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Sample extreme:  

Let 1 2 3, , ,X X X …be independent random variables, all with 
he same distribution function F . 

Consider ( )1 2 ,: max , , , for 1,2,    n n n nY X X X X n= = =… … 

Probability distribution function of nY : 

{ }nP Y x≤  { }1 2, , , nP X x X x X x= ≤ ≤ ≤…  

 
{ } { } { }

( )

indep.

1 2

same

distr.
.

 

 

n

n

P X x P X x P X x

F x

≤ ≤ ≤=

=

…
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Limit theory: what can we say about 

 { }nP Y x≤   as  ?n →∞    

 If ( ) 1F x <    , then { } ( ) 0n
nP Y x F x≤ = →   

 If  ( ) 1F x =  , then { } 1 1nP Y x≤ = → . 

Hence we get a degenerate limit (adