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ABSTRACT

One of the reasons ICA (Independent Component
Analysis) became so popular is that ICA is a promising
tools for a lot of applications. One of the attractive ap-
plications is the biological data analysis. There are a lot
of works on neurobiological data analysis such as EEG
(Electroencephalography), fMRI (functional Magnetic
Resonance Imaging), and MEG (Magnetoencephalog-
raphy), and they show interesting results. However,
there still remain some problems to be solved. Many
neurobiological data includes a large amount of noises,
and also the number of independent components is un-
known. These problems make it difficult to obtain good
results by ICA algorithms. We discuss an approach to
separate the data which contain additive noise without
knowing the number of independent components. Our
approach uses factor analysis as the preprocessing of
the ICA algorithm, instead of PCA (Principal Com-
ponent Analysis), which is the major preprocessing in
many ICA algorithms. In the new preprocessing, the
number of the sources and the amount of sensor noise
are estimated. After the preprocessing, an ICA algo-
rithm is used to estimate the separation matrix and
mixing system. Through the experiments with MEG
data and fMRI data, we show this approach is effective.

1. INTRODUCTION

The original ICA problem assumes the linear relation
between the observed signal x and the source signal s
defined as,

x = As (1)

x ∈ Rn, s ∈ Rm, A ∈ Rn×m.

The assumptions in ICA are that each component of
s is mean 0, mutually independent and drawn from
different probability distribution which is not Gaussian
expect for at most one. We also restrictm to be smaller
or equal to n for the existence of linear solution.

The goal of ICA is to estimate a separation matrix
W which satisfies the following equation,

WA = PD (2)

W ∈ Rm×n, P ∈ Rm×m, D ∈ Rm×m,

where P is a permutation matrix which has a sin-
gle entry of 1 in each row and column, and D is
representing amplitude ambiguity which is given as
a diagonal matrix. With the separation matrix W ,
we can reconstruct the independent source as y =
Wx. A lot of algorithms are proposed to solve this
problem[1, 2, 3, 4, 5]. Most of the algorithms are based
on a semi parametric approach[6], and giving a lot of
interesting results.

Although each ICA algorithm is simple and its the-
ory is elegant, we sometimes face problems when we
apply ICA to real data, especially neurobiological data.
The reason is that the relation in (1) does not describe
the characteristics of the measurements well. In many
cases, we cannot avoid noises, and the number of the
sources m is sometimes difficult to be known in ad-
vance. For example, in the case of MEG[7, 8], n, which
is the number of the sensors, is large (50∼200), but
we think the source number m is not so large within a
short period. Also we know there are a large amount
of noises which are not negligible.

In many neurobiological data, it is natural to cat-
egorize noises into two categories. One is the noise
which affects every sensor. This noise is called arti-
facts. Electric power supply, earth magnetism, move-
ments of the head, and the biological signals in which
we are not interested (heartbeat, α-wave, and so on),
are categorized into artifacts. The other is the noise
on each sensor. Since the signals of the brain is usu-
ally very weak, we cannot avoid sensor noise through
amplifying, or averaging process. This sensor noise is
independent to each other.

Therefore, it is better to extend the problem in (1)



to a noisy ICA problem which is defined as,

x = As+ ε (3)

x, ε ∈ Rn, s ∈ Rm, A ∈ Rn×m

s: sources and artifacts,
ε∼N(, Σ): noise on each sensor,

Σ ∈ Rn×n: diagonal matrix.

In this new problem, we make an assumption that the
sensor noise is independent to each other and drawn
from different normal distributions. This extension
may not be sufficient in some applications, but this
is the first step and we believe there are many cases in
which it is effective.

In this article, we propose an approach to solve this
problem. The idea is to use factor analysis for the pre-
processing of data. We show the detail of the approach
and some experimental results of neurobiological data
analysis.

2. FACTOR ANALYSIS FOR
PREPROCESSING OF ICA

2.1. Factor analysis

Many ICA algorithms separate the estimation pro-
cess into two parts[1, 3, 4]. First part is to esti-
mate the matrix which makes the data uncorrelated.
This preprocessing is called sphering or whitening. Af-
ter sphering, the remaining part of the estimation
is a rotation matrix and many algorithms have been
proposed[2, 3, 4, 5]. But for the sphering, most al-
gorithms are using PCA[1]. Let {xt} (t = 1, . . . , N)
be the data set, and C be the covariance matrix of
{xt}, (C =

∑
t xtx

T
t /N). By defining P = C1/2, where

C = PPT , observation is transformed as, x′ = P−1x,
and x′ is uncorrelated because

∑
x′x′T /N = In (In is

n dimensional identity matrix). This works for noise-
less case, but in the noisy case, P does not make the
source signals uncorrelated.

Factor analysis is one of the well-known techniques
for analyzing noisy multi-variant data. In factor analy-
sis, real valued n-dimensional observation x is modeled
as,

x = Af + ε (4)

x, ε ∈ Rn, f ∈ Rm, A ∈ Rn×m

f∼N(, Im), ε∼N(, Σ),

Σ ∈ Rn×n: diagonal matrix

The goal of factor analysis is to estimate m, A (factor
loading matrix), and Σ (unique variance matrix) using
the second order statistics C. The difference of (3) and

(4) is the difference of s and f . The variable f in (4)
is assumed to be normally distributed, but s in (3) is
not.

Let Q ∈ Rm×n be a pseudo-inverse matrix of A in
(4), where Q = (AtΣ−1A)−1AT Σ−1. It can be easily
checked that AQA = A holds, and we transform the
data as, z = Qx. Then z becomes the sphered data
because,

1
N

∑
zzT = Im +QΣQT = Im + (AtΣ−1A)−1.

This result shows that we can make the part of obser-
vation x due to the sources uncorrelated, and this is
the aim of sphering. Therefore, we can have sphering
of noisy observation by factor analysis.

For the estimation ofm, A, and Σ, we can use some
techniques of factor analysis. There are various estima-
tion methods for A and Σ when m is given. We are
going to use MLE (Maximum Likelihood Estimator).
MLE is defined as,

(Â, Σ̂)MLE = argmax
A,Σ

(
−1
2
{
tr

(
C(Σ +AAT )−1

)

+ log(det(Σ +AAT ))
})

. (5)

For solving the equation, we can use the gradient de-
cent algorithm or Gauss-Newton method. Also the EM
(Expectation Maximization) algorithm can be applied.

In order to select the number of factors, m, there
are also many approaches and we are going to use the
model selection approach with an information criterion,
MDL (Minimum Description Length). MDL is defined
as follows,

MDL = −L(Â, Σ̂) +
logN

N
×# of free parameters.

The number of free parameters in factor analysis model
is defined as follows. There are n(m + 1) parameters
in A and Σ. But A has an ambiguity of rotation and
m(m−1)/2 is the freedom of this ambiguity. Subtract-
ing m(m − 1)/2 from n(m + 1), the number of free
parameters is n(m+ 1)−m(m− 1)/2, and MDL for a
factor analysis model is defined as,

MDL = −L(Â, Σ̂) +
logN

N

(
n(m+ 1)− m(m − 1)

2

)
.

For the existence of the estimates, a necessary con-
dition for A to be estimable has been derived[9]. It
comes from the fact that n(n+1)/2≥n(m+1)−m(m−
1)/2 has to be satisfied, since C only has n(n + 1)/2
degrees of freedom. By taking m < n into account, the
following bound is obtained

m ≤ 1
2

{
2n+ 1−√

8n+ 1
}

. (6)



2.2. Factor Analysis and ICA

After the sphering with factor analysis, x is linearly
transformed by Q as z = Qx. What is left for es-
timation is the rotation matrix. This is also one big
problem of factor analysis. In the last subsection, we
assumed that f and ε are normally distributed. We
break a part of the assumption. We still assume that
ε is normally distributed, but f is not normally dis-
tributed and each component is independent. We can
use some ICA algorithm now.

The ICA algorithm we use here, should not be af-
fected by the second order statistics since even if data
are preprocessed by factor analysis, z still has second
order correlations. Therefore, an algorithm based on
higher order statistics is preferable here. We use the
JADE algorithm by J.-F. Cardoso, which is based on
the 4th order cumulant[10]. Suppose a matrix for sep-
aration is estimated as B ∈ Rm×m by JADE. The sep-
arated signal y is obtained as,

y = Bz = BQx = BQ(As+ ε). (7)

The goal of ICA is to estimate BQA to be PD : P, D ∈
Rm×m as in eq.(2). And finally, we obtain separation
matrix W as W = BQ.

Also, we can estimate the mixing system by using
W . Let us denote A estimated by factor analysis as
AFA, and the new mixing system as AICA as,

AICA = AFABT . (8)

This AICA does not have rotation ambiguity, and we
can estimate the mixing system.

3. NEUROBIOLOGICAL DATA ANALYSIS

In this section, we show the results of the approach
applied to neurobiological data.

3.1. MEG data analysis: phantom data
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Figure 1: Sensor inputs of phantom data (dotted line),
and after removing artifacts (solid line)

First, we show the result of our algorithm applied
to MEG phantom data. In the phantom, there is a

small platinum electrode and a current signal of 20Hz
triangle wave is supplied to the electrode. The strength
of the current is designed to be roughly the same as the
brain response. The data are averaged over 100 trials.
The averaged 4 signals out of 126 active sensors are
shown in Fig.1.
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Figure 2: Estimated independent component

The number of the sources and the separation ma-
trix are estimated by our algorithm. In this experi-
ment, the number of the sources is estimated as 3. The
separated independent components are shown in Fig.2.
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Figure 3: The Power of each component in the sensors

In this experiment, the input to the electrode is
y1 in Fig.2. After selecting the source, we recon-
structed the signal using the mixing matrix AICA in
(8). Each column of ÂICA corresponds to the coeffi-
cients of each independent component to sensors. Let
ÂICA = (âICA,1, . . . , âICA,m), where âICA,i is an n di-
mensional column vector. In this case, we can recon-
struct the data with, x′(t) = âICA,1y1(t). The recov-
ered signals are shown in Fig.1. We can see that the
noises are reduced.

Figure3 shows estimated power of source, artifacts,
and noise on 3 out of 126 sensors. From the figure, we
can see that some sensors contain large amount of noise
and artifacts than the signal even after averaging over
100 trials.

One of the difficulties in neurobiology is that, we
don’t know the true signals in the brain. We could
show that we can suppress noises in MEG measure-
ment using ICA techniques, but we want to know it
more clearly. For the visualization of the result, we im-
plemented SF (spatial filter) technique[11]. SFs are a
set of virtual sensors which are located on a hemisphere
defined in the brain. We can estimate the current flows
on those virtual sensors which describe the MEG ob-
servations well. The estimation is obtained by solving
an inverse problem and it has a form of a linear map-
ping from the MEG sensors to SFs. In this experiment,



21×21 SFs are located on a hemisphere and one of the
SFs corresponds to the position of the electrode in the
phantom .

 40 msec  40 msec

Figure 4: Current flows estimated on spatial filters:
Original averaged data (left) and the result of ICA ap-
proach (right)

Left side of Fig.4 shows the original averaged data.
There are a lot of noises but after the processing with
ICA(right side), we clearly see the current flows gener-
ated by the electrode.

3.2. MEG data analysis: brain data

We applied our algorithm to the data of brain activity
evoked by visual stimulation. The expected results of
ICA for MEG data analysis would be summarized as 1)
Separating brain signals from artifacts, and 2) Separate
brain activities coming from different parts of the brain
into different components.

We believe that 1) is possible because the artifacts
and the brain signals would be independent. But 2)
is difficult since it is more natural to think that even
though the signals are coming from different parts of
the brain, they might be dependent.

First, we show the averaged data in Fig.5(left). A
kind of visual stimulations are given to a subject. The
data are recorded by 120 sensors in this case (because
only 120 of 129 sensors were working correctly). The
duration of recording is from 100msec before and to
412msec after the stimulation with 1kHz sampling rate.
The same procedure is applied to the subject for 100
times and we averaged the data. Three of the sensors
are shown in Fig.5(left). It is observed that there are
still a lot of noises after averaging.
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Figure 5: Averaged data(left), and after removing ar-
tifacts(right)

We applied our method to the data and 17 inde-
pendent components were selected by MDL in this ex-

periment. The independent components are shown in
Fig.6. We also applied the method to the data from
different subjects (4 more), and in all the cases, the se-
lected numbers of sources are roughly the same (from
16 to 19).
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Figure 6: Estimated independent components of visual
evoked response

Based on the results in Fig.6, we have to discrimi-
nate the brain signals and the artifacts. For example,
we can see y9(t) is mainly a high frequency (180Hz) sig-
nal which seems to be an artifact. And y11(t) has a very
large value at the very end of the record which seems
to be some software noise. But for the other 15 compo-
nents, it is difficult to know if they are brain sources or
not. Fortunately, this experiment is a study of evoked
response by visual stimulation, and we are not inter-
ested in the components which have some power before
the stimulation. Therefore, we defined a threshold such
that, if a signal has some power before the stimulation,
we regarded the signal as an artifact. In this experi-
ment, y1(t), y2(t), y3(t), y5(t), y6(t), y8(t), and y10(t),
are selected as the brain signals.

