One :@%

them is another cl f error correctin d low-dens. ixture or m—flatness) coupled with the Fisher information
€m 1S another class of error cofrecting codes, Tow-denSietric. We build a unified information geometrical framework
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gorithms is analyzed and its local stability condition is given 2) Decoding: Turbo codes handle the case where the direct
in information geometrical terms. These are not only a neslecoding with (g1,92) as a single set of parity bits is
formulation and elucidation of Richardson’s framework from mtractable, while the soft decoding with each #f, g, is
more general standpoint, but open a prospect to integrate widkctable. Two decoders are used for the decoding, Decoders
varieties of iterative inference methods extensively studiddand 2 in the figure. Decoder 1 infers the original information
in these years in the areas of information theory, statistidaits, «, from (&, y,), and Decoder 2 does the same from
physics, statistical inference, neural networks, and artificiak, gy,). The inferences of these two decoders may differ

intelligence. initially, and a better inference is searched for through iterative
We further analyze the accuracy of soft decoding results igformation e_xchanges. _ _ _
the iterative decoding algorithms in terms of the andm— Let us define the following variables corresponding to the

curvatures. Hard decoding results are of primary interest iparginal log-likelinood ratios (see for example [12], [20]) with
many studies, but for some applications, such as multiple uee use of the conditional probabilitiggz|x) and p(y.|x),
applications [16]-[19], the accuracy of soft decoding results= 1,2,
is also important. In this paper, the error will be given by

asymptotic expansion, so that the terms can be used to improvies; = 5 In Z{m =+l ) =3 In M,
the results. We give an explicit algorithm for the improvement. {wioi=—1} PITIT PiTifti =

The error analysis also gives insights into a design principle %/ o lln Z{m:yrj:—i—l} p(Yr|z) B lln P(Urjlyr; = +1)
LDPC codes, and shows why LDPC codes work so well. We”™ — 2 Dtwyy——1y PO 2 PG|y = -1)’

finally touch upon the “free energy” in the statistical physics
approach [10], [11]. Ly,x = F(la,ly,) = =1 ~ ~ .
The outline of the paper is as follows. In section II, we 20 Yasi=—1y PE[2)D(Gr])
give the original schemes of turbo and LDPC codes. Thdere, the factorl/2 is introduced to have consistency with
basic strategy of the MPM decoding is given in sectiopur framework, and the functioR (I, ly,.) is calculated effi-
[ll. Section IV introduces the information geometry. Sectionsiently by BCJR algorithm[21]. The turbo decoding algorithm
V and VI describe the information geometry of turbo aneéhakes use of two slack variable§;,&eR”, called the
LDPC decodings, respectively. Decoding errors are analyz&sktrinsic variables,” for exchanging information between the
in section VII, and finally conclusion is given with somedecoders. The algorithm is given as follows. Its meaning will
discussions for future perspectives in section IX. be explained later from the geometrical point of view.

1 Z{mmlerl}p('i:‘m)p(gT‘w)

@)

[I. ORIGINAL DEFINITIONS OF TURBO AND LDPC COoDES  Turbo decoding (Original)

1) Set&¢; = o andt = 1.
2) Calculate Lz = F((lx + &;),ly;) from (1) and
updateg, as follows.

&=Lz — (lz+ &).

3) Calculate Lyx™® = F((lx + &»),ly2) from (1) and
updateg; as follows.

& = Loa®) — (Iz + &).

4) lterate 2 and 3 by increasingby one, untilL;z®) =
Fig. 1. Structure of turbo codes. Lox® = Liz(t+D) = [oz(t+D),

A. Turbo Codes

Turbo Encoder Turbo Decoder

1) Encoding:The idea of turbo codes is illustrated in I:Ig'lldeally, steps 2 and step 3 would be iterated until convergence

Letxz = (21,---,zn)7,2; € {—1,+1} be the information . , , . L S
bits to be transmitted. We assume a binary symmetric chang?ﬁgss'i\r’;?]’ ggt in practice, the number of iterations is fixed

(BSC) with bit-error rateos, and it is easy to generalize
the results to any memoryless channel (see Appendix I).

Turbo codes use two encoders, Encoders 1 and 2 in ée LDPC Codes

figure, which generate two sets of parity bits in the en- 1) Encoding: Figure 2 illustrates the structure of LDPC

coding process. We denote them By = (y11,---,y1)7 codes. Lets = (s1,---,sa)7, s; € {0, 1}, be the information
andya = (y21,-,v21)",y15,y2; € {—1,+1}. Each set bits. Although we use notations different from those of turbo
of parity bits y., » = 1,2, is a function ofx and is codes, it will soon become clear that the problems are formu-

represented ag,.(x) when an explicit expression is necessaryated in a unified view, i.e., estimating from an observed
The set of these codésg, y1, y2) are transmitted through thegy. To compose the generator and parity check matrices, two
BSC, and a receiver observes their noisy versigng:,92), sparse matrices;; € {0,1}%5*M and Cy € {0,1}X*EK are

Zi, U1, Y25 € {—1,+1}. prepared, wher&’s is invertible in the modulo 2 arithmetic.



Encode Decode

LDPC decoding (Original)

BSC(o 3 Initialization: _ o
G" I ). u H Y Setpff;) =1l-o0 andpf}i) = o for pairs of indices

(r,1) such thath,; = 1.
Horizontal step:
Update{q(o) )} as follows. Note that summations

T ’qTZ
Fig. 2. Structure of LDPC codes. an p;oducts are taken over pairs ) for which
~ (x;r)
They are shared by the sender and the receiver. The parity lgyi = In 2z =1 1200 12) Ty i iy =1 Pri? }7
check matrix is Zmu:O{ijrkB) Hz W/ FEi b= 1p£’f/, }
H=(Cy Co), He {01}V, _ 1 (n _ ¢
_ it = oy 10 T T a1
whereN = M + K. The generator matridxG”? € {0, 1}V *M, ,
is ai Vertical step:
given by ©) (1)
T Ey Update{p,,”,p,; } as follows.
G = ( _1 ) mod 2
Gz Ch o Il rtrn, =1 q)
where E,; is an identity matrix of sizel/. The codeword, tpry =1In— - +In I — o
w = (ug,---,uy)7, is generated frons: W:r’s'énh,,x;:l Qs
_ AT o__ 1 n_ _er

u=G"s mod 2. Dri i 1 17 Dri 1
From the definition oiG”, the firstM bits of w are identical Convergence:
to s, andw is sent through a channel. We also assume a BSC Stop when the followinglp;, i = 1,---, N, con-
with bit-error rates. Codewordu is disturbed and received as verges
a. Letx = (z1,---,2n)T, 2; € {0,1} be the noise vector, o
and received codeword is . o IL. hpi=19ri

lp; =1n T +In o
w=u-+x mod2. 7 Hrhn—lqm

The LDPC decoding estimates noise vecirwhich yields . . .
an estimate o8, sinces is given by the first\/ bits of i+ @ When the algorithm achieves convergence, the estimate of

(mod 2). In the decoding process, the parity check maifrix z is obtained by the hard decision as
{hi;} = (C1 C2) € {0,1}5*N is used; it satisfies the equality . J1, forip; >0

HGT = 0. Syndrome vectoy = (y1,---,yx )" is calculated b = {0, for Ip; < 0
by usingy = Ha. When noise ise, the syndromey is

y(x)=Ha=H(u+x)= HG s + Hx = Hx mod 2.

, i=1,---,N.

IIl. FORMULATION OF MPM DECODING
A. Unified View of Turbo and LDPC Decoding

Wheny is the observed syndrome, the decoding problem isr,o goal for both of turbo and LDPC decodings is the MPM

0 ;stlijmate; th?triatiséiigzlzdyéx)' inti f the iterati decoding. We first define the MPM decoding in a unified
) Decoding: The detaile escriptions o € lerative etting, and its specific form in each of turbo and LDPC

decoding algonthm fo_r LD.PC codes are found glsewhert_e [ ecodings is explained in the following subsections. For the
[51, "’?”d we describe _'t b”%fly here. The d?codlng aI“gont.h%st of the paper, we use the bipolar, ife-1, +1}, expression
consists of two steps: the “horizontal step” and the “vertic r each bitz;, y;, #:, andg; rather than the binary{(, 1}).
step,” which are iterated alternately. A set of probablllty The decoding problem is generally solved based on the pos-
dls(gr;butl;)ns is updated in each step, thatfs,;.q;;'} and terior distribution ofz conditioned on the observed codeword
{py.p{}'}, respectively, where or syndrome vector, i.ep(x|€,¥;,¥2) in turbo codes and
qﬁ?) Jrq(l) 1, pﬁ,(;) +p2) —1, p(z|y) in LDPC codes. The posterior distribution af is
expressed as
for pairs of indices(r,i), r = 1,---,K, i = 1,--- N,
such thath,; = 1. The quantityq!”) represents a guess of q(x) = Cexp(co(x) +cr(z) + - +ex (@), ()
the probability thaty, is observed whemn; = x, where the here co(:zc) consists of the linear terms ofz;}; c.(x),
distribution of = other thanz; is assumed to be given by, — 1 ... K, contain higher order interactions dtz;},
p\?). The sum of? andq'} is not necessarily 1, but it is and the terms depend on the observed informationg.
normalized for simplicity. The quantlty(’") is a guess of the In the case of turbo codedy = 2, and c¢;(x) and ca(x)
probability of 2; to bex wheny,. is observed. The updatingrepresent interactions in each of the two decoders, while in
rule is described below. the case of LDPC codes, (x) represents each parity bit. In



the general graphical model, they correspond to cliques. \WWeiform prior, wherewy(x) = 1/2", and the Bayes posterior
assumec,.(x) # ¢ (x) for r # r’. Decoding is to estimate distribution is derived as,

the information bitsz, based ony(x). One natural approach (&, G1, §o|@)wo ()

is the MPM decoding. The MPM estimator minimizes the p(x|Z, Y1, Y2) = ——

expected number of wrong bits in the decoded word. The 2a ]z(wj v Yo|z)wo(2)

