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Abstract— The EM algorithm is widely used to
estimate the parameters of many applications. It is
simple but the convergence speed is slow. There is
another algorithm called the scoring method which is
faster but complicated. We show these two methods
can be connected by using the EM algorithm recur-
sively.

I. INTRODUCTION

The EM (Expectation Maximization) algorithm[1] was
originally proposed by Dempster et al.[2] for esti-
mating the MLE (Maximum Likelihood Estimator)
of stochastic models which have hidden random vari-
ables. The algorithm is now used in many applications
such as Boltzmann machine[3], Mixture of Expert
networks[4][5][6] and also in HMM (Hidden Markov
Model)[7].

This algorithm gives us an iterative procedure and
the practical form is usually very simple. However,
the convergence speed is slow compared to the scor-
ing method which is also used to estimate the MLE
of these models. There are some works to accelerate
the convergence speed of the EM algorithm[8][9], but
the procedure is usually not easy and need a lot of
calculations.

In this paper, we show that we can accelerate the
EM algorithm by using it in a recursive way. The
algorithm consists of two stages. In the first stage,
we do one EM step with the given data set. In the
second stage, we do another EM step not with the
given data but with the data drawn from the model.
Through these stages, we can have better estimator.
We show the theoretical derivation of the algorithm
in connection with the scoring method. We also show
some results of computer simulations. They show the
algorithm gives faster convergence speed.

II. THE EM ALGORITHM AND THE
SCORING METHOD

Think about the cases we want to estimate the pa-
rameters of a Boltzmann machine[3] or a stochastic
Perceptron[10]. These models can be denoted as,
p(x|θ) as the probabilistic distribution, where x =
(y, z) is the output of cells, y is for visible cells and
z is for hidden cells. If a model can be formulated in

this form, we can use the EM algorithm for estimating
the MLE. The hidden random variable z makes it hard
to find the MLE.

For the training of these models, we can only have
the sampled data on y generated by a fixed probabil-
ity distribution. Let us define the observed empirical
distribution as q̂(y) =

∑N
s=1 δ(ys)/N , where the set of

data is {y1, · · · , yN}. The log-likelihood function is,

L(Y N |θ) =
1
N

N∑
s=1

log p(ys|θ) =
1
N

N∑
s=1

l(ys|θ)

= Eq̂(y) [l(y|θ)]. (1)

We want the MLE θ̂ which maximizes L(Y N |θ), θ̂ =
argmaxθ L(Y N |θ). Note that in (1), we are trying to
fit θ to q̂(y) but we can also do this for any other
distribution r(y) on y, then the likelihood function to
be maximized will be Er(y) [l(y|θ)].

In this paper, we only treat p(x|θ) which is an ex-
ponential family. This means the probability density
function can be written as

p(x|θ) = exp

(
p∑

i=1

θiri(x) − k(r(x)) − ψ(θ)

)
, (2)

where θ = (θ1, · · · , θp) is the natural parameter and
r(x) = (r1(x), · · · , rp(x)). The Boltzmann machine
and the stochastic Perceptron are also exponential
families [10][3]. Note that the marginal distribution
p(y|θ), which is defined as p(y|θ) = Ep(z|θ) [p(y|z,θ)],
is not always an exponential family.

The EM algorithm is an iterative algorithm generat-
ing a sequence {θt} (t = 1, 2, 3, · · ·) of estimates from
an initial point θ0. Each iteration consists of the fol-
lowing two sub-steps:

• E-step: Q(θ,θt) = Eq̂(y)p(z|y,θt) [l(y, z|θ)]

•M-step: θt+1 = argmaxθ Q(θ,θt).

After a cycle of E- and M-step, we obtain θt+1 and
it is shown[2] that L(Y N |θt+1) ≥ L(Y N |θt). By iter-
ating E- and M-steps, the algorithm converges to the
parameters which should be the MLE. And we have



an approximation of the one EM step as the following.
For the proof, see [11],

θt+1 � θt +GX
−1(θt)∂L(Y N |θt). (3)

Here, ∂ = (∂1, · · · , ∂p)T = (∂/∂θ1, · · · , ∂/∂θp)T and
GX(θ) = (gXij(θ)) is the Fisher information matrix
of p(x|θ) defined as,

gXij(θ) = Ep(x|θ) [∂il(x|θ)∂j l(x|θ)]
= −Ep(x|θ) [∂i∂j l(x|θ)]. (4)

(3) shows that the EM algorithm is updating the pa-
rameter into the steepest direction of the likelihood
function based on the Fisher metric GX of the model.
Note that this relation only holds for the natural pa-
rameter θ.

