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Abstract

ICA (Independent Component Analysis) is a new technique for analyzing multi-variant data. Lots of
results are reported in the field of neurobiological data analysis such as EEG (Electroencephalography),
MRI (Magnetic Resonance Imaging), and MEG (Magnetoencephalography) using ICA. But there still
remain problems. In most of the neurobiological data, there are a large amount of noise, and the
number of independent components is unknown which gives difficulties for many ICA algorithms. In
this article, we discuss an approach to separate noise-contaminated data without knowing the number of
independent components. The idea is to replace PCA (Principal Component Analysis), which is used as
the preprocessing of many ICA algorithms, with factor analysis. In the new preprocessing, the number
of the sources and the amount of the noise are estimated. After the preprocessing, an ICA algorithm is
used to estimate the separation matrix and mixing system. Through the experiments with MEG data,
we show this approach is effective.

1 Introduction

The basic ICA problem assumes the following linear relation between the observation x and the source s as,

x = As x ∈ Rn, s ∈ Rm, A ∈ Rn×m. (1)

We assume that each component of s is mean 0, mutually independent and drawn from different probability
distribution which is not Gaussian expect for at most one. In this article, we also restrict m to be smaller
or equal to n for the existence of linear solution.

The goal of ICA is to estimate a separation matrix W which satisfies the following equation,

WA = PD W ∈ Rm×n, P ∈ Rm×m, D ∈ Rm×m. (2)

P is a permutation matrix which has single entry of one in each row and column, and D is a diagonal matrix.
With the separation matrix, we can reconstruct the independent source as y = Wx. This problem is solved
in the framework of semi parametric approach[1], and giving a lot of interesting theoretical and practical
results.

When we apply ICA to neurobiological data, the problem defined in eq.(1) does not describe the situation
well. In most cases, we cannot avoid the noise and the number of the sources m is unknown. For example, in
the case of MEG[4, 11], which we study in this article, the number of the measurements n is large (50∼200),
but we believe that the number of the sources is not so large in a macroscopic viewpoint within a short
period, and noise are very large.

MEG measures the brain activity through the change of the magnetic field which is extremely small
(∼ 10−14 T), and we need a special device called SQUID (Super-conducting Quantum Interference Device).
The SQUID can detect the brain signals, but they contain a lot of noise. There are two major categories of
noise. One is called the artifacts and the other is the quantum mechanical noise. The artifacts include electric
power supply, earth magnetism, heart beat, breathing and the brain activity which we are not interested in.
They effect on all the sensors simultaneously. The quantum mechanical noise originates from the SQUID



itself. SQUID is working under the temperature of liquid Helium, and it cannot avoid quantum mechanical
noise which is white and independent to each other. The main technique used so far to lower noise is the
averaging over 100 to 200 times. But the averaged data still contains a large amount of noise. After averaging
the data, we modeled the data as,

x = As + ε x, ε ∈ Rn, s ∈ Rm, A ∈ Rn×m (3)
s: sources and artifacts,

ε∼N(, Σ): quantum mechanical noise, Σ ∈ Rn×n: diagonal matrix.

It is difficult to apply most of the ICA algorithms directory to this problem. In this article, we are proposing
a new approach to solve this problem. The idea is to use factor analysis for the preprocessing of data. In
the following sections, we describe our proposing method, and experimental results.

2 New approach of ICA

2.1 Factor analysis as the preprocessing

From a practical reason, ICA algorithms are often separated into two parts[5, 7, 8]. One is to preprocess the
data such that they become uncorrelated. This part is called sphering or whitening. After the preprocessing,
the remaining part of the estimation is a rotation matrix and many algorithms are proposed[3, 5, 7, 8]. But for
sphering, most of the algorithms are using PCA[7]. Suppose we have a data set as {x t} (t = 1, . . . , N) and let
C be the covariance matrix of observed data x, (C =

∑
t xtx

T
t /N). By defining P = C1/2, where C = PP T ,

PCA transform the observation as, x′ = P−1x, then x′ is uncorrelated because
∑

x′x′T /N = In. But when
the data are noisy, P does not make the observation uncorrelated. We can instead use factor analysis.

Factor analysis is one of the well-known techniques for analyzing multi-variant data. In factor analysis,
real valued n-dimensional observation x is modeled as,

x = Af + ε, x, ε ∈ Rn, f ∈ Rm, A ∈ Rn×m (4)

f∼N(, Im), ε∼N(, Σ), Σ ∈ Rn×n: diagonal matrix

The goal of factor analysis is to estimate m, A (factor loading matrix), and Σ (unique variance matrix)
using the second order statistics C. The difference of eq.(3) and eq.(4) is coming from s and f , that is f is
assumed to be drawn from a normal distribution, but s is not.