MPM decoding in the bipolar case is achieved by taking the _ _p(@,91,92|2) _ (5)

expectation ofc with respect toy(z). Letn = (11, ---,nn)7 22 P(Z, Y1, Y2|x)

be the expectation af, andz be the decoded MPM estimator.Since we consider BSC, where each bit is flipped indepen-

Then dently with probabilityo, p(z|x) andp(y,|x) have the form
n=> q(@)z, &=sgn(n), 3) of

oL - In(e—B 1 B

wheresgn(-) works in a bitwise manner. The gives the “soft p(m|x)~ exp(6% m~ Ng(B)), 9() =Infe™ +e%)

decoding,” and the sign of each soft bjt gives the “hard p(r|z) = exp(Bgr - yr(@) — L (F)), r=1,2.

decoding,”z;. Here,( is a positive real number called the inverse temperature
Let ¢(x;) be the marginal distribution of one component in statistical physics and is related ¢oby

in ¢(x), and letII denote the operator of the marginalization 1

that mapsy(x) to a factorizable distribution having the same o= 5(1 — tanh 3),

marginal distributions:
where — 0 aso — 1/2, and3 — oo aso — 0. Let us

N define

Hog(z) = [ alzs).
=1 CO(:B) :ﬂfé$, Cr(ﬂj) :ﬂgr'yr(m)a T:1727
The soft bit7; depends only on the marginal distributionyhere ¢, () is linear inz, and g, - y,(z) are polynomials

q(w;). Sinceq(;) is a Bernoulli distributiony); has a one-to- i » representing higher order correlational components of

one correspondence tgz;). Therefore, the soft decoding iSmany,’s. The Bayes posterior distribution (5) is rewritten as
equivalent to the marginalization gfx). The marginalization

of ¢(x) generally needs summation over all possibleut one (|, Y1, 92) = Cexp(co(x) + BY1 - y1(x) + BY2 - y2(x))

x;, and it is computationally not tractable in the case of turbo = Cexp(co(x) + c1(x) + ca(x)),
and LDPC codes, where the length ®fis more than a few 1

hundred. Instead of marginalizing the entiyér) in (2), we C= S exp(co(x) + c1 (@) + ca(x))
make use of simple submodefs,(x;¢,.), r=1, -+, K,

where C is the normalization factor. This distribution corre-
pr(x;¢r) = expleo(x) + & - @ + e () — ¢ (¢r)),  (4) sponds tog(x) in (2), whereK = 2.
_ o _ In the turbo decoding algorithm, each of the two constituent
where ¢, (¢;) is the normalization factor. Eaghy.(; ) in-  decoders marginalizes its own posterior distribution aof

cludes only one nonlinear terop (), and the linear pady ()  derived from p(z, §,|z) = p(&|z)p(F.|x), where a prior
of z is adjusted further througl),., which takes the effect of yistripution of the form

the othere,. (x)’s, ' # r into account by approximating them

by the linear ternt, - 2. We thus havek component decoders, w(z; ¢r) = exp(Cr - — Y(Er)),

each of which decodes. (z;¢,.),r = 1,-- -, K. The parameter N N

¢, plays the role of a window through which information from G e RN, () =) In(eCr 4 etr),
=1

the other decoders;#r, is exchanged. The idea is to adjust
{¢-} through iterative information exchange to approximatie used for taking information from the other decoder. The
the overall ITog(x) with ITop,(x;(,). We assume that the vectors(,, » = 1,2 correspond to the extrinsic variables in the
marginalization or the soft decoding is tractable for angriginal turbo decoding algorithm, that &§ = &, and{; =
pr(x; Cr). &,. The prior distributionv(z; ¢,) is a factorizable distribution

in which the guess of the other decoder is represented. The

B. Turbo Decoding posterior distribution of the decoderis defined as

In this subsection, the concrete forms of (2) and (4) for turbg,.(x; ¢,.) = p(x|E, §,; ¢,) = p(mv’;‘”"@”(“’* Cr)
codes are derived. In turbo codes, the receiver observes a noisy 20 P(&, Y| )w (25 ¢;)
version of (z,y1,y2) as (&, 91, 72). We can easily derive = exp(co(x) + ¢ () + ¢ - T — 90 (Cr)),
the following relation from the assumption of a memoryless o) = aneXP(CO(m) +er(x)+ ¢ x), r=1,2
channel, -

Here, ¢,.(¢) is the normalization factor which is a function
of .. It is clear that{, plays the role of the window of
The Bayes posterior distributigr{z|z, §1, g-) is defined with information exchange, and that the information is used as a
a prior distributionwy (x) of x. In this paper, we consider theprior. This distribution is of the form of (4).

P(Z; 91, 92| x) = p(Z|2)p(g1]2)p(Y2|®)-



C. LDPC Decoding through the window for taking information from the other

We reformulate the LDPC decoding problem in this subseg—eCOders’n' We have

tion. The vectorss, u, u, gy, andx are treated in the bipolar p(§r|x) = exp(c (x) — ¥(B)),

form, while GT and H are still in the binary, i.e.{0, 1}, form. ) . o

Note that0 in the binary form corresponds tel in the bipolar w(@;6r) = exp((fin +6r) (ai | f(ﬂ(lfvc—; ¢r));

form, and vice versa. Each hjt. of a syndrome vectoy(x) pe(@; &) = pl@fy; €)= I T TS o

is written as a higher order correlational product{af;} in 2 P(r|)w(; €, )

the bipolar form, that is, as a monomial in = exp(co(®) + cr(x) + & - — 9 (Cr)),
. or(¢r) =In exp(co(x) + ¢ (x) + ¢ - ),

yr(m): H Lj, Er:{.] | thZI}, zm:

JELr G eRrRY, r=1,2,--- K.

whereh;, are elements of the parity-check matrik This coincides with the formulation in (4). The above argu-

~ We now consider the “softened” probability distribution ofent shows that the LDPC decoding problem falls into the
y conditioned onw: general framework given in section IlI-A.

p(ylz) = exp(py - y(z) — K¢ (p))
=exp(ci(x) + -+ cx(x) — Kp(p)),  (6)
pyryr(x), pER, p>0.

IV. INFORMATION GEOMETRY OF PROBABILITY
DISTRIBUTIONS

cr(@) The preliminaries from information geometry [14], [15] are

In this article, we discuss the “soft constraint” which infer§iven in this section.

x based on the probability distributiop(g|xz) in (6) where

a positive real numbep is finite. More precisely, the MPM A Manifolds of Probability Distributionse—flat and m—flat
decoding is carried out by using(x|gy) obtained from (6). Submanifolds

However, the LDPC decoding algorithm generally uses the
“hard constraint” which searches for thethat exactly satisfies
the parity check equations:

Consider the family of all the probability distributions over
x. We denote it bysS:

S = >0,x € {—1,+1}", =1¢.