(3) looks similar to what is called the scoring method
in statistics. The updating rule of the scoring method
is,

θt+1 = θt +GY
−1(θt)∂L(Y N |θt). (5)

It is known that the scoring method is an efficient
method of calculating the MLE and the convergence
speed of it is usually faster than the EM algorithm.
This is caused by the difference of the coefficient matri-
ces, GX(θ) and GY (θ). GY (θ) = (gY ij(θ)) is also the
Fisher information matrix of the model p(y|θ) where
a hidden random variable z is eliminated,

gY ij(θ) = Ep(y|θ) [∂il(y|θ)∂jl(y|θ)]
= −Ep(y|θ) [∂i∂j l(y|θ)]. (6)

Both matrices are Fisher information matrices. It is
know that GX(θ) and GY (θ) have a relation as the
following.

−Ep(y|θ) [∂i∂j l(y|θ)] = −Ep(x|θ) [∂i∂j l(x|θ)]
+Ep(x|θ) [∂i∂j l(z|y, θ)]

GY (θ) = GX(θ) −GZ|Y (θ) (7)

where GZ|Y = (gZ|Y ij
(θ)) is the conditional Fisher

information matrix defined as,

gZ|Y ij
(θ) = −Ep(y|θ)

[
Ep(z|y,θ) [∂i∂j l(z|y, θ)]

]
= Ep(y|θ)

[
gZ|yij

(θ)
]
.

Because GY , GX , and GZ|Y are positive definite sym-
metric matrices in regular cases, we can show an in-
teresting result,

GY = (I −GZ|YGX
−1)GX

GY
−1 = GX

−1(I −GZ|Y GX
−1)−1

= GX
−1

(
I +

∞∑
i=1

(GZ|Y GX
−1)i

)
(8)

(8) can be proved easily by diagonalizing GY ,
GX , and GZ|Y simultaneously. All the eigenval-
ues of GZ|Y GX

−1 are real, positive and smaller
than 1 and we have, (I − GZ|YGX

−1)−1 = (I +∑∞
1 (GZ|Y GX

−1)i).

III. PROPOSED ALGORITHM

One step of the scoring method changes an estima-
tor θ into the steepest gradient based on GY and it
usually converges faster than the basic EM algorithm.
But to calculate GY

−1 is complicated in most of the
cases. We propose an algorithm to approximate the
scoring method through the use of the EM algorithm
in a recursive way.

Suppose the case we have executed one step of the
EM algorithm and have θt+1 from θt. Then we do
another E-M step from θt to have θ̄t+1 using the data
drawn from p(y|θt+1). Here, we don’t use the original
data. With θt, θt+1 and θ̄t+1 we can make a better
estimator. This is the essence of the proposed algo-
rithm. The obtained parameter θ̄t+1 has the following
property.

Theorem 1 θ̄t+1 is the parameter estimated from θt

by one EM step, taking p(y|θt+1) as the true (teacher)
distribution. θ̄t+1 has the property,

θ̄t+1 − θt � GX
−1GY GX

−1∂L(Y N |θt). (9)

The proof can be obtained by following the deriva-
tion of (3). Replacing q̂(y) with p(y|θt+1), we have,

θ̄t+1−θt � GX
−1

∫
∂l(y|θ)

∣∣∣
θ=θt

p(y|θt+1)µ(y). (10)

Because, p(y|θt+1) � p(y|θt) +
p(y|θt)(∂l(y|θt))T (θt+1 − θt), we have the proof.

From (7) and (9),

θ̄t+1 − θt � GX
−1(GX −GZ|Y )GX

−1∂L(Y N |θt)
� (θt+1 − θt)

−GX
−1GZ|Y GX

−1∂L(Y N |θt)

θt+1 − θ̄t+1 � GX
−1GZ|Y GX

−1∂L(Y N |θt). (11)

With (11), we can approximate the scoring method up
to second order by

θ′ = 2θt+1 − θ̄t+1 = θt + (θt+1 − θt) + (θt+1 − θ̄t+1)
� θt +GX

−1(I +GZ|Y GX
−1)∂L(Y N |θt) (12)

Also we can approximate the scoring method up to
higher order in the following way.

Do one EM step from θt to have θ̄t+i where
p(y|θ̄t+i−1) is the teacher distribution (i = 0, 1, · · ·,
and θ̄t = θt+1), θ̄t+i has the following property.

θ̄t+i − θt � (GX
−1GY )iGX

−1∂L(Y N |θt)
= (I −GX

−1GZ|Y )iGX
−1∂L(Y N |θt)

(13)



From θ̄t, · · ·, θ̄t+i, and θt, we can approximate
(GX

−1GZ|Y )iGX
−1∂L(Y N |θt) and the scoring de-

scendant vector up to ith order. And if i = p, we
do not have to do this more. We can calculate higher
order approximation with linear combination.