Suppose we know A and Σ. Let Q ∈ Rm×n be the pseudo-inverse of A where AQA = A holds, and we
transform the data as, z = Qx. Then z becomes the sphered data because,

1
N

∑
zzT = Im + QΣQT .

Pseudo-inverse has (n−m)m degree of freedom. And we selected the one which minimizes trQΣQT . This
result shows that we can make the part of observation x due to the sources uncorrelated, and this is the aim
of sphering. Therefore, we have to estimate A and m.

For the estimation of m, A (factor loading matrix), and Σ (unique variance matrix), we can use some
techniques of factor analysis. There are various estimation methods for A and Σ when m is given. We are
going to use the MLE. MLE is defined as,

(Â, Σ̂)MLE = argmax
A,Σ

(
−1
2

{
tr

(
C(Σ + AAT )−1

)
+ log(det(Σ + AAT )) + n log 2π

})
. (5)

For solving the equation, we can use the gradient decent algorithm or Gauss-Newton method. Also the EM
(Expectation Maximization) algorithm can be applied.

In order to select the number of factors, m, there are also many approaches and we are going to use
the model selection approach with an information criteria, MDL (Minimum Description Length). MDL is
defined as follows,

MDL = −L(Â, Σ̂) +
logN

N
× the number of free parameters.



The number of the free parameters in factor analysis model is defined as follows. There are n(m + 1)
parameters in A and Σ. But A has an ambiguity of rotation and m(m−1)/2 is the freedom of the ambiguity.
Subtracting m(m− 1)/2 from n(m+ 1), the number of the free parameters is n(m+ 1)−m(m− 1)/2, and,

MDL = −L(Â, Σ̂) +
logN

N

(
n(m + 1)− m(m − 1)

2

)
.

For the existence of the estimates, a necessary condition for A to be estimable has been derived[9]. It
comes from the fact that n(n+1)/2≥n(m+1)−m(m− 1)/2 has to be satisfied, since C only has n(n+1)/2
degrees of freedom. By taking m < n into account, the following bound is obtained

m ≤ 1
2

{
2n + 1−√

8n + 1
}

. (6)

2.2 Factor Analysis and ICA

After we preprocessed the data x by Q as z = Qx. What is left is to determine the rotation matrix. This is
also one big problem in factor analysis. In subsection 2.1, we assumed that f and ε are normally distributed.
We break a part of the assumption. We still assume that ε is normally distributed, but f is not normally
distributed and each component is independent. We can use some ICA algorithm now.

The ICA algorithm we use here, should not be affected by the second order statistics since even if data
are preprocessed by factor analysis, z still has second order correlations. Therefore, an algorithm based on
higher order correlations is preferable here. We use the JADE algorithm by J.-F. Cardoso, which is based on
the 4th order cumulant. The detail of the algorithm is shown in [6]. Suppose a separation matrix W ∈ Rm×m

is estimated by JADE. The separated signal y is obtained as,

y = Wz = WQx = WQ(As + ε). (7)

The goal of ICA is to estimate WQA to be PD : P, D ∈ Rm×m as in eq.(2). And finally, we obtain separation
matrix B as B = WQ.

Also, we can estimate the mixing system by using W . Let us denote A estimated by factor analysis as
AFA, and the new mixing system as AICA as,

AICA = AFAWT . (8)

This AICA does not have rotation ambiguity, and we can estimate the mixing system. Thus, by using factor
analysis and an ICA algorithm, we can estimate the mixing system and the separation matrix.

3 MEG data analysis

3.1 Experiment with phantom data

We applied our algorithm to phantom data. In the phantom, there is a small platinum electrode and we
designed the current signal supplied to the electrode to be a 20Hz triangle wave, and averaged data over 100
trials. Fig.1(left) shows 3 signals out of 126 active sensors.
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Figure 1: Sensor inputs of phantom data(left), and after removing artifacts(right)

The number of the sources and the separation matrix are estimated by our algorithm. We preprocessed
the data with factor analysis and estimated the number of the sources by MDL. In this experiment, the
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Figure 2: Estimated independent component (left) and power of each component in the sensors(right)

number of the sources is estimated as 3. After rotation matrix is estimated by JADE algorithm, we apply the
pseudo-inverse matrix to the preprocessed data. The estimated independent signals are shown in Fig.2(left).

In this experiment, we know the input to the electrode is y1 in Fig.2(left). After selecting the source,
we want to reconstruct the signal. This is possible because the mixing matrix AICA is estimated as in
eq.(8). Each column of ÂICA corresponds to the coefficients of each independent component to sensors.
Let ÂICA = (âICA,1, . . . , âICA,m), where âICA,i is an n dimensional column vector. In this case, we can
reconstruct the data with, x′(t) = âICA,1y1(t). The recovered signals are shown in Fig.1(right). We can see
that the noise are reduced by comparing these two figures.

