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SUMMARY

Turbo codes are known as a class of error-correcting
codes which have high error-correcting performance with
efficient decoding algorithm. Characteristics of the iterative
decoding algorithm have been studied in detail through a
variety of numerical experiments, but theoretical results are
still insufficient. In this paper, this issue is addressed from
the information geometrical viewpoint. As a result, a mathe-
matical framework for analyzing turbo codes is obtained,
and some of the fundamental properties of turbo decoding
are elucidated based on this framework. Recently, it has
been pointed out that the turbo decoding algorithm is re-
lated to the decoding algorithm of low-density parity check
codes, the computation method of Bethe approximation in
statistical physics, and the belief propagation algorithm of
Bayesian networks. The mathematical framework given in
the present paper can also be used to analyze these wide
classes of iterative computation methods, and hence repre-
sent a new analysis tool. © 2004 Wiley Periodicals, Inc.
Syst Comp Jpn, 36(1): 79–87, 2005; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI
10.1002/scj.10359
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1. Introduction

Turbo codes are a class of error-correcting codes in
which an iterative algorithm is used for decoding. Since
their appearance in 1993 [1], a variety of numerical experi-
ments have shown the high performance of the practical
codes. However, theoretical results [2] reported are not
enough, and we need further results to understand the
fundamental properties of the codes.

Similarities between turbo decoding and other meth-
ods have also been noted. Common features were found [4]
to exist between the iterative algorithm of the turbo decod-
ing and the iterative algorithm used in the decoding of
low-density parity check codes [3]. It was also shown that
these decoding problems could be formularized as an infer-
ence problem of a Bayesian network, and that the iterative
decoding algorithms were equivalent to belief propagation
for this Bayesian network [5]. Common features were also
shown to exist in the computation methods of Bethe ap-
proximation in statistical physics [6]. Of course, there are
still many theoretically unresolved problems regarding
these methods. Therefore, the framework of these iterative
methods will become clear once the mathematical structure
of turbo codes is clarified.
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In this paper, we first describe the turbo decoding
algorithm from an information geometrical [7, 8] view-
point, and build a mathematical framework to analyze it.
The basic mathematical properties of the turbo decoding
algorithm are also clarified based on this framework. The
geometrical structure of turbo decoding results is eluci-
dated, and local stability conditions of the algorithm are
demonstrated. A cost function, which is important for turbo
decoding, is also shown, and the decoding errors of turbo
codes are discussed. The result of the present paper is also
useful for the iterative algorithms of the previously de-
scribed classes.

2. Information Geometry of Turbo Codes

2.1. Turbo codes

Let us consider a case in which an information data
block x = (x1, . . . , xN)T, xi ∈ {−1, +1} is sent over a memo-
ryless binary symmetric channel (BSC). In this paper, a
BSC is assumed for simplicity, but the framework of the
information geometry obtained in the present paper can be
expanded to an additive white Gaussian noise channel and
other memoryless channels. Turbo codes (Fig. 1) are imple-
mented as convolutional codes in order to increase the code
lengths, but we treat them as block codes in the present
paper [2, 5]. Turbo codes use two encoders to create two
parity check words for a single code word. The correspond-
ing results are y1 = (y11, . . . , y1L)T, y2 = (y21, . . . , y2L)T,
y1j, y2j ∈ {–1, +1}. When (x, y1, y2) are transmitted over a
communications channel, they are received as (x~, y~1, y

~
2),

where x~i, y
~

1j, y
~

2j ∈ {–1, +1}. Also, yr, r = 1, 2, is a function
of x, and is expressed as yr(x) when needed. Based on the
received words, the original information word is inferred as
x̂.

A turbo-decoding algorithm will first be described.
Turbo decoding is a type of decoding in which two decoders
are used in an alternating manner. The probability distribu-
tions p(x~|x), p(y~r|x), r = 1, 2 and the variables shown below
are defined, as is function F.

These are used to define the turbo decoding algorithm in
the following manner (Fig. 2).