This proposed algorithm shows that after one EM
step, we can have better estimator without using the
original data. The procedure is very simple, we use
the data drawn from the model.

IV. SIMULATIONS

A. Log-Linear model

We first used Log-Linear Model for the simulation.
The model (Fig.1) has a triplet of variables (A,B,C),
where A, B and C take values on {Ai}, {Bj} and
{Ck} respectively, (i = 1, · · · , I , j = 1, · · · , J , k =
1, · · · ,K). We can observe two variables A,B of them,
but cannot observe C (latent variable). We make a
model with the probability distribution, P (A,B,C) =
P (Ai|Ck)P (Bj |Ck)P (Ck). The distribution of A and
B are independently conditional to C.

When we observe data, we can only know
the marginal distribution on A, and B mij =
nij/

∑
i′j′ ni′j′ . Where nij is the observed number of

(A = Ai, B = Bj). From the model, marginal distri-
bution is P (Ai, Bj) =

∑
k Pi|kPj|kPk and we have to

estimate the parameters including the hidden proba-
bilistic variable C. We can use the EM algorithm to
estimate the parameter, and also the proposed algo-
rithm.
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Figure 1: The definition of the model and the results

The simulation was made with the model in which
I = J = 5, and K = 2. Therefore, p(Ai, Bj) is multi-
nomial distribution of 25 elements. If we have 24 pa-
rameters, we can describe the given distribution pre-
cisely, but now we only have (K − 1) + K(I − 1) +
K(J − 1) = 17 parameters. The teacher distribution
was made at random, and the problem is to estimate
the parameter to fit the teacher distribution.

Fig.1 is the result using the basic EM algorithm,
the proposed procedure which approximate the scoring
method up to 2nd order and 3rd order. You can see
that if we use the 2nd or 3rd order approximation, the

convergence speed is much faster than the basic EM
algorithm.

B. Mixture of normal distributions
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Figure 2: Teacher model and Initial model

When the density function of the model is continu-
ous, we cannot use the density function itself to carry
out the EM algorithm but we need a sampled data set.
We have to create the set from p(y|θt+1) by drawing
data and do one EM step to have θ̄t+1. We did a sim-
ulation using the mixture of normal distributions[12].
Fig. 2 shows the teacher model and the initial model
for learning. Both models are consists of 6 compo-
nents, but the components in the initial model are
broad and we cannot see each component separately.
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Figure 3: Results of the algorithms

We do not show the form of the EM algorithm, but
it is easy to derive the form. In order to show the
performance of the higher order approximation of the
scoring method, we did simulation as follows.

1. Prepare a sample of 1000 observed y’s from the
teacher model. Let the parameter of the initial
model be θ0.

2. Using the original data, execute one EM step to
have θ′t+1 from θt.

3. Generate 1000 new data according to p(y|θ ′t+1).

4. Using the newly generated data, execute one EM
step and calculate θ̄′t+1 from θt.

5. Let θt+1 = 2θ′t+1 − θ̄′t+1, and go to 2.



The final models obtained through the basic EM al-
gorithm and the 2nd order approximation are shown
in Fig.3. And their profile of the likelihood function is
given in Fig.4. Because the proposed algorithm uses
a kind of Monte Carlo method, it does not converge
but keep fluctuating. This is also the reason why we
did not test higher order approximation. The result
shows that the proposed method can accelerate the
EM algorithm.
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Figure 4: Results of the algorithms

V. DISCUSSION

Through the simulations, we show that this algorithm
improves the convergence speed of the EM algorithm.
In order to have the second order approximation, we
have to use the EM algorithm twice. Therefore we
hope that the new algorithm works twice faster than
the original EM algorithm. This depends on the prob-
lem. In the case of the mixture of normal distributions,
it was faster more than two times in our simulation.

For the acceleration of the EM algorithm, there is a
work of Louis [8]. He used the same kind of approx-
imation but used the Jacobian matrix J of the map
θt+1 = EM(θ). J corresponds to J = (GZ|Y GX

−1)
of this paper. Using J and θt+1 − θt, he formulated
the acceleration of the EM algorithm as we did. But
J is not easy to be calculated for many models. Meng
and Rubin gave a method for calculating J using the
EM algorithm, but it requires to do EM steps as much
times as the number of the parameters. After you have
J , you can have the approximation up to any order,
but even to have the second order, the method needs
many EM steps[9], while our algorithm only needs two
EM steps.

We believe that the new algorithm is quite useful
for the on-line learning. Suppose the case of on-line
learning, but data does not come every time. When
we have a new datum, we can update the parameter
using the EM algorithm, but when we don’t have data
for a while, we can continue learning by generating
new data from the model. We are now working for

the application of Neural Network models and of the
on-line learning.
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