7= y(a). {p@) | p(@) > 0,0 € {-1,+1} > o) }

As p becomes larger, the probabilipyg|x) is concentrated on This is the set of all the distributions ove' atomsz. The

x satisfyingg = y(x), and the “soft constraint” approachedamily S has (2" — 1) degrees of freedom and is(@" —

the “hard constraint”. See Appendix Il where how hard de-)—dimensional manifold belonging to the exponential family

coding results depend gnis analyzed. Empirical studies havd15], [22].

shown that the “soft constraint” with a fixgchas a sufficiently  In order to prove this, we introduce random variables

good performance [5]. The reason we introduce a fipite (i AT

is to keepp(gy|x) strictly positive for anyx € {—1,+1}%. Biyrin () = {1’ whena:_ = (i1, i)

This is necessary to build a common information geometrical , 0, otherwise

framework for turbo and LDPC decodings (see section IV-A). whereiy, € {-1,+1}, k=1,---,N.
No_te tr_lat noisec is bitwise independent, and that its eMOny p(x) € S is expanded in the following form:

rate is given bysc = (1/2)(1 — tanh 8). Consequently, we

have the prior distribution(): p(x) = Z Diyoin Oig iy ()5 8)

wo(x) = exp(B1n - & — NY(B)) i1in

b

wherep;,...., = Pr(x; = 41, -+,xnx = in), Which shows
= exp(co(®) — Ny (8)) @) p(x) € S is parameterized bg" variables{p;,....,, }. Since
co(w) = Pan -z, 1y =(1,---, 7. > p(x) = 1, the family S has(2" — 1) degrees of freedom.
N Similarly, In p(x) is expanded:
As a result, the Bayes posterior distribution becomes Inp(x) = Z (Inpiyin )0y iy ().
p(alg) = LPIRw(@) _
. p(g]@)wo () Since the .degr(.aes of freedom af2V — 1), we setf =
= Cexp(co(:c) + C1(SL’) 4+ CK(%)) {e’ll’bN ‘ (7’1 o 'ZN) 7é (_1 et — 1)}1
Piy i
This is equivalent tay(@) in (2). Oiv iy = In =

In the horizontal and vertical steps of the LDPC decoding;nOI rewrite (8) as
algorithm, marginalization is carried out based on distribu-

tion p,(x;¢,), which is calculated fronp(g,|xz) and prior p(x;0) = exp( Z O -win Oiy iy () — @(9)),
w(zx; ). The parameter specifying the prigy. is obtained

i1ein



where The KL—divergence satisfie®[q; p] > 0, and D[¢;p] = 0
p(@)=—InPr(z; = =2y =-1). when and only wheg(x) = p(x) holds for everyz. Although
orsymmetryD[q;p] = Dlp;q] does not hold generally, it is
regarded as an asymmetric squared distance.

Consider two nearby distributiongx; 8) andp(x; 0 +d6),
specified by coordinate® and 6 + d@ in any coordinate
Niyin = Epl0iyin ()] = Piy iy - system. From the Taylor expansion, their KL—divergence is

given by the quadratic form

This shows S is an exponential family whose natural,
canonical, coordinate system@és
The expectations of random variablgs...;, () are

They form another coordinate system$that specifiep(x),
. . 1
N ={Niiy | (- in) # (=1~ =1} D[p(x; 0); p(x; 0 + dO)] = 5d@?ﬁr(e)da,

Since § |s. an exponentlal_ family, it _naturally has two aﬁmewhere[(@) is the Fisher information matrix defined by
structures: the exponential- araffine structure and the

mixture— or m—affine structure. These structures were also 1(6) = Zp(w;a)ae Inp(z; 0) (9 Inp(z; 8))”
adopted implicitly by Richardson [12] without resorting to =

the Riemannian structure and duality, stated in the following. _ . 0)00 1 .0

When manifoldS is regarded as an affine spacéin(z), it is ;p(m’ 900 Inp(; 6),

e—affine, and gives thee—affine coordinate system. Similarly, . . . .
when manifold S is regarded as an affine space i) wheredy represents the gradient operator (differentiation with

it is m—affine, andn gives them—affine coordinate system.rESpeCt to the components 8j. When the squared distance

They are dually coupled with respect to the Riemannidli @ Small line element starting from#é is given by the
structure given by the Fisher information matrix, which wiliuadratic form
be introduced below. ds* = do"G(6)d,
First we define the—flat andm—flat submanifolds of5.
e—flat submanifold:
Submanifold M CS is said to bee—flat, when the
following r(x;t) belongs toM for all ¢ € [0,1],

the space is called a Riemannian manifold with the Rieman-
nian metric tensoiG(@), which is a positive-definite matrix
depending orf. In the present case, the Fisher information
matrix 1(6) plays the role of the Riemannian metri¢(0).
q(x),p(z) € M. Hence, the infinitesimal KL—divergence is regarded as a half

Inr(x;t) = (1 —t)Ing(x) +t Inp(x) + c(t), the squared Riemannian distance.

The Riemannian metric, giving a definition of the inner
product to the tangent spaces, also defines the orthogonality
of two intersecting curves. Let(x; 6;(t)) andp(x; 62(t)) be
two curves intersecting at= 0, that is,8,(0) = 6(0). The
tangent vectors of the curvestat 0 are represented l:@a(t)
and@,(t) by using the coordinates, wheée(t) = db;(t)/dt.

The two curves are said to be orthogonal at their intersection
t = 0, when their inner product with respect to the Riemannian
metric vanishes,

where ¢(t) is the normalization factor. Obviously,
{r(z;t) | t € [0,1]} is an exponential family
connecting two distributionsp(xz) and ¢(x). In
particular, when are—flat submanifold is a one—
dimensional curve, it is called aggeodesic. The
above{r(z;t) | t € [0,1]} is the e—geodesic con-
necting p(x) and ¢(x). In terms of thee—affine
coordinates @, a submanifold)/ is e—flat when it

is linear in@.
m~flat submanifold: (61(0),65(0)) = 6,(0)71(6)85(0) = 0.
Submanifold M CS is said to bem—flat when the )
following mixture r(x;¢) belongs toM for all ¢ € Now we state the gene'rallzed Rythagoras theorem and
[0,1], q(x), p(x) € M. the projection theorem, which hold in a general dually flat
manifold [15], and show the dual nature of the and m—
r(z;t) = (1 —t)q(z) + tp(x). structures with the Riemannian metric.

When anm—flat submanifold is a one—dimensional Theorem 1:Letp(z), ¢(x), andr(x) be three distributions
curve, it is called ann—geodesic. Hence, the abovén S. When them—geodesic connecting(x) and ¢(z) is
mixture family is them—geodesic connecting them.Orthogonal atg(z) to the e—geodesic connecting(x) and
In terms of them—affine coordinatesy, a submani- 7(x), the following relation holds

fold M is m—flat when it is linear inn. Dlp(x); r(@)] = Dlp(®); ¢(z)] + Dg(@): r(@)].

B. Kullback-Leibler divergence, Fisher Metric, and Generalae'yﬁggvzlr? geg[:zl tfrl]e:n—nperfjebctlorg. ;P;iee—[prqe.cnon]lswziatlrs]o
ized Pythagorean Theorem , by replacigq(x); p(x)

’ ) ) o ~ Dip(x); q(x)], but we do not state the details here.
Manifold S has a Riemannian metric given by the Fisher pefinjtion 1: Let M be ane—flat submanifold inS, and let

information matrix /. We begin with the Kullback-Leibler g(x) € S. The point inM that minimizes the KL—divergence
(KL) divergence,D[-; -], defined by from g(z) to M is denoted by

~—

Dlq(z); p(®)] = Z q(x)In ;Ei ITproq(x) = argmin D[q(x); p(x)],
p(x)eM

~—

T



and is called then—projection ofg(x) to M. D. Important Submanifolds and Marginalization
Finally, the m—projection theorem follows.

Theorem 2:Let M be ane—flat submanifold inS, and let
q(x) € S. Them~—projection ofg(x) to M is unique and given
by the point inM such that then—geodesic connecting(x)

Now, we consider a submanifold/p, in which every joint
distribution is decomposed as

and I1,,0q is orthogonal toM at this point. Hp ), ) € Mp.

C. Legendre Transformation and Local Structure All the bits of - are independent for every distribution .
Let & be the e—affine coordinate system of. Every Since each bit takes one ¢f-1,+1}, p(z;) is a Bernoulli
exponential family has the form distribution, andp(x) belongs to an exponential family of the

form
p(x;6) = exp(c(x) + 6 - T — ©(0)).
The functionyp(0) is a convex function which is called the Hp 2i10;) HeXp (0,2 — 0(6;))
cumulant generating function in statistics, and the free energy
in statistical physics. Then—affine coordinate system is - exp(o T — (p(o)), (9)

given by its gradient, N
n = 0o (0), 0(0) = (6:) lnz i1 e%), 0 eRV.
=1

wheredy = 9/00 is the gradient operator. There is a dualistic b ifold . di ional. with i i
structure described by the Legendre transformation; the dJ:;\e submanifold?p is N-dimensional, with itse-affine

: T .
otential, is given b coordinate systen® = (61,---,0x)", which are the natural
P ¢(n) is g y or canonical parameters if/p. The other parametemi-
(@) +¢(n)—60-n=0 affine coordinate system) is the expectation paramstet
T e
and is the negative of the Shannon entropy, (m,---,nw)" defined by

= " p(zin) np(z;n). = Eyla Zp @ 0)z

The Fisher information matrix is given by the second derivarhis is equivalent to the soft decoding in (3). There is a simple
tive of ¢, one-to-one correspondence betwéeandn:

1(9) = 83930(0),
which is positive-definite. We have shown that the square of ~Jew(6) =n, i = tanh(6;), 0 = 5n
the local distance is given by i=1,---,N.

Dlp(x;0); p(x;0 + d6)] = Dp(=; 6 + db); df)] Proposition 1: Mp is ane—flat submanifold ofS.