[Turbo Decoding]
1. Set x1 = 0, t = 1.
2. Calculate L1x

(t) = F((lx + x1), ly1), and x2 is up-
dated as 

3. Calculate L2x
(t) = F((lx + x2), ly2), and x1 is up-

dated as

4. 2 and 3 are repeated while t is increased by 1 until
L1x

(t) = L2x
(t) = L1x

(t+1) = L2x
(t+1) is satisfied.

The algorithm does not necessarily converge. The
operations are repeated until it converges or a predeter-
mined number of iterations is achieved. Usually this limit
is from several to about ten.

2.2. MPM decoding

The goal of decoding turbo codes is to obtain the
MPM (maximum posterior marginal) decoding. In MPM
decoding, the distribution p(x|x~, y~1, y

~
2) is marginalized

down to each component of xi, and the code which maxi-
mizes the product of marginal distributions is taken to be

Fig. 1. Turbo codes.

Fig. 2. Turbo decoding.

(1)

(2)
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the inferred result. Let us first consider p(x|x~, y~1, y
~

2). Since
a memoryless BSC is assumed, the following is true:

The right-hand side can be written as follows:

Here, β is a positive real number, and the bit error rate fn of
the BSC is expressed as fn = (1 − tanhβ) / 2. Assuming that
c0(x) = βx~ ⋅ x, c1(x) = βy~1 ⋅ y~1, c2(x) = βy~2 ⋅ y2, p(x~, y~1, y

~
2|x)

is written as follows:

If we consider a uniform distribution p(x) = 1/2N as
the prior distribution of x, the posterior distribution of x is
given as follows:

Also, we define

where Π is the operator of marginalization.
MPM decoding can be defined in the following manner:

In turbo decoding, the MPM decoding is the ultimate goal,
but the calculation cost of marginalization grows exponen-
tially with respect to N, and the marginalization is not
tractable. The turbo decoding algorithm provides an ap-
proximation to MPM decoding.

2.3. Preliminaries of information geometry

In this section, preliminaries of information geome-
try are given. Let us consider a set S of probability distribu-
tions for x. It is a set of multinomial distributions of 2N

elements. Its degree of freedom is (2N – 1), and it is an
exponential family:

Let us now define the e-flat and m-flat submanifolds in-
cluded in S.

e-flat: Manifold M ∈ S is e-flat when the r(x; t)
defined by the following equation is contained in M, where
all q(x), p(x) ∈ M:

Here, c is the normalization constant.
m-flat: Manifold M ∈ S is m-flat when the r(x; t)

defined by the following equation is contained in M, where
all q(x), p(x) ∈ M:

An m-projection will next be defined.
[Definition 1] Let us assume that M is an e-flat

submanifold of S. An m-projection from q(x) ∈ S to M will
be a point on M in which the Kullback–Leibler (KL) diver-
gence from q(x) to M is at a minimum, and it can be defined
in the following manner:

[Theorem 1] The m-projection ΠM!q(x) of S from
q(x) ∈ S to an e-flat submanifold M is unique.

The KL divergence D [⋅;⋅] is defined as follows:

The KL divergence satisfies the inequality D[q(x); p(x)] M
0 and becomes 0 if q(x) = p(x) holds for any x.

To understand the turbo decoding algorithm, let us
consider a submanifold MD consisting of factorizable dis-
tribution. The definition will be as follows:

where ψ(q) is the normalizing factor defined in the follow-
ing manner:

By its definition, MD is an exponential family, and since an
exponential family is e-flat, MD is an e-flat submanifold [8].
Parameter q gives the coordinate system of the manifold
MD and is called the natural parameter. Another coordinate
system, h, which is called the expectation parameter, is
defined as follows:

The following one-to-one relation exists between q and h:

(3)
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[Theorem 2] The marginalized probability distribu-
tion Π!q(x) of q(x) is an m-projection of q(x) on MD.

