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ABSTRACT

In this article, we describe the information geometrical
understanding of the belief propagation decoder, espe-
cially of the turbo decoding. The turbo decoding was
proposed by Berrou et al. early in 90’s, and many stud-
ies have been appeared on this practical and powerful
error correcting code. Even though many experimen-
tal results support the potential of the turbo decoding,
there is not sufficient theoretical analysis for the decod-
ing method. We investigate the problem from informa-
tion geometrical viewpoint. From the new viewpoint,
we establish a new framework for analyzing the turbo
code, and reveal basic properties.
KEYWORDS: turbo decoding, belief propa-
gation, information geometry

1. Introduction

Since the turbo code[4] was proposed, its high per-
formance of error correction has been investigated
mainly through experiments. The experimental re-
sults strongly support the potential of this itera-
tive decoding method, however theoretical analysis
has not revealed the mystery of the turbo decod-
ing. Further theoretical understanding was sought
in similar iterative methods. McEliece et al.[7]
have shown the turbo decoding is equivalent to the
Pearl’s BP algorithm[8] applied to a special BN.
Although there is a beautiful theoretical result for
the BP, the proof is only available for BNs with-
out loops, while the BN for the turbo decoding is
loopy. BP for a loopy BN gives only an approxima-
tion, and the approximation ability is not clearly
understood.

This article gives an information geometrical un-
derstanding of the turbo decoding. We have de-
veloped a mathematical framework for analyzing
the turbo code based on the information geome-
try. Based on the framework, we revealed some
basic properties such as local stability condition,
convergence properties, cost function of the algo-
rithm, and approximation accuracy. In this article,
we show the analysis of the turbo decoding since
the structure of its BN is rather simple, but the
result is general.

2. General problem

Let us define a distribution of x = (x1, · · · , xN )T

as follows

q(x) = C exp(c0(x) + c1(x) + · · ·+ cK(x)). (1)

Here, c0(x) is the linear function of {xi}, and cr(x)
r = 1, · · · ,K consists of the higher order corre-
lations of {xi}. The ultimate goal of the turbo
decoding is the MPM (maximization of the pos-
terior marginals) decoding, and it can be gen-
eralized as the marginalization of a probability
distribution q(x). The practical form of cr(x),
r = 0, · · · ,K is given in the following subsec-
tion. Let Π denote the operator of marginalization
as, Π◦q(x)def=

∏N
i=1 q(xi). The marginalization is

equivalent to take the expectation of x as

η
def=

∑
xxp(x), η = (η1, · · · , ηN )T , (2)

where the sign of each ηi is the result of the
MPM decoding. In the case of the turbo decoding,
the marginalization of eq.(1) is not tractable, but
the marginalization of the following distribution is
tractable.

pr(x; ξ) = exp(c0(x) + cr(x) + ξ · x − ϕr(ξ))

r = 1, · · · ,K, ξ ∈ RN .

(3)

Each pr(x; ξ) includes a part of {cr(x)} in eq.(1),
and additional parameter ξ is used to adjust the
linear part of x. The turbo decoding is exchang-
ing information through ξ for each pr, and finally
approximates Π◦p(x).
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Figure 1: Belief network for turbo decoding



The BP algorithm was proposed by Pearl. The
“belief” of xi is equivalent to ηi in eq.(2). When a
BN is loop free, the BP gives an exact marginaliza-
tion, but if the BN is loopy, BP gives only an ap-
proximation. BN for the turbo decoding is shown
in Fig.1. This BN has loops, and if the BP is ap-
plied to the node as, x, y1, x, y2, x, y1, · · · , it is
equivalent to the turbo decoding.

3. Turbo code
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Figure 2: Turbo encoding
Let x be the information bits. The turbo en-
coder generates two sets of parity bits, y1 =
(y11, · · · , y1L)T , and y2 = (y21, · · · , y2L)T ,
y1j, y2j ∈ {−1,+1} from x (Fig.2). Each par-
ity bit yrj is expressed as the form

∏
i xi, where

the product is taken over a subset of {1, · · · , N}.
The codeword (x,y1,y2) is transmitted over BSC
(binary symmetric channel) with flipping proba-
bility σ < 1/2. The receiver observes (x̃, ỹ1, ỹ2),
x̃i, ỹ1j, ỹ2j ∈ {−1,+1}.

The goal of the turbo decoding is the MPM decod-
ing based on p(x|x̃, ỹ1, ỹ2). From the assumption
of BSC,

p(x̃, ỹ1, ỹ2|x)
= exp(βx̃·x+βỹ1·y1+βỹ2·y2−(N + 2K)ψ(β))

β > 0, σ =
1
2
(1− tanhβ), ψ(β) def= ln(eβ + e−β).

By assuming the uniform prior on x, the posterior
distribution of x becomes,

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

= C exp (βx̃·x + βỹ1·y1 + βỹ2·y2)
= C exp (c0(x) + c1(x) + c2(x)) .

(4)

Here C is the normalizing factor, and c0(x) =
βx̃·x, cr(x) = βỹr·yr r = 1, 2. Equation(4) is
equivalent to q(x) in eq.(1), where K = 2. We
describe p(x|x̃, ỹ1, ỹ2) with q(x) for the following
of the article. When N is large, marginalization
of q(x) is intractable since it needs summation
over 2N terms. The turbo code utilizes two de-
coders which solve the marginalization of pr(x; ξ),
r = 1, 2 in eq.(3). The distribution is derived from
p(x̃, ỹr|x) and the prior of x which is defined as,

ω(x; ξ) = exp(ξ · x − ψ(ξ)).

The marginalization of pr(x; ξ) is tractable for ξ ∈
RN .
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Figure 3: Turbo decoding
We give the original definition of the turbo
decoding(Fig.3). Let us define the following vari-
ables based on the conditional probabilities p(x̃|x),
and p(ỹr|x), r = 1, 2, of the received signals

lxi
def= ln

∑
{x:xi=+1} p(x̃|x)∑
{x:xi=−1} p(x̃|x)

,

lyrj
def= ln

∑
{x:yrj=+1} p(ỹr|x)∑
{x:yrj=−1} p(ỹr|x)

,

F (lx, lyr)
def=

{
ln

∑
{x:xi=+1} p(x̃|x)p(ỹr|x)∑
{x:xi=−1} p(x̃|x)p(ỹr|x)

}
.

The turbo decoding makes use of the two slack
variables, ξ1, ξ2∈RN . These variables are used
for exchanging information between the decoders.
The turbo decoding consists of the following iter-
ative procedures.

1. Let ξ0
1 = 0 and put t = 1.

2. Update ξt
2 as,

ξt
2 = F ((lx + ξt−1

1 ), ly1)− (lx+ ξt−1
1 ).

3. Update ξt
1 as,

ξt
1 = F ((lx + ξt

2), ly2)− (lx+ ξt
2).

4. Iterate 2 and 3 until F ((lx + ξt−1
1 ), ly1) =

F ((lx + ξt
2), ly2).

Ideally, step 2 and 3 should be iterated until con-
vergence, but practically, the number of iteration
is fixed to a few to ten times.

4. Information geometrical view
4.1. Preliminaries

In this subsection, we give the preliminaries of in-
formation geometry. We consider the family of all
probability distributions over x, which we call S.
The e–flat and m–flat submanifolds are defined as
follows[1, 3].

e–flat manifold: A submanifold M∈S is e–flat,
when the following r(x; t) belongs to M for all
q(x), p(x) ∈M ,

lnr(x; t) = (1− t)lnq(x) + t lnp(x) + c, t∈R,



where c is the normalization factor.

m–flat manifold: A submanifoldM∈S is m–flat,
when the following r(x; t) belongs to M for all
q(x), p(x) ∈M ,

r(x; t) = (1− t)q(x) + tp(x), t∈[0, 1].

Now, we consider a submanifold MD, where every
joint distribution can be decomposed as,

p(x) =
N∏

i=1

pi(xi), p(x)∈MD. (5)

Each bit of x is independent for p(x) ∈MD. Since
each bit is binary, p(x) belongs to an exponential
family,

p(x;θ) =
N∏

i=1

pi(xi; θi) = exp (θ · x − ψ(θ)) . (6)

The natural parameter θ∈RN gives a coordinate
system ofMD. The submanifoldMD is written as,

MD = {p(x;θ) = exp (θ · x − ψ(θ))} .