1
= §d6TI(0)d6. Proof: Mp is a submanifold ofS. Let 8,6’ € RN and
p(x;0),p(x;0") € Mp. For any6, 6,

L+
177]1‘7

The third derivative of the potentigl,
T = do0op(0), nr(z;t) = (1 —t) Inp(a; f9) + tinp(x; /0’) +¢(6,6';1)
is called the skewness tensor. It is a symmetric tensor of order = ((1-1)8+167) - 2 +c(6,0';).
three, and its components are calculated as Letu(t) = (1—t)0+t6’, andr(x; t) = exp(u(t)- z—p(u(t)))
Tyik = Ep[(zi — )z — ;) (@0 — )], belongs toMp. u
’ Pl 5 _] J,)( ) We now define a number efflat submanifolds which play
where ,[-] denotes expectation with respect #z). The jnnortant roles in the decoding algorithms. The first is the
KL-divergence is expanded as submanifold ofp,(; 8) defined by

. . . _ 1 T
Dip(w:0):p(a: 0+ d6)] = 5407 I(0)d0 + 5 (40)° > T(®). Mo = {po(: 6) = explco(@) + 6 — 90(6))
where N N
(d0)* o T(0) = 3 df;d0;d0, T51.(6) e (1Yo e
LIk Since co(x) is linear in {z;}, M, is identical to Mp. Let
in the component form. This shows the local asymmetry of (1) = o - &, wherea = 3z for turbo codes andv = 1y

the KL-divergence: for LDPC codes. The new coordinafids obtained by shifting
D[p(x; 0); p(x; 0 + )] — Dlp(w; 0 + d6); p(x; 0)] e old oneoiq, in (9) by e
= %(d@)f3 o T(). 0 =000 —, ¢o(0) =00 +a).

The skewness tensor plays a fundamental role in the analydise use the new coordinate® as a coordinate system of
of decoding error. My, in which information from the constituent decoders is



integrated. We define the expectation parametem@®), V. INFORMATION GEOMETRY OF TURBO DECODING

which is another coordinate system &f, and is dual tof: The goal of the turbo decoding is to obtain a good ap-

10(0) = Zpo(w; 0)x = Doy (). (10) proximation to the MPM decoding faf(x) = p(x|Z, Y1, Y2).
- Although obtaining them—projection ofg(x) to M, is not
Next, we consider the submanifold primarily responsible fdfactable, evaluation of the:—projection of any distribution
only onec, (). The submanifoldM,, r = 1,---, K (K =2 Pr(;¢) € My, = 1,2 10 My is tractable with BCJIR
for turbo codes), is defined by algorithm. Since eachy,(x;¢,), r = 1,2, is derived from
p(&, gr|x) and a priorw(x; {,) € Mp, we can describe the
M, = {Pr(w; ¢r) = exp(co(x) +cr(x) + ¢ - — ¢-(¢))  turbo decoding as a method to approximate theprojection
N N of ¢(x) to My by evaluating the prior op, (x; ¢,) iteratively
ze{-L+1}" ¢ eR } and projectingp,-(x; ¢,) to M.
Here, ¢, is the e—affine coordinate system or the natural
parameters of\/,, through which information of the other o' |nformation Geometrical Definition of Turbo Decoding
decoders is integrated/.. is also anc—flat submanifold ofS.
However, M,. # My and M,. # M,., r # r’, because:,.(x)
includes higher order correlations ¢f;} andc, (x)#c, ().
The expectation parameter fdf,. is defined as

We rewrite the turbo decoding algorithm in section II-A
in the information geometrical framework. It is convenient to
use an adequate-affine coordinate system aff for the m—
projection ofg(x) to M. Let y;0q(x) denote the coordinates

n:(¢r) = Zpr(:l:; ¢ = 0c.or(Cr)- (11) 6 of M corresponding to then—projected distribution:
We show that the soft decoding is the-projection toA, of marog(x) = a};‘ggl}vn Dig(x); p(=; 0)]-

the posterior distribution. Let us consider the-projection of

q(x) to M. The derivative ofD[q(x); po(x; 0)] with respect o ) ) .
to 0 is Turbo decoding (information geometrical view)

. ) 1) Let¢t = o fort = 0. Fort = 0,1,2,---, compose
9o Dlq(); po(: 0)] = doo(8) — Y _a(x)w pa(w; ¢5) € Mo with prior ¢5.
* 2) Perform the m—projection of py(x;¢L) to My as
=m0(0) = Y _ q(x)z. Ta,0p2(; ¢4), and update!*! by using

T = magopa (x5 C) — 5 (12)
Jec'te:[dogc')lnt.. Henge, thgz*—aiflne coordinate of the projected 3) Compose (z; ¢1*1) € M. Perform them—projection
point % is given byno(0*) = 3__ q(x)z, of py(z: ¢+ 10 My a8 mag, opr (z; ¢+1) and update
n0,i(07) = Zq(m)xi = Z (), £+1 py using
x x4 t+1 = op1 (x; Ct+1 o Ct+1- (13)
which shows that then—projection ofg(x) does not change 2 MooPL (% 61) — G

the expectation ofz. This is equivalent to the soft decoding 4) If magop1(@;¢IT™) # mar,op2(e; €51, go to step 1.
defined in (3) (Fig.3).

By the definition of then—projection, this vanishes at the pro-

To clarify this procedure, we introduce three auxiliary
parameter®, &;, and&s:

0=C(+C, §&1=0—-C1=C, §=0—( =,

where&; and&, are equivalent to the extrinsic parameters in
section II-A. The intuition behind this framework is as follows.
Each of the higher order correlation terms{x) or ca(x),

is included only in Decoder 1 or Decoder 2, respectively.
Decoders 1 and 2 calculate, using theprojection, the linear
approximationst; - « and&s - x of ¢y () andex(x) and send
messageg; and &, to the other decoders. In the interactive
procedures, Decoder 1 forms the distributipn(x; 1), in
which the nonlinear effect other than(x) (that is,ca(x) in

the turbo decoding case &f = 2) is replaced by the estimate
¢1, which is equal to the message sent from Decoder 2. In
the general case dk > 2, {; summarizes all the messages,
&, -+, €Kk, from the other decoders. The same explanation
holds for Decoder 2. The total linear estimate to the overall
Fig. 3. Information geometry of MPM decoding. higher order terna; (w)_|_c2 (ac) isgivenbyf-x = &;-x+&5-x.

g(z)

m-—projection

Mo = {po(; 6)}



M(6) M(6")
\ \
.C/lﬂ pi(; CY) M; 1]’\1;'3 162(0)) EN " G
M L S (56:(00))
m—projection
C* * MU = @ -
@ (x;0 i po(z:0)
[Sisn
/ m— pl”OJLLthIl
/ Fig. 5. Equimarginal submanifold/ ().
pa(2: ¢5) My

The expectation ok is equal tony(6) for anyp(x) € M(6).

Hence, then—projection of any(x) € M (0) to M, coincides
with po(x;@). In other words,M(0) is the inverse image
of po(x; @) of the m—projection. For evernyd, there exist
unique py(x;¢1) € My and pa(x;¢2) € M, such that the

Fig. 4. Inf i ical view of turbo decoding. . . :
9 niormation geometrical view of furbo decoding expectations ok with respect t,.(x; ¢,.) andpy(x; 0) satisfy
= =1o(0).
The idea of the turbo decoding is schematically shown in m(6r) = m(C2) =m(6)
Fig.4. The projected distribution is written as We denote the parameters that satisfy this equatiog:g)
and ¢2(6). In other words, we defing;(0) = may ©

po(x;0) = exp(co(x) + 0 - T — ¢0(0))
=exp(co(z) + & -+ & - —¢o(0)).

po(x; 0) and(2(0) = mar, opo(x; @). Obviously,p; (x; 1 (0)),
pg(w;Cg(B)) S M(O), and TM, © pl(m;cl(B)) = TM, ©

p2(x;¢2(0))) = 0; however generally¢;(0) + C2(0) # 6
except for the equilibrium poin@*. The projection theorem
shows that)M (0) is orthogonal toM,, M;, and Ms (Fig.5),
B. Equilibrium of Turbo Decoding and thatp, (z; ¢,.(8)) is the intersection of\Z,, and M (6).
Assume that the decoding algorithm converges to a distri-In order to elucidate the—condition, we next define an-
bution po(x; 6*), wherex is used to denote the equilibriumflat submanifoldZ(@) connectingpy(z; 0), p1(z; ¢1(8)), and
point. The distributionpy(z; 8*) is the approximation of the p2(x;¢2(6)) in a log-linear manner:
m—projection ofg(x) to M,. The estimated parameté* ,
satisfies®* = myopy(a;Cl) = mar,ope(x;¢;) and 8% = {p(w) = Cpo(2;0)"p1(x;¢1(0)) " pa(2; ¢2(0)) "
&+ &5 = ¢ + ¢ from the definition of the algorithm.
The converged distribution; (x;¢5), p2(x;¢5), and
po(x; 0*) satisfy the two conditions:
1) m~—condition:

E(9)

}, C : normalization factar

This manifold is a two-dimensional-affine subspace af.
Apparently,po(x; 0), p1(x;¢1(0)), andps(x; (2(0)) belongs

T op1 (3 C1) = Tagpop2(w; G3) = 67 to £(@). Moreover, at the equilibriun®*, ¢(z) is included in
2) e—condition: E(6*). This is easily proved by setting = —1, t; =t = 1,
e e e and (14)
0 :€1+£2:C1+C2- (14) . e
. . . ) Cpl(m7C1)p2($7C2)
Them~condition can be rewritten with the expectation param- po(w; 6%)
eter defined in (10) and (11) as — Coxp(2c0(@) + o1 (@) + oa(@) + (¢ + &) - @
M (¢7) = n2(¢3) = no(67). — (co(x) + 0" - x))

In order to give an information geometrical view of these = C exP(co(@) +ci(2) +e2(@)) = q().
conditions, we define two submanifolds th The first is the This discussion is summarized in the following theorem.
m—flat submanifold,}/(6), which we call the equimarginal  Theorem 3:At the equilibrium of the turbo decoding al-
submanifold, attached to eaph(x; 6) € Mo. It is defined by gorithm, py(x; 6*), p1(z;¢;), and pa(;¢3) belong to the
M(0) { (@) equimarginal submanifold/(6*), while its e—flat version,
P E(6%), includespy(x; 0*), p1(z;¢7), p2(x;¢3), andg(z).
S p(@)z =3 polw; )z = m0(6)}.

| pl@) € 5.

The theorem shows the information geometrical structure of
the equilibrium point. IfA1(6*) includesg(x), po(x; 8*) gives
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In order to discuss the local stability, we give a sufficiently
small perturbation,A¢,, to ¢; and apply one step of the
decoding procedure. Leg) = ¢} + AL be the parameter
after one step of the turbo decoding algorithm. From step 2,
we haved* + A8 = myy,opa(x; (5 + A¢2), such that

Mo(6° + A0) = n2(¢; + Al2).
By a simple expansion, we have

M0(0%) + 10(07) A0 = n2(¢3) + 12(¢3) AC2
A6 = Iy (6%) ' (¢3) ACs.

Thus, ¢; in step 2 becomes
C1= ¢ + (1(0°) ' 12(¢3) — En) A
Following the same line for step 3\¢} is given by

AC) = (Io(0*) ' 11 (¢F) — En)(10(6%) ' 12(¢3) — En)AC,
- TturboAC27

where

Fig. 6. M (6*) and E(6*) of turbo decoding:llpog(x) is the directm—

projection of g(x) to Mo, which corresponds to the true “soft decoding” T; = (Lo(0") 1 (¢F) — En)(To(0°) 1 ,(¢2) — En).
based ong(x), while po(x;0*) is the equilibrium of the turbo decoding. furbo ( 0( ) 1(C1) N)( o ) 2(C2> N>

The discrepancy between two submanifolds causes the decoding error. This shows that initial perturbationxcg becomesT 50 A o
after one iteration.
_ . _ Theorem 4:When |)\;| < 1 for all i, where \; are the
the MPM decoding based op(x), since the soft decoding eigenvalues of the matrixty,,,,, the equilibrium point is
of ¢(z) is equivalent to them—projection ofg(z) to Mo, |ocally stable.

and M () is orthogonal taly at po(x; 8*). However, since This theorem coincides with the result of Richardson [12].
the m—flatness and the—flatness do not coincide in general,

M(67) does not necessarily includg(x), while its e-flat v/ |NFORMATION GEOMETRY OF LDPC DECODING
version, £(6*), includesq(x) instead of M (6*). This shows
that the turbo decoding approximates the MPM decoding . ] . ) ) )
replacing then—flat manifold )\ (6*) with the e—flat manifold ~ The LDPC decoding algorithm in subsection II-B is rewrit-
E(6*). It should be noted that (z; 8*) is not thee—projection €N in the information geometrical framework as follows.

of ¢(x) to M, either, becauseF(0*) is not necessarily

orthogonal toM,. When it is orthogonal, it minimizes the ) ) ) ) _
KL—divergenceD[po(z; 8); ¢(z)], 8 € RV, which gives the LDPC decoding (information geometrical view)

naive mean field approximation [23], [24]. The replacement of Initialization:

bﬁ\y Information Geometry of Decoding Process

the m—projection by the—projection shares the similar idea of Fort = 0, set¢) = o, 7 = 1,---,K. Fort =
the mean field approximation [10], [23]-[26]. Generally, there 0,1,2,---, composep,(z;¢;) € M,.
is a discrepancy betweel (6*) and E(8*), which causes a  Horizontal step:
decoding error (Fig.6). This suggests a possibility of a new Calculate then—projection ofp,.(x;¢}) to M, and
method to improve the iterative decoding. We will study this defineg/*!, r=1,--- K as
in section VIl & = muop(@i¢) ¢l (15)
Vertical step:

C. Local Stability Analysis of Equilibrium Point Update¢!*t!, r =1,---, K and@'*':

We discuss the local stability condition in this subsection. K
Let I5(9) be the Fisher information matrix gfy(x;8), and ot = Z&ffl, ¢l = gttt —gitl,
I.(¢,) be that ofp,.(x; ), r = 1,2. Since they belong to the r=1
exponential family, we have the following relations: Convergence:

If @' does not converge, repeat the process by incre-
15(6) = 9oe10(0) = Dem0(0), mentingt by 1.

I.(¢) = aCTCTSOT(CT) = 8@~"T(Cr)v r=12

are contribution of ¢.(z), and @ integrates all the messages.
[Io(0))ii =1 —np,- Each decoder summarizes the information from all the other
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decoders in the form of the priar(x; ¢,-). For turbo decoding, Following the horizontal step, we have
K is equal to2, and¢, = ¢, and&s = (1. Therefore, (12) and X

(13) are both equivalent to (15). The main difference between Al — IO ) LI(¢F) — Ex)A
the turbo and LDPC decodings is that the turbo decoding or Z( o(07) 7 L(C:) — Bn)AGs.

updates(, sequentially, while the LDPC decoding updates
them simultaneously. The local stability condition of the LDPC decoding is sum-

marized as follows.
Theorem 5:The linearization of the dynamics of the LDPC

r#s

B. Equilibrium and Stability decoding around the equilibrium is
The equilibrium of the LDPC decoding algorithm satisfies AL A
the two conditions: . ! _
1) m—condition: A A N K
AL Alx
T opr () =0%, r=1,--- K. K
where
\;vshlch can be rewritten with the expectation parameters 0 Ig' s — By I7 Ik — Ey
m0(87) = m(¢h) = -+ = mx(CFo). oo _|Lth-Ey 0O -
LDPC — . ) . )
2) e—condition: : . :
X . X 16111—EN 10)
0" => & = ﬁZC? Iy = Iy(0*), and I, = I.(¢F). The equilibrium is locally
r=1 r=1 stable when every eigenvalug;, i = 1,---, NK, of Trppc

Theorem 3 holds for the LDPC decoding, in which theatisfies|\;| < 1.

definitions of submanifoldZ(#) must be extended as follows: The local stability condition generally depends on the

syndrome vectory. However, intuitively speaking, if,.~I,

all the eigenvalues off,ppc are small, which leads to a

stable and quick convergence. When the final guess by the

K decoderr is C|01$e to the integrated guess py(x; 0*), it is

t R Ztr _ 1} C : normalization factar expected thaf; "I, ~ En. From s_|mulat|ons of LDPC c0(_jes,_
we observe good convergence in many cases which implies

. _ I,.~I,. This property originates from the sparsity of the parity
where(,.(0) is defined as check matrix.

K
E(8) = {p() | plw) = Cpo(w; 0)" [] pr(w;¢.(0)",

r=0

¢ (0) =7 opo(x;0), r=1,--- K.
VII. ANALYSIS OF DECODING ERRORS

At the converged poinfy(x) is included inE(6*), which can A. Framework of Error Analysis

be proved by settingy = —(K — 1),t{1 =ty =--- = 1:
We have described the information geometrical framework
Hfilpr(x;C:) of the decoding algorithms and have shown how the MPM
po(x; 6*)K-1 decoding is approximated by these decoding algorithms. In
K K this section we analyze the error of the approximation and
= Cexp (Kco(a:) + Z cr(x) + Z ¢z give a correction term for improving the approximation [27],
r=1 r=1 [28]. We also provide an explanation why the sparsity, i.e.,
(K — Deola) — (K —1)6 w) low density, of t_he pe_lrity check matrix_ has an advantage. _
For the following discussion, we define an extended family
= Cexp(co(x) + cr(@) + -+ - + ek (®)) = q(@). of distributions,
The above equation proves that Theorem 3 holds for the LDPC Ms = {p(z;6,v)},
decoding.