(Proof) Let us consider an m-projection of q(x) to
MD. From Theorem 1, we can differentiate D[q(x); p(x; q)]
with respect to q. Using the results of Eq. (4), the following
is obtained:

Consequently, h∗ = Σ∞ q(x)x, where h∗ is the projected h
coordinate, gives the m-projection. This indicates that an
m-projection is expressed by the independent expected
value of each component of x based on q(x), which proves
the theorem.

Furthermore, MPM decoding can be written as fol-
lows.

where sgn(⋅) is applied independently to each bit.

2.4. Information geometrical view of turbo
decoding

Turbo decoding does not use two observed parity
check words simultaneously as p(x|x~, y~1, y

~
2), but uses

p(x~, y~1|x), p(x, y~2|x) in which x~ and only one of the observed
parity check words is taken into account. The following
gives the form of p(x~, y~r|x), r = 1, 2:

The following is obtained for these distributions when
ω(x; x) ∈ MD is taken to be the prior distribution of x, and
a posterior distribution is given as follows:

ϕr(x) is the normalization factor. Here, we assume that the
m-projection from pr(x; x), r = 1, 2, to MD is tractable in
polynomial time. The turbo decoding varies iteratively, and
the m-projection of p(x|x~, y~1, y

~
2) is approximated.

In this section, the information geometrical view of
turbo decoding is given. First, we define three important
manifolds:

Here, x defines the coordinate system of each manifold.
Since c0(x) = βx~ ⋅ x, the condition p(x; q′) = p0(x; q) holds
for p(x; q′) ∈ MD, if q′ = q + βx~ is assumed. Consequently,
M0 is equivalent to MD. Let πM0

!q(x) be a coordinate x

defined by the m-projection of q(x) on M0:

The condition τM0
!q(x) = πMD

!q(x) + βx~ holds. The turbo
decoding is written in the following manner with πM0

(Fig. 3).

[Expression of Turbo Decoding as Information Ge-
ometry]

1. Set x1
t  = 0 for t = 0, and t = 1.

2. Calculate πM0
!p2(x; x1

t ), which is the projection of
p2(x; x1

t ) to M0, and update x2
t+1 as follows:

3. Calculate πM0
!p1(x; x2

t+1), which is the projection
of p1(x; x2

t+1) to M0, and update x1
t+1 as follows:

4.  Return to step 2 if  πM0
!p1(x; x2

t+1) ≠
τM0

!p2(x; x1
t+1).

(4)

(5)

(6)

Fig. 3. Information geometry of turbo decoding.
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L1x
(t), L2x

(t) in Eqs. (1) and (2), that is, the expressions
F((lx + x1), ly1), F((lx + x2), ly2) correspond to τM0

!p2(x;
x1

t ), πM0
!p1(x; x2

t+1) in Eqs. (5) and (6). In addition, x1, x2 in
Eqs. (1) and (2) correspond to x1

t , x2
t+1  in Eqs. (5) and (6).

3. Properties of Turbo Decoding

3.1. Properties of stationary points

Let us assume that x1
∗, x2

∗  are the convergence points
of turbo decoding. The final result is the M0 coordinate at
which τM0

!p1(x; x2
∗) = πM0

!p2(x; x1
∗). Let us define the point

as q∗. First, the following is obtained based on convergence
conditions.

Also,  the fol lowing is obtained based on
τM0

!p1(x; x2
∗) = πM0

!p2(x; x1
∗) and on steps 2 and 3 of the

algorithm:

In turbo decoding, the results of true MPM decoding are
approximated as q∗ = x1

∗ + x2
∗:

Intuitively, x2 in Eq. (7) is substituted by c2(x) in step 2,
x1 in Eq. (7) is substituted by c1(x) in step 3 of turbo
decoding, and x1

∗  is determined. Consequently, the influ-
ences of c1(x) and c2(x) are expressed by x1

∗  and x2
∗ ,

respectively, but their influences usually cannot be linearly
separated on M0.