After picking those sources up, we put them back to
the orignal sensor signal space, and the result is shown
in Fig.5 (right). It looks like that the noises are re-
moved and the data are clear.

For the visualization, we also used the SF (spatial
filter) technique[11]. In this experiment, the part of the
brain we are interested in is the visual cortex, and we
put 21×21 SFs as the center of the SFs is located at
V1.

Fig.7 shows the output of the SFs before and after
factor analysis and ICA processing. We recorded the
response of a subject from 100msec before the visual
stimulation to 412msec after the stimulation. The orig-
inal data includes a lot of noises even before the stimu-
lation and we can remove them very well. The response
of the brain is known to be high around 100∼200msec
after the stimulation[11]. From the figure we can see
the characteristics of the response is preserved very
well.



Original data After ICA
Before Stimulation

Original data After ICA
Response of Stimulation

Figure 7: Result of the approach applied to MEG data:
outputs of SFs are superimposed on a image of a brain
obtained by MRI

3.3. fMRI Data Analysis

ICA is also applied to fMRI data[12], and interesting
results have been reported. We also applied the algo-
rithm to fMRI data.

The main difference between MEG data and fMRI
data is that, MEG data has more samples in time than
the dimension of the sensors, but in fMRI data, usually,
the number of samples in time is from 101 to 103, but
the dimension of the observation is huge (∼ 104, since
we take each pixel as a sensor input. In the following
fMRI recording, the number of pixels is 21085). There-
fore, we usually set index i, t, of xi(t) in a different
way, that is, index i of each component xi(t) in (1),
describes the index of the sample in time, while index
t runs through the index of pixels.

This fMRI experiment is designed to study the re-
lationship between grip force and arm movement (they
call it, grip force–load force coupling). Subject is forced
to keep an object with one’s thumb and index fin-
ger with/without hand movement and with/without
arm movement. Therefore, there are 4 conditions
and 6 scans are recorded for each condition after 2
scans for no task period. This set, which consists of
(2 + 6) × 4 = 32scans is repeated for 4 times and we
have 128 scans.

Same set of experiment is given to 6 subjects, 6
times for each subject. We averaged the data over this
36sets of experiments using SPM (Statistical Paramet-
ric Mapping)1.

Usual approach is to separate the signals into 128
independent components. But it seems that many of
128 components are rather distributed over wide part
of the brain. If we can select smaller number of the
independent components through our approach, it will
be better for the analysis of brain activity.
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Figure 8: Independent components of fMRI

We applied our algorithm to this data, and finally,
we selected 72 independent components. We show 2 of
them in Fig.8. There are some meaningless components
which are not shown here, and also some artifacts. This

1http://www.fil.ion.ucl.ac.uk/spm/ for further informa-
tion.



is a preliminary result and we are now studying further
analysis.

4. DISCUSSION

In this article, we proposed a new approach of ICA to
noisy data. We applied the algorithm to MEG data and
fMRI, and have shown the approach is effective. We
can estimate the number of the sources, and the power
of the noise on each sensor which is independent to each
other. This is one of the serious problem which has
not been well treated in conventional ICA approaches,
and this article gives one effective approach. We have
proposed a method which solves this problem based on
the semi parametric approach which is one attractive
point of ICA.

Our approach also gives a new concept for factor
analysis. How to determine the rotation is one of the
big problems in factor analysis. And it is not common
to use higher order statistics. Therefore our approach
gives a new pathway to factor analysis, too.

Although, there still remain a lot of open problems.
In the factor analysis, there are a lot of methods to es-
timate the parameters and the number of the sources,
and each of them has each characteristics. We applied
MLE for estimation and MDL for estimating the num-
ber of the sources. But there are different combina-
tions, and there might be a method which suits better
for some particular problems. Also the same thing may
be true for the ICA algorithms. We used JADE but
there might be a better algorithm. Another problem is
the noise distribution. We assumed Gaussian distribu-
tion, but if we can have a better model, the algorithm
will be improved further.

For neurobiological data, we also should add more
biological knowledge to the data analysis. We can sep-
arate the signals into independent components, but the
meaning of each component is not clear for us, and bi-
ological knowledge will help us to understand them.
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