B - by using two sets of parameter®:= (61,---,0y5)" € RV
We next show the local stability condition for the LDPCyq,, — (vi, -, vg)T € RE.

decoding. Consider a case in which a sufficiently small per-

turbation is added to the equilibriung;,. = ¢ + A¢,. The K

next state after a vertical step and a horizontal step is denotdtf®; &, v) = exp (CO(‘B) t0-z+ Z vrer(®) — (6, ”))
by ¢! = ¢+ A(]. After the perturbation is added, the vertical r=1

step givest, = & + A¢,, where = exp(co(z) + 6 -+ v - c(x) — ¢(0,v)),

0,v)=In exp(co(x) +0 -+ v-c(x)),
At = To(€") 1 1(¢)AG - AG, Ao =D eplen(w) 10wy elw)
= (Io(6") 7', (¢)) — En)AG c(@) = (e1(@), -, ex(@))"
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The family Mg is a (K 4+ N)—dimensional exponential family. where
The manifoldsMy = {po(x;0)} and M, = {p.(x;(,)} are e P &
submanifolds ofMgs since My = {p(x;0,v)|v = o} and Teee = 900090 Togo = 900000 Tovw = 909000
M, = {p(x;0,v)|v = e, }, wheree, is the unit vector M o , i ]
ore epr|C|tIy, by using the index notation, we have
e, = (0’...70’170,...70)?

! 09, 96),
- T T..
r Zgz_] 8’0 81} irs ]zk: ijk avT 8’03

It also includesg(x), when we sef) = o0 andv = 1k:
_ZTH 90; _ZT,, 90;
- T 8115 - VE] a’l)r .

K
1 = 1,---,1T: €.
K (H/_/) ;

K By replacingdf/dv in (18) with the result of (17), we get
We denote the expectation parametemp@t; 0, v) € Mg by

2 ~ ~
n(0,v) = (n1(0,v),---,nx(0,v))T, which is given by 10(0)% = —Tove — T000G0vGov
n(6,v) = Jop(6, v) ZP z;6,v) + To0uGow + Togw Goo.
We evaluatedd/dv = —Gg,(0) and 920 /0v? at (0,v) =
B. Analysis of Equimarginal Submanifold (6*) (6*,0) and approximaté(v) with the second order Taylor
Let p(z;0,v) be the distributions included in theSeries expansion with respect to around the point. The
equimarginal submanifold/(6*), where differential operatorD/dv at (0,v) = (6*,0) is written as
% * D 0
n(0,v) =n(0",0) =n(0"). — =B=_— —G,,G*
(6,7) ( ) (6%) dv‘(e*,o) 0V lv= 0 80’9 6+’
This constraint make# an implicit function ofwv, which is h f .
denoted byd(v). Note that0* = 6(o). More precisely, In the component form, it is
0 0
6(v),v) = n(6(0),0) = n(6"), B, = - Gir (0F .
n(6(v).v) =n(6(0),0) = n(6") B homo ~ 229755 .

for any v. We analyze how changes fron8* aswv changes
from o and finally becomes . In the following, we resort to Following some calculations, we have
the perturbation analysis and evaluate the derivative®(oj 0920
up to the second order. We start by introducing the derivative
D/0v along M (6):
D oo  om We denote thér, s) cpmponent ofB3? by B, = B, B,. Note

(16) that B?n(6*) # o while (D?/0vdv)n(6*) = o.

The second-order approximation @fv) around(6*, o) is
given by

- 7 * _132 * .
81}8’0‘(9*,0) 0(67) n(0")

°= 5" = 5050 " av
The structural quantitie®)n/060 and 0n/0v are the parts
of the Fisher information matrix ofMg, becausen =
dp(0,v)/08. We use the index notation in which suffixeg, 0(v) = 6" + 06
and k are for@ andr, s, andt are forv. In the component

31}’ 60 2" 8v80’(9*,o)v
form, Ggg = (9n/90) and G, = (0n/dv) are defined as =0" — Gou(0")v — 1UTIo_l(‘9*)(]—E3277(0*))?)-

1, 0%

8772 o o 8772 2
9:4(0) = 00; =Gi(0), 9:r(6) = v, By pluggingv = 1k into the formula, we have
Note thatGge = 1y(6*) at @ = 6*,v = o. From (16),Gee, e B X X
and G, we have i) =07 Zg”’ H(6): (Z B’""‘)m %),
06 (19)
0= 10(0)37 +Geu(0) which shows the point at which/ (6*) intersects the submod-
00 1 ~ 00 els{p(x;0,1x)}. Sinceq(x) is given byp(x;0,1x), 6(1k)
v —ly (8)Geu(0), Gov = Cov’ (A7) is related to the discrepancy @fx) and the iterative decoding
result.

which gives the first-order derivative. We definég,, as the

negative of it. Similarly, from This result is based on the perturbation analysis, of which

9 justification is outlined below. Whei is small, the Taylor
D n(0,v) = expansion for functiory (x) is
Ovdv

we have F(6) = FO) + £ O)c + 31" (0) + O(E).

When we rescale = z/e,

+ 162]0”(0)’02 + O(é%).

(18) J(0) = FO) + e/ (O + 5
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In our analysis of iterative decoding, = ¢ corresponds to From the Taylor expansion, we have
v, = 1, where thek-th derivative is of order*. We have
assumed that the effects ef are small, and we take the 1
expansion with respect toin terms ofe. We finally sete = 1, =n(0")+ = Z B,sn(0%). (23)
and the results are valid in the above sense. ) re#s

So far, we have only considered the-condition in order to e thatn(o, 1) is the expectation ofc with respect to
obtain the perturbatio_n expansjon é&fv). However, in view ¢(z) which is equivalent to the soft decoding basedqtm).
of the smalle expansion described above, as well as 4hke Therefore, (23) shows the difference between the ultimate goal
condition, 6 itself is a small quantity. This is because thgs the decoding and the result of the iterative decoding.
“true” posteriorp(x; o0, e1x) tends top(x;0,0) ase — 0, SO We summarize the above analysis:
that the iterative decoding resut should also tends to in Theorem 6:Let 1, par = 1(0, 1x) be the expectation of
the limite — 0. In order to obtain the expansion which readily, \yith respect tog(z), andn(6*) be the expectation with
shows tha™ is a small quantity in the sense mentioned abovgsspect to the distribution obtained by the iterative decoding.

n(0,1x) ~n(u’, 1x) — Von(6)u’

we invoke thee—condition, which is expressed as Then, nypas is approximated by the decoding resylit*)
K as follows
0" = — “—0%). 20 4 L .
;(Cr ) (20) e = 0(07) + 53 Bron(67). (24)
- r#s

In order to conclude our analysis of the decoding error based
on perturbation analysis, we consider two distributions: C. Remark onB,.,n;

(€:0°,0) = exp(co(@) + 6° - @ — (67, 0)) We remark here that the error term is related to the curvature
PAT:; T, 0) = explco LA of M(6*) without giving details about the definition of the
p(x; G, cer) = exp(co() + ¢ - @ + €cr(x) — 0(Grr€€r)). o~ and m—curvatures. See Amari and Nagaoka [15] for the

Note thatp(z;8*,0) = po(x;0*), andp(ac;CT,eer)\ _ mathematical details. We have shown thd{(@) is m~flat.

e=1 isi i ina— i -
po(a;C). Let p(a:Crocer), 7 = 1,---, K, be included in tTthtS'Imp“eS that the embedding—curvature tensor vanishes;
M(6*). From the result of (19)¢, — 6* is approximated in atts, - D2
, : HM = i(v) =0.
the power series of: o G000, ni(v) =0
- 1 . .
Cr — 0"~ —Cloo(8*)ere — 51()—1(0*)]_[;”"(9*)62_ On the other handM(O) is not e—flat, so the embedding-
curvature is given by
This gives the approximation &' — 6* ase — 1: _ D2
HY)' = 0i(v).
C* — 9 ~ _é (0*)6 _ 11—1(0*)3 (9*) Bvravs
r - To90 ) Its covariant version is given by
Hence, from (20)9* satisfies H'9" = B,on;,
. K . . which shows that the error term is directly related to the
" = _Z(Cr - 0) curvature ofM (6*).
r=1

~ Goo(0%)1x + %[0—1(9*) ZBrm(@*)- (21) VIl I MPROVING DECODING ERRORS FORLDPC CODES
r A. Structural Terms

Consider another distribution, The termsB,.;n; are given by the structural tensafsand
T atpo(x;0) € My. For LDPC codes, they are given by
p(x;u,e1i) = exp(co(x) +u - x

+e1p - C((E) — @(u’ ElK)). Gir = Epo[(x7 - m)(cr(m) - ET)],

e Tijr = Epol(w: — 1) (w5 — 1) (en (@) — )],
\;v(a!(): alr?dmt(;]:t;(a:;ll,e(lK)). is Oir(laclu;eﬁ(:icr’lc}\’;(leli;!ETA\ls € ;v:greEpo denotes the expectation with respectpid; 0),
increases from 0 to Iy becomesu*, and generallyu* # o, _ .
which means;(x) is generally not included if/(6*). &r = Epoler ()] = Pt H M-
From the result of (19), we have JEL
Because the;’s are independent with respectjg(x; 6), the

u' — 0" ~ —Gop(0%)1x — %[{;1(0*) ZBrsn(9*)- (22) following relations hold and are used for further calculation:

7,8 n:¢r, Wwheni ¢ L,
From (21) and (22), we have Epolwicr(®)] = lér wheni € L,
1 '
.t * * 1
u= 210 (0 );Brsn(e ) Epo [CT(l’)CS(IE)] = ?Erésa
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where once. Loops longer that do not contribute to the decoding
5 error at least via the principal term (although they may have
H n;, whenl, 0Ly #0 effects via higher order terms). Many LDPC codes have been

Frs = jetine. h ' designed to satisfy this criterion [5]. The analysis presented

L whenZ, N L, =0 here can be extended in a straightforward manner to higher

The explicit forms ofG andT' are given in Appendix Ill.  order perturbation analysis in order to quantify these effects.
It should be noted that our approach is different from the

B. Algorithm to Calculate Correction Term approaches commonly used to analyze the properties of itera-

tive decoders since we do not consider angemblef codes.
A typical reasoning found in the literature (e.g., [4]) is first
to consider an ensemble of random parity-check matrices and
. 1 # show that the probability (over the ensemble) of short loops in
mapar = n(07) + 2 Z Brsm(67). the associatedpgraph ch(reases to zero as t21e codelengtlil tends
e to infinity while the column and row weights are kept finite.
By calculatingB,..n; for (r # s), (see Appendix IV), we give This means that the behavior of iterative decoders for codes
the algorithm to calculate correction terBy..n; as follows.  with longer loops is the same as that in the loop-free case.
The statistical-mechanical approach to performance analysis
of Gallager-type codes [30] also assumes random ensembles.
1) Calculate Our analysis, on the other hand, does not assume ensembles
¢ = Epyler ()] but allows the evaluation of the performance of the iterative
decoders with angingle instancef a the parity-check matrix
with a finite codelength.

From the result of Theorem 6, the soft-decodetl is
improved by

2) Givent, search for the paifr, s) which includesi, that
is, i € L, andi € L,. Calculate
_ 2 1— 7,]2. IX. DiscussioON ANDCONCLUSION

L—mn
Brons =2 i CrCs Z ]2 hjrhjs- (25) We have discussed the mechanism of the iterative decoding
i algorithms from the information geometrical viewpoint. We
3) Giveni, search for the pai(r, s) such thati € £, and puilt a framework for analyzing the algorithms and used it to

i ¢ L. Calculate reveal their basic properties.
1—n2, 1—P, 2 The problem of the turbo and LDPC decodings is summa-
Brgn; = CrCs . (— 5 e +Z 7 ! hjrhjs). rized as a unified problem of marginalizing the probability
i TS - i

J distribution ¢(x) in (2). This problem is common to the
) o ] (26)  pelief propagation for the loopy belief diagram in artificial
4) The correction term is given by summing up over alhtelligence [7] and the Bethe approximation in statistical
(r, s) in the above two cases. physics [9]-[11]. In all of them, the direct marginalization
of ¢(x) is intractable, and only the marginalization of partial
distributionsp,.(x;¢,.), r = 1,---, K, in (4), is possible.
The summation in (25) runs ovgre £, N L \ 4, and that  The marginalization ofi(z) is approximated through itera-
in (26) runs overj € £, N L,. Thus, when the parity-checktjve processes of adjusting;, }, marginalizingp, (x; ¢, ), and
matrix is designed such that, for anyand s, integrating them into the approximated paraméteBoth of
hiphis = 1 the decoding algorithms were redefined with the information
‘ geometrical terms, and the conditions of the equilibrium were
holds for at most onég, that is, any two columns of the parity-derived. They revealed an intuitive information geometrical
check matrix have at most one overlapping positions,dadll meaning of the equilibrium point, which is summarized in
the principal terms of the correction vanish [29], which leadBheorem 3. In the information geometrical terms, the ideal
to the following theorem for LDPC codes. goal is to have the cross section @f, and anm—flat
Theorem 7:The principal term of the decoding error vansubmanifold)M (0) includingq(x): however, instead ai/(6),
ishes when parity-check matri{ has no pair of columns with ane—flat manifold £(0) is used to obtain the decoding result.
an overlap ofl more than once. A new prospect arose from the theorem: the discrepancy
It is believed [5] that the average probability of a decodingetween) (8) and E(6) gives the decoding error.
error is small, when any two columns of parity-check matrix The principal term of the discrepancy was obtained through
H do not have an overlap of more than once. Intuitively, perturbation analysis, which is summarized in Theorem 6. The
this avoidance prevents loops with lengthfrom appearing decoding error was given in (24), and the correction term gives
in the graphical representation. Results of many experimeatsmethod for improving the existing decoding algorithms.
indicate that short loops are harmful for iterative decoding®joreover, since the correction term strongly depends on the
that is, they worsen the decoding errors. Our result in Theorencoders, it gives a new suggestion for designing the codes.
7 analytically supports this indication: the principal term of thg&ve have done the perturbation analysis up to the second order,
decoding error vanishes when the parity-check matrix is spaesgd it is possible to extend it to higher order analysis in a
and there are no two columns with an overlaplahore than straightforward fashion.
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We also derived the local stability conditions in Theoremfsiture works, we can derive wide varieties of the turbo and
4 and 5. Although Theorem 4 coincides with the results ¢fie LDPC type decoding algorithms.
Richardson [12], Theorem 5 presents a new result for the localThis study is a first step toward information geometrical un-
stability condition of LDPC codes. The global convergencegerstanding of turbo and LDPC codes. By using the framework
property is another issue [31] which is one of our future workpresented in this paper, we expect that further understanding
The belief propagation algorithm is not directly connectedill appear and new improvements will emerge.
to the gradient method of minimizing a cost function. It has

been pointed out that the final result is at the critical point of APPENDIXI
the Bethe free energy [10], [11]. EXTENSION TO GENERAL MEMORYLESSCHANNEL
For ¢y, --,Cx, and@, we define the following function of  The information geometrical framework in this paper can
{¢-} andé: be easily extended to the case where the channel is a general
K binary-input memoryless channel, which includes various im-
F({¢r},0) = Dlpo(x;0); ()] —ZD[pO(QS;G);pT(m;CT.)]. portant channels, such as AWGN and Laplace channels. We
r=1 show that the Bayes posterior distribution is expressed in the
The first term is rewritten as form of (2) for turbo codes. Its extension to LDPC codes is
also simple.
Dlpo(;0); q(x)] = Ep,[co(x)] + 8-10(68) — ¢0(0) The information bitsz = (z1,---,zx)T,2; € {~1,+1}
K and two sets of parity bitay;, = (yi1,---,y1.)7, ¥y2 =
- (Z Ep,ler(z)] ‘HDC)- (Y21, y2r) T v1j, 925 € {—1,+1} are transmitted through
r=0 a memoryless channel. The receiver observes their noisy
The second term is rewritten as version as(z, g1, y2). Since the channel is memoryless the
K following relation holds
Dlpo(; 0); pr(2; ¢, Lo . _ _
2 Dlpo(a; 0);p (i) P&, 1. Gsl2) = p@El@)p(lo)p(@ale).  @7)
= K(Ep,[co(x)] + 6 - mo(0) — ¢0(0)) The Bayes posterior with the uniform prior is
K - o~ o~
S~ - P\T, Y1, Y2|T S~ -
- Z(Epo [co(@)] + Epyler ()] + ¢ - 1m0(0) — 91 (Cr)).- p(|Z, 91,92) = ( Lol 2|~ ) = Cp(Z, Y1, Y2|)
r=1 Zm p(wa y17?12|w)
These three equations give = Cp(z|z)p(g:1|x)p(y2|z). (28)
For memoryless channels, each conditional distribution on the

or(&) —InC right hand side of (27) is formulated as

] =

F({¢r},0) = (K = 1)po(0) -

r=1

N L
S x|r) = Ti|;), yr|x) = Jrjlyri(2)), (29
£3 "¢ (m06) - (&), p(E|x) gp( ), p(gr|@) jl;[lp(y lyrj (), (29)

for r = 1,2. Let us viewp(Z;|z;) as a function ofr;, where
Z; is fixed. By defining); as

K 5 _
FUCH0) = (K = Deo(6) = 3 (6 Ll e
ot i|li —

Sinceln C is a constant, we neglect it and redefifg{¢, }; 0):

p(Z;]x;) is rewritten as

K
+ 6 (m0(8) — 1 (Cr))- p(&i]ai) o exp(his). (30)

When thepg(x; 0), p,-(x; ¢,.) € M(0), the last term vanishes, Note that )\; is a function of ;. We can also rewrite
and this function with constrainf, = ¢.(8) or n-(¢,) = p(Yrslyrj(x)) as follows.
10(0) coincides with the free energy introduced by Kabashima

and Saad [10] from the statistical physical viewpoint. P(Grilyrs (®)) o< expliiriyrs), (31)
The advantage of the information geometrical frameworkhere

lies in its generality. The framework is common not only to 1 p(Geilyr; = +1)

turbo and LDPC codes, but is also generally valid for the Bethe Hri =5 W’ r=1,2.

approximation, the belief propagation applied to a loopy belief .