Let us define the x1 and x2 that satisfy the equation
below as x1(q) and x2(q), respectively:

Also, let us define the m- and e-flat manifolds that connect
p0(x; q), p1(x; x2(q)), p2(x; x1(q)) as M(θ) and E(θ), respec-
tively:

For every p(x) ∈ M(q), its m-projection to M0 is p0(x; q).

[Theorem 3] At a stationary point, the three distribu-
tions p0

∗, p1
∗, p2

∗ are included in M(q∗), and the four distribu-
tions p0

∗, p1
∗, p2

∗, p(x|x~, y~1, y2) are included in E(q∗) (Fig. 4).
(Proof) Based on the definition, the fact that

p0
∗, p1

∗, p2
∗ ∈ (M(q∗), E(q∗) is proven. The fact that the four

distributions p0
∗, p1

∗, p2
∗, p(x|x~, y~1, y

~
2) ∈ E(q∗) is proven from

the following result:

by setting t0 = −1, t1 = t2 = 1 and using q∗ = x1
∗ + x2

∗.
M(qMPM

∗ ) includes p(x|x~, y~1, y
~

2) if a true solution for
MPM decoding is qMPM

∗ .  Generally, however, the solu-
tion q∗ for turbo decoding and qMPM

∗  do not agree with each
other. Consequently, p(x|x~, y~1, y

~
2) ∉ M(q∗), but is included

in E(q∗). Since e-flatness and m-flatness generally do not
agree with each other, there is a discrepancy between the
manifolds E(q∗) and M(q∗). Turbo decoding obtains the
approximation by substituting M(q∗) for E(q∗). Similar
structures exist in other statistical physics techniques [9–
12].

3.2. Stability of stationary point

Let us assume that the convergence points of turbo
decoding are x1

∗, x2
∗, q∗ = x1

∗ + x2
∗.

(7)

Fig. 4. Information geometrical view of turbo codes.
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Now we define G0(q), G1(x), G2(x) as the Fisher in-
formation matrices of p0(x; q), p1(x; x), p2(x; x), respec-
tively; IN is a unit matrix, and h0(q), h1(x), h2(x) are the
expectation parameters of the corresponding distributions.
The following condition holds for the convergence
points h0(q∗), h1(x2

∗) = h2(x1
∗). The following also holds

for each of these (r = 0, 1, 2):

To see the stability, we add a sufficiently small vector d to
x1

∗  as x1 = x1
∗ + d, and set it as the initial value of the

algorithm, then the turbo decoding algorithm is applied
once. Setting x1

g  = x1
∗ + d′ to be the parameter after a single

cycle of turbo decoding, a linear stability analysis is carried
out. From step 2, the following is obtained:

When this expression is expanded, the result is

Also, x2 in step 2 becomes

Step 3 is treated in the same manner. As a result, d is updated
as

which gives the linearized approximation of turbo decod-
ing.

[Theorem 4] Let λi be the eigenvalue of T. The
stationary point will be stable if |λi| < 1 holds for  every i.

This result agrees with that of Ref. 2.

3.3. Cost function and stationary points

Let us consider the following function, assuming
q = x1 + x2:

[Theorem 5] The stationary points x1
∗, x2

∗  of turbo
decoding are the critical points of F.

(Proof) With direct differentiation, the following is
obtained:

The above different ial  is 0 because
h0(q∗) = h2(x1

∗) = h1(x2
∗) at the equilibrium.

The turbo decoding algorithm can be approximated
with

when the parameter changes by a very small value. The
Hessian of F is calculated as

Here, the variables are changed to q = x1 + x2, n = x1 − x2,
yielding

from which we can see that ∂qqF is probably positive
definite and that ∂nnF is always negative. Consequently, the
stationary points of turbo decoding are often believed to be
a saddle point.

3.4. Difference between turbo decoding results
and MPM solution

Theorem 3 shows that the difference between MPM
decoding and turbo decoding is the difference between
M(q) and E(q). Based on this result, we evaluate the differ-
ence between the true MPM solution and the turbo decod-
ing solution by the perturbation analysis. First,
q = (θ1, . . . , θN)T, n = (v1, v2)T, and c(x) =

def
 (c1(x), c2(x))T are

used to define p(x; q, n) in the following manner:

This distribution includes p0(x; q)(n = 0), p(x|x~, y~1, y
~

2)
(q = 0, n = (1, 1)T), pr(x; x) (q = x, n = er) as special cases.
Here, er is

The expectation parameter h(q, n) is defined as follows:
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This defines a submanifold M(q∗) in which the expectation
parameters of all distributions are equal to h(q∗). In other
words, we have a set of distributions for which the condition
h(q, n) = h(q∗) is satisfied. Hereafter, we use the following
notations h(q) =

def
 h(q, 0) and h∗ =

def
 h(q∗).

The dependency of q on n will now be considered
using the perturbation analysis under the restriction that
p(x; q, n) ∈ M(q∗). In the perturbation analysis, the contri-
bution of {vrcr(x)} to p(x; q, n) is assumed to be small, we
take the Taylor series of p(x; q, n) with respect to {vr} up to
O(||n||2), and the effect of {vrcr(x)} is evaluated. The Taylor
expansion gives

where {i, j, k, l} are the subscripts of q, {r, s} are the
subscripts of n, and ∆q =def

 q − q∗. From the condition that the
distribution must be on M(q∗), ηi(q, n) = ηi

∗ holds. Also,
{gij}, which is the Fisher information matrix of p(x;
q∗, 0), is a diagonal matrix. Using these results, the follow-
ing equation is derived:

where gii = 1 / gii. By ignoring third- and higher-order terms
of vr∆θi is rewritten as follows:

where Air = ∂rηi
∗.

When n = e1, p(x; q, n) is restricted to M(q∗), so
q = x2

∗  and ∆q = x2
∗ − q∗ = −x1

∗ . Based on the same argu-
ment, ∆q = −x2

∗  when n = e2. The following expression is
derived from Eq. (8):

On the other hand, if we assume that n = Σrer and
define q

_
 as the parameter that satisfies the condition, gen-

erally, q
_
 ≠ 0. This indicates that p(x|x~, y~1, y

~
2) is not neces-

sarily included in M(q∗). It follows from Eq. (8) that

From θi,∗ = ξ1
i,∗ + ξ2

i,∗, and based on the results of Eq. (9), we
can conclude that

The difference between a turbo solution and an MPM
solution is evaluated if the difference between the parame-
ters on M0 is evaluated. If the MPM solution can be written
as hMPM

∗ ,  the result is

The following theorem is derived from this result.
[Theorem 6] Assuming that h∗ is the expectation of

xi based on a turbo decoding solution, and hMPM
∗  is the

expectation based on an MPM decoding solution, the dif-
ference between these is approximated as follows:

The decoding error given by the above formula is
related to the embedded e-curvature of the manifold M(q).

4. Conclusions

In this paper, we have elucidated the mathematical
structure of turbo codes from an information geometrical
viewpoint. We believe that our results provide a mathemati-
cal framework for analyzing turbo codes and that more
properties will be elucidated based on this framework.

(8)

(9)
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This problem of turbo decoding can be regarded in a
more general sense, as a problem of approximating the
marginalization of a probability distribution which has a
form shown in Eq. (3). The solution is approximated by
dividing the whole problem into partial problems and par-
tial information is integrated through iterative algorithm.

The same structure is found in low-density parity-
check codes, the Bethe approximation of statistical physics,
and the belief propagation of loopy Bayesian networks.
Some differences exist in relation to the details of the
algorithm, and completely identical results have not been
obtained concerning solution stability and other properties,
but since the basic structures are very similar, we believe it
is not difficult to build the information geometrical frame-
work for related problems. We have already extended the
framework to the case of low-density parity-check codes
[13]. Extensions for the Bethe approximation and belief
propagation techniques are our future works.
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