Fig.2(right) shows estimated power of source, artifacts, and noise on the sensors. The powers of source
and artifacts are estimated as the components of matrix ÂICA. Also the power of noise is estimated as the
diagonal component of the matrix Σ̂. From the graph, we can see that some sensors contain much more
noise and artifacts than the signal even after averaging over 100 trials.

3.2 Experiment with brain data

We applied our algorithm to the data of brain activity evoked by visual stimulation. The expected results of
ICA for MEG data analysis would be summarized as 1) Separating artifacts and brain signals. and 2) The
brain activities from different parts to be separated.

We believe that 1) is possible because the artifacts and the brain signals would be independent. But 2)
is difficult since it is more natural to think that even though the signals are coming from different parts of
the brain, they might be dependent.

First, we show the averaged data in Fig.3(left). A kind of visual stimulations are given to a subject. The
data are recorded by 114 sensors in this case (because only 114 of 129 sensors were working correctly). The
duration of recording is from 100msec before and to 412msec after the stimulation with 1kHz sampling rate.
The same procedure is applied to the subject for 100 times and we averaged the data. Three of the sensors
are shown in Fig.3(left). It is observed that there are still a lot of noise after averaging.
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Figure 3: Averaged data(left), and after removing artifacts(right)

We applied our method to the data and 17 independent components were selected by MDL in this
experiment. The independent components are shown in Fig.4. We also applied the method to the data from
different subjects (4 more), and in all the cases, the selected numbers of sources are roughly the same (from
16 to 19).

Based on the results in Fig.4, we have to separate the sources from the artifacts in which we are not
interested. For example, we can see y9(t) is mainly a high frequency (180Hz) signal which seems to be an
artifact. And y10(t) has a very large value at the very end of the record which seems to be some software
noise. But for the other 15 components, it is difficult to know if they are brain sources or not. Fortunately,
this experiment is a study of evoked response by visual stimuli, and we are not interested in the components
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Figure 4: Estimated independent components of visual evoked

which have some power before the stimuli. Therefore, we defined a threshold such that, if a signal has some
power before the stimulation, we regarded the signal as an artifact. In this experiment, y1(t), y2(t), y3(t),
y5(t), y6(t), y8(t), and y10(t), are selected as the brain signals.

After picking those sources up, we put them back to the orignal sensor signal space, and the result is
shown in Fig.3 (right). It looks like that the noise are removed and the data are clear.

We can see the cleaned outputs of the sensors from this result, but we further want to know the relationship
between the independent components and brain activities more directly. For the visualization of the result,
we implemented SF (spatial filter) technique[10]. SFs are a set of virtual sensors which are located on a
hemisphere defined on the brain. We can estimate the current flows on those virtual sensors which describe
the MEG observations well. This is an inverse problem and it can be solved in a form of a linear mapping
from the MEG sensors to SFs. In our experiment, the part of the brain we are interested in is the visual
cortex, and we put 21×21 SFs on a hemisphere, whose center is located at V1.
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Figure 5: Result of the approach applied to MEG data: Outputs of SFs are superimposed on a image of a
brain obtained by MRI

Fig.5 shows the output of the SFs before and after the method. We recorded the response of a subject
from 100msec before the visual stimulation to 412msec after the stimulation. The original data includes a
lot of noise even before the stimulation and we can remove them very well. The response of the brain is
known to be high around 100msec after the stimulation[10], and the characteristics is preserved very well.



4 Discussion

In this article, we proposed a new approach of ICA to noisy data. We applied the algorithm to MEG data,
and have shown the approach is effective. We can estimate the number of the sources, and the power of the
noise on each sensor which is independent to each other. This is one of the serious problem which has not
been well treated in conventional ICA approaches, and this article gives one effective approach. H. Attias[2]
has proposed one method to solve this problem. It gives the source distribution by the form of normal
mixture and everything is solved by using the parameters in the sense of MLE. But we have proposed a
different method based on the semi parametric approach which is one attractive point of ICA.

Although, there still remain a lot of open problems. In the factor analysis, there are a lot of methods
to estimate the parameters and the number of the sources, and each of them has each characteristics. We
applied MLE for estimation and MDL for estimating the number of the sources. But there are different
combinations, and there might be a method which suits better for some particular problems. Also the same
thing may be true for the ICA algorithms. We used JADE but there might be a better algorithm. Another
problem is the noise distribution. We assumed Gaussian distribution, but if we can have a better model, the
algorithm will be improved further.

Our approach also gives a new concept for factor analysis. How to determine the rotation is one of the
big problems in factor analysis. And it is not common to use higher order statistics. Therefore our approach
gives a new pathway to factor analysis, too.
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