diagram, and its variants such as TRP [32]. We have used thf®™M (29), (30), and (31), we can rewrite (28) as
framework.to iptegrate the statistical—mechanica'l method and (x|, g, 92) = Cexp(A - @ + py - Y1 () + pa - Yo (),
an interesting idea of the CCCP algorithm [33] in a separate A= (A, An)T —( )7 (32)
paper [34]. Another important extension will be found when L AN B = ettt Bl )
we use different models of channels. It is easy to extend thich has the identical form to (2), wheeg(x) = A - «, and
result for any memoryless channel (see Appendix 1), and by(x) = w,-y.(x). Other distributiong (x; ) andp, (x; ¢,)
employing more complicated channels, which is one of oare also expressed witty(z) and ¢.(x), which shows the



16

information geometrical framework is valid for general binaryNow, 7, is rewritten as
input memoryless channels. ~

Finally, we give practical form oA and u, for an AWGN M = ZP(fB|y; p)x
channel. Let the noise variance of an AWGN channekbe i

iN- K 1N i-
andp(z|x) becomes = D CwEly g ) L Gl T @y
TEXyY g Xy
N~ 32 _ 1 .pK Bin-x Bin-x ,pY-y(x)
S N2 B (T — x;) ) = Ce’* N Ze —I—CZe e x.
pate) = xcyexp (-3 1
L (33)
= (2m¢?)~N/2 eXP(? > (@] —2Fws + 55?)) A component ofz,, is different from that ofi.,, when the
i=1 second term in (33) dominates the first term with the opposite

sign. Such a case cannot occur if
S ag, €N TTE)
ZmEXy efrn e

) ) _ ~ where A, is the smallest absolute value of the components
Following the same line fop(y,|z), the Bayes posterior with of 4,

the uniform prior is

Sincez? = 1 holds, it becomes

ePK AL >

p(&|z) = (2n6?)~N/2 exp(%z(?ﬁ: cx— N — |£|2)) ’ (34)

N A. Strict Bound
p(z|Z, g1, 92) = Cexp(A - x + py - y1(x) + p2 - y2(x)),

1 1 Sincey-y(x) < K—-2forx ¢ Xy and from (34), = T
A= ?29”7 Hr = C*gyrv is guaranteed fop > pg, wherepg is defined as
po(K—2) Bin-x
which is identical to (32). B D 7 T

1N T
ZwEXy eﬁ N

B el’o(K—2)wO(m ¢ X)})

APPENDIXII @€ X))
SOFT CONSTRAINT AND HARD CONSTRAINT 0 Y
_ l{m((l —wo(x € X;v))) A }
The LDPC decoding was reformulated with a positive real =3 wo(x € Xy) <)

numberp in section 1lI-C. Since the “soft constraint” deﬁ”edHere,wo(a;) is the prior ofz defined in (7). Roughly speaking,
with a finite p differs from the “hard constraint,” it is important ¢ v increasesin(1 — wo(z € Xy)) becomes negligible, and

to di;cuss .the influence of on the hz_;lrd dgcoding results.lnwO(w € Xy) increases proportional to N, and the positive
In this section, we show both constraints give the same ha{dmper, grows proportional tav.

decoding result for a sufficiently large but finite
The posterior probability ofc conditional tog in (6) is

) B. Approximate stochastic bound pffor Large N and K
rewritten as

We show by probabilistic arguments that a finje not
increasing in proportion tav, is sufficient to guarantee that a
component ott, is equal to that oft, when N and K are

Let n, be the expectation of with respect top(x|g) and, large. Let7 be the set of the typical sequencesaof

be the hard decoding result N
T = {az ‘ Nin:(l—ZU)},
i=1

p(x|g) = Cexp(fin - x + py - y(x)).

Mo = Zp(wh]):c, z, = sgn(mp).

® of which cardinality is |7| = eN#(?), where ¢ is the
The ultimate goal of the LDPC decoding based on the “hapdobability of each bit to be flipped through the BSC and
constraint” is to calculate:, defined as H(o) is the entropy. It is known [5] that, whelV is large,
with probability almost equal to 1, the vector satisfying the
Foo = 58N (Ns0) = Sgn(pllnéo ). “hard constraint” exists uniquely if’. Let x, be the vector,

andn., = . = xg. In the following, we neglect terms of
. . —CN H “
If &, = @ holds for a finitep, both constraints give the relatively exponentially small ordet; , by stating “except

same hard decoding result. for small order terms.” We can rewrite (34) as
Let us defineYy as a set ofc which satisfyy = y(x). As . 3 ocr 4y Py Y@ INI=20) (@)
p — oo, p(x|g) concentrates om € Xy, andn,, is redefined ¢ =~ eBN(1-20) - Z € :
as €T ,xFxo
Z eBiN-T gy ) ) (35)
Noo = lim Zp(l’@)w _ Lomedy . Here, the summation is taken only far € 7 by neglecting
P00 Dweay ENT exponentially small order terms, anfl,, = 1 is used. Now,
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we evaluatee’?¥(®), We consider a regular LDPC codes, where ;5 is equal tol wheni = j = k and 0

where h,.; of the parity check matrixd is randomly chosen otherwise. Hence, it is diagonal.
and non-zero elements per row H is fixed to Q. Since for T, :
gryr(m) = H (IOixi)v Tiz’r = 72}1”(1 — 7]12)57«,
€L o gy A=A =)
it is 1 when the number ofy;z; = —1, i € £, is even, and vy Tt niM; Cr-

is —1 when it is odd. LetR and1 — R be the probability

of () = —1 and gy, (x) = +1, respectively. Then, we 10 Tirs (r #5) -

can easily Writ.e down the probabiliti_es which stay to be finite Tirs = Epy [(z:—1:)(cr(2) — &) (cs () — )] (36)
as N — oo. Sincex, and x are typical sequences, when

is small, the probability that, does not include thosefor WhenL, N Ly =0, Tirs = 0. For £, N L # 0, we
which zg;z; = —1 is given by consider three cases.

2 0O 1 casel): ¢ L, Lg In this case, z; and
(I=0)"+0%)% =1 -2Qo. (¢;(x),cs(x)) are independent:

The probability that the number af);z; = —1 is two is much

smaller. Hence, for a sufficiently smatl
1 — R = Prob[ryn(a) = +1] ~ 1 — 2Qo, case Zgiveesljm i € Ls: Careful calculation of (36)
R = Prob[g,y,(x) = —1] =~ 2Qo. 1—n?_ _
ﬂ7's =-2 : CrCs.
Because of the law of large numbers, T
- N . _ case 3y € L,,i ¢ Lyori ¢ L,, i€ L Careful
Y- y(@) = KE[Gryr(@)] = K(1 - 2R). calculation gives

ET'S =0.

Now, we rewrite (35) as,

P O e/ Bl
K 5§ U@ o pK(-2R) . NH(@), irs = et - n 0 m P }
x€T ,xF#x0
NH(o) ; . APPENDIX IV
WEere,e is the number of typical sequences. This shows EXPLICIT FORM OF B, FORT # s
when
NH (o) First, we give the form ofB,,n; as follows,
2KR "’ S
- N . . Brsni = _T‘irs - ZTijijer:s
the probability that a component af,, is different from that T
of &, is negligibly small. Whens and ) are small, this ~ -
reduces to + Z(TW‘GJ'S + TijsGir).
S NH(o) N j
P ~
AKQo  4KQ for i¢ L., i¢ L
SinceN and K are of the same order, the right-hand side does B 0
rsTli =

not grow with V.
for iel,,ie L,

APPENDIX III L
ExpLIiCIT FORMS OFG AND T' Tirs = —2— T CrCs;
Metric tensor G : i . 9
A ~ ~ ~ ~ — N
for gi; - ZTijijers =T5;iiGirGis = —2 l CrCs,
- i
9ij = Epql(xi —ni)(x; — ;)] = (1= n7)di5, ik
which is the diagonal matrix,(6*). . _ _
for Gir - ZT‘zer]s = T;iTGis + ZE]’I‘G]S
L J J#i
- - 2
Gir = COV[JTi,Cr(:B)] = m Crhira = —21 i CrCs
) 771
1

~ —1/pn% _ 2 2

Gir = (Io (0")Gov)ir = Ecrhir- I Z (1 = )(i - m—)(_jrés'
Skewness tensofl” : FELPNLs N it
for Ty, Hence

1—n2)(1—-n2
T = By (s — mi) (5 — ;) — 1) Bap=2 Y QZmUZm)

2
= —2n;(1 — n?)dijn, FELNLNG 1if;



for ie L,,i¢ Ls(orie Ly,id¢ L,):

which vanishes wheif,. N £, does not include any [14]

4 other thani.
[15]

[16]

1-n2/1
711'7'5 = CrCs L (7 - 1)7
e 7 P’r‘s

T;jxGjrGrs = 0, Tj5Gjr =0,

S G- Y Lm0

i 2 Tv“s-
j JELNL, "iT;

[17]
(18]

Hence,

19
1_7]2'277 _P'r's [ ]

(5
Crls| —————
ui Prs

WhenZ, N L, = {j}, P.s = n:, which reduces to

Brsni

2

_ 3 1_7’73)
n /)
jeL,ne, [20]

21
Brsni =0. 2]
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