MD is an e–flat submanifold[3].

We now define three e–flat submanifolds which de-
pend on the observed data x̃, ỹ1, and ỹ2. The first
one is the submanifold of p0(x;θ) defined by

M0 = {p0(x;θ) = exp (c0(x) + θ · x − ϕ0(θ))} .
(7)

M0 is identical to MD of the independent or de-
composable distributions, since c0(x) = βx̃ · x.
Here, the coordinate θ is shifted by βx̃ compared
to the coordinate of MD. We use the new coordi-
nates θ ofM0, in which integration of informations
from the component encoders takes place.

Next, we consider the submanifolds Mr, r = 1, 2
which includes a part of the information of q(x),

Mr

= {pr(x; ξ) = exp (c0(x)+cr(x)+ξ · x−ϕr(ξ))} .

Here ξ is the coordinate system of Mr. It is easy
to check that Mr is also an e–flat submanifold.
But Mr 
= M0, because cr(x) includes higher or-
der cross terms of x, and M1 
=M2 holds, since
c1(x)
=c2(x) in general.

We also define the expectation parameters as fol-
lows with ϕ0 in eq.(7) and ϕr in eq.(3)

η0(θ)
def=

∑
x

xp0(x;θ) = ∂θϕ0(θ),

ηr(ξ)
def=

∑
x

xpr(x; ξ) = ∂ξϕr(ξ) r = 1, 2.

Next, we show that the marginalization corre-
sponds to the m–projection[3] to M0.

The m–projection of q(x) to M0 is defined by,

ΠM0◦q(x) = argmin
p0(x;θ)∈M0

D[q(x); p0(x;θ)].

Here, D[·; ·] is the Kullback-Leibler divergence,

D [q(x); p(x)] =
∑

x

q(x) ln
q(x)
p(x)

.

By calculating the derivative of D[q(x); p0(x;θ)]
with respect to θ, we have

∂θD[q(x); p0(x;θ)] = η0 −
∑

x

xq(x).

This derivative vanishes at the projected point.
Hence the η–coordinates of the projected point η∗

0

is given by η∗
0 =

∑
x xq(x),

η∗0,i =
∑
x

xiq(x) =
∑
xi

xiq(xi).

The m–projection of q(x) does not change the ex-
pectation of x, and the m–projection of q(x) to
M0 results in marginalization of q(x).

4.2. Information geometrical view of turbo
decoding

Let πM0◦q(x) denote the parameter in M0 of the
m–projected distribution,

πM0◦q(x) = argmin
θ∈RN

D[q(x); p0(x;θ)].

The information geometrical definition of the
turbo decoding can be written as follows.

Turbo decoding

1. Let ξt
1 = 0 for t = 0, and t = 1.

2. Project p2(x; ξt
1) onto M0 as πM0◦p2(x; ξt

1)
and calculate ξt+1

2 as,

ξt+1
2 = πM0◦p2(x; ξt

1)− ξt
1. (8)

3. Project p1(x; ξt+1
2 ) onto M0 as

πM0◦p1(x; ξt+1
2 ) and calculate ξt+1

1 as,

ξt+1
1 = πM0◦p1(x; ξt+1

2 )− ξt+1
2 . (9)

4. If πM0◦p1(x; ξt+1
2 ) and πM0◦p2(x; ξt+1

1 ) does
not converge, go to step 2.

Finally, the turbo decoding approximates the esti-
mated parameter θ∗, the projection of q(x) onto
M0, as

θ∗ = ξ∗
1 + ξ∗

2 , (10)



where, the estimated distribution is written as,

p0(x;θ∗) = exp(c0(x) + θ∗ · x − ϕ0(θ∗))
= exp (c0(x) + (ξ∗

1+ξ∗
2)·x − ϕ0(ξ∗

1+ξ∗
2)) .

(11)

The intuitive understanding of the turbo decoding
is as follows. In step 2, (ξ2 ·x) in eq.(11) is replaced
with c2(x). The distribution becomes p2(x; ξ1),
and ξ2 is estimated by projecting it onto MD. In
step 3, (ξ1 · x) in eq.(11) is replaced with c1(x),
and ξ1 is estimated by m−projection of p1(x; ξ2).

4.3. Equilibrium

Let us denote the convergent state of the turbo de-
coding as p1(x; ξ∗

1), p2(x; ξ
∗
2), and p0(x;θ

∗). They
satisfy the following two conditions:

1. Π◦p1(x; ξ∗
2) = Π◦p2(x; ξ∗

1) = p0(x;θ
∗) (12)

2. θ∗ = ξ∗
1 + ξ∗

2 (13)

For the following discussion, we define two sub-
manifolds. One is the submanifold M(θ) defined
as

M(θ) =
{
p(x)

∣∣∣∑
x

p(x)x =
∑

x

p0(x;θ)x
}
.

From its definition, the expectation of x is the
same for any p(x)∈M(θ). This is an m–flat
submanifold, and for any p(x)∈M(θ), its m–
projection to M0 coincides to p0(x;θ). Since the
m–projection toM0 is the marginalization of p(x),
we call M(θ) the equimarginal submanifold.

Let us define an e–flat submanifold E(θ) connect-
ing p0(x;θ∗), p1(x; ξ∗

2), and p2(x; ξ∗
1).

E(θ∗) =
{
p(x)=Cp0(x;θ∗)t0p1(x;ξ∗

2)
t1p2(x;ξ∗

1)
t2

∣∣∣∑2
r=0 tr = 1

}
.

At the equilibrium, eq.(13) is satisfied, and q(x) is
included in E(θ∗). It is proved by taking t0 = −1
and t1 = t2 = 1

C
p1(x; ξ∗

2)p2(x; ξ∗
1)

p0(x;θ∗)
=C exp (c0(x) + c1(x) + c2(x)) = q(x).

That is, eq.(13) implies that the conditional dis-
tribution is included in the e–flat submanifold M .
This is summarized in the following Theorem.

Theorem 1. When the turbo decoding converges,
the convergent probability distributions p0(x;θ∗),
p1(x; ξ∗

2), and p2(x; ξ∗
1) belong to M(θ∗) while

p0(x;θ∗), p1(x; ξ∗
2), p2(x; ξ

∗
1), and q(x) belong to

E(θ∗).

If M(θ∗) includes q(x), p(x;θ∗) is the true
marginalization of q(x). Instead of M(θ∗), its e–
flat version E(θ∗) includes q(x). Generally, there

S
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Figure 4: M(θ∗) and E(θ∗) of turbo decoding

is a discrepancy betweenM(θ∗) andE(θ∗). There-
fore q(x) is not necessarily included inM(θ∗). The
similar structure exists in some problems in statis-
tical physics[2, 6, 10]

5. Information geometrical analysis
5.1. Local stability analysis

We show the condition for the equilibrium point
to be stable. Equation (12) is rewritten as follows
with η,

η0(θ∗) = η1(ξ∗
2) = η2(ξ∗

1).

For the following discussion, we define the Fisher
information matrices of the models. G0(θ) is the
Fisher information matrix of p0(x;θ), and Gr(ξ)
is that of pr(x; ξ), r = 1, 2. Since the distribu-
tions are exponential family, we have the following
relations,

G0(θ) = ∂θθ′ϕ0(θ) = ∂θη0(θ),
Gr(ξ) = ∂ξξ′ϕr(ξ) = ∂ξηr(ξ), r = 1, 2.

Note that G0(θ) is a diagonal matrix. In order
to discuss the local stability property, we give a
sufficiently small perturbation δ to ξ∗

1 and apply
one step of the turbo decoding algorithm. Let
ξ1 = ξ∗

1 + δ. Let θ = πM0◦p2(x; ξ∗
1 + δ), and

the following relation is derived

η0(θ) = η2(ξ1)
η0(θ∗)+G0(θ∗)(θ−θ∗) = η1(ξ∗

2)+G2(ξ∗
1)δ

θ = θ∗ +G0(θ∗)−1G2(ξ∗
1)δ.

Therefore, ξ2 in step 2 will be,

ξ2 = ξ∗
2 +

(
G0(θ∗)−1G2(ξ∗

1)− IN
)
δ.

Here, IN is an identity matrix of size N . Following
the same calculation for step 3,

ξ′
1 = ξ∗

1 + T δ

T =(G0(θ∗)−1G1(ξ∗
2)−IN )(G0(θ∗)−1G2(ξ∗

1)−IN ).



Original perturbation δ is updated to T δ, and the
following theorem is derived. This result coincides
with the result of Richardson[9].

Theorem 2. Let λi, i = 1, . . . , N be the eigen
values of the matrix T . If |λi| < 1 holds for all i,
the equilibrium point is stable.

5.2. Cost function

In this subsection, we discuss a cost function which
plays an important role for the turbo code.

Let θ = ξ1 + ξ2. We define the following function,

D[p0(x;θ); q(x)]
−D[p0(x;θ); p1(x; ξ2)]−D[p0(x;θ); p2(x; ξ1)].

(14)

From simple calculation, we can show that eq.(14)
is equivalent to F(ξ1, ξ2) by neglecting a constant
value.

F(ξ1, ξ2) = ϕ0(θ)− (ϕ1(ξ2) + ϕ2(ξ1)). (15)

This function coincides with the result of [5].

Theorem 3. The equilibrium state ξ∗
1 , ξ

∗
2 is the

critical point of F .

Proof. The derivative of F with respect to ξr r =
1, 2 is,

∂ξ1F = ∂ϕ0(θ)− ∂ϕ2(ξ1) = η0(θ)− η2(ξ1)
∂ξ2F = ∂ϕ0(θ)− ∂ϕ1(ξ2) = η0(θ)− η1(ξ2).

For the equilibrium, η0(θ∗) = η1(ξ∗
2) = η2(ξ∗

1)
holds, and the proof is completed.

Let us rewrite the result in the matrix form.(
∂ξ1F
∂ξ2F

)
=

(
η0(θ)− η2(ξ1)
η0(θ)− η1(ξ2)

)

And we can understand the turbo code as follows.

• Step 2 makes ∂ξ1F = 0, by adjusting ξ2.

• Step 3 makes ∂ξ2F = 0, by adjusting ξ1.

When turbo code converges, following equation
holds.

∂ξ1F = ∂ξ2F = 0, (16)

Equation (16) does not necessarily mean this is the
minimum nor maximum of F . Let us consider the
convergence property. Suppose (ξt+1

2 −ξt
2) is small.

Then, in step 2,

η0(θ + δξ2)− η2(ξ1) = 0

∂2ϕ0(θ)δξ2 ∼ −(η0(θ)− η2(ξ1))

δξ2 ∼ −G0(θ)−1∂ξ1F

And we have,

(
δξ1

δξ2

)
=

(
O G0(θ)−1

G0(θ)−1 O

) (
∂ξ1F
∂ξ2F

)
.

This shows how the algorithm works, but it does
not give the characteristics of the equilibrium
point. The Hessian of F is,

H=
(
∂ξ1ξ1F ∂ξ1ξ2F
∂ξ2ξ1F ∂ξ2ξ2F

)
=

(
G0 −G1 G0

G0 G0 −G2

)
,

and let us transform the variables as,

θ = ξ1 + ξ2

ν = ξ1 − ξ2.

Then,

(
∂θθF ∂θνF
∂νθF ∂ννF

)

=
1
4

(
4G0(θ)− (G1 +G2) (G1 −G2)

(G1 −G2) −(G1 +G2)

)
.

Most probably, ∂θθF is positive definite but ∂ννF
is always negative, and F is generally saddle at the
converged point.

5.3. Perturbation analysis

We have shown the information geometrical under-
standing of the decoding methods, and the condi-
tion of the equilibrium point to be stable. Now, we
show some analysis of the approximation ability.
For the following discussion, we define a distribu-
tion p(x;θ,v) as

p(x;θ,v) = exp(c0(x)+θ · x+v · c(x)− ϕ(θ,v))

ϕ(θ,v) = log
∑

x

exp (c0(x) + θ · x + v · c(x)) ,

c(x) def=(c1(x), c2(x))T .

Here θ = (θ1, · · · , θN )T∈RN and v =
(v1, v2)T∈R2. This distribution includes p0(x;θ)
(v = ), q(x) (θ = , v = ), and pr(x; ξ) (θ = ξ,
v = er), where  = (1, 1)T , e1 = (1, 0)T , and
e2 = (0, 1)T . The expectation parameter η(θ,v)
is defined as,

η(θ,v) = ∂θϕ(θ,v) =
∑

x

xp(x;θ,v).

Let us consider M(θ∗), where every distribution
p(x;θ,v)∈M(θ∗) has the same expectation pa-
rameter, that is, η(θ,v) = η∗ holds. Here, we
define, η∗ = η(θ∗,). From the Taylor expansion,



we have,

ηi(θ,v) = η∗i +
∑

j

∂jη
∗
i∆θ

j

+
∑

r

∂rη
∗
i v

r +
1
2

∑
r,s

∂r∂sη
∗
i v

rvs

+
∑
j,r

∂r∂jη
∗
i v

r∆θj +
1
2

∑
k,l

∂k∂lη
∗
i∆θ

k∆θl

+O(‖v‖3) +O(‖∆θ‖3).
(17)

The indexes {i, j, k, l} are for θ, {r, s} are for v,
and ∆θ

def=θ − θ∗. After adding some definitions,
that is, ηi(θ,v) = η∗i , and ∂jη

∗
i = gij(θ∗), where

{gij} is the Fisher information matrix of p(x;θ∗,)
which is a diagonal matrix, we substitute ∆θi with
function of vr up to its 2nd order, and neglect the
higher orders of vr. And we have,

∆θi�−gii
∑

r

Ai
rv

r−g
ii

2

×
∑
r,s

(
∂r−

∑
k

gkkAk
r∂k

)(
∂s−

∑
j

gjjAj
s∂j

)
η∗i v

rvs,

(18)

where, gii = 1/gii, and Ai
r = ∂rη

∗
i . Let us

consider, p(x;θ∗,), p(x; ξ1, δe2), p(x; ξ2, δe1),
and p(x;, δ). Let p(x;θ∗,), p(x; ξ1, δe2), and
p(x; ξ2, δe1), be included in M(θ∗), and the fol-
lowing relation be satisfied

θ∗ = ξ1 + ξ2.

By putting δ = 1, ξ1 and ξ2 converge to the equi-
librium point of the turbo decoding. From the re-
sult of eq.(17) and eq.(18), we have the following
theorem.

Theorem 4. The true expectation of x, which is
equivalent to η(,), is approximated as,

η(,) � η∗

+
1
2

∑
r �=s

(
∂r−

∑
k

gkkAk
r∂k

)(
∂s−

∑
j

gjjAj
s∂j

)
η∗.

(19)

Where η∗ is the solution of the turbo decoding.

This theorem gives the decoding error of the
turbo code. Equation (19) is related to the m–
embedded–curvature of E(θ∗) (Fig.4).

6. Discussion

We have studied the mechanism of the turbo de-
coding from information geometrical viewpoint. It
gives the intuitive understanding of the algorithm,

and the framework for analysis. The structure of
the equilibrium of the turbo decoding is summa-
rized in Theorem 1. A set of m–flat and e–flat
submanifolds defined on the same set of probability
distributions, plays an important role, and the dis-
crepancy between the two submanifolds gives the
decoding error, which is shown in Theorem 4. The
cost function in eq.(15) is also a new result. It re-
vealed the dynamics of the algorithm, and showed
that the equilibrium is generally a suddle point.

We have shown these results for the case of the
turbo decoding, but the results are general. There-
fore, they are valid for other iterative methods in-
cluding the Gallager code and BP for loopy BN.

Finally, we note that this article gives the first step
to the information geometrical understanding of
the belief propagation decoders. We believe fur-
ther study in this direction will lead us to better
understanding of these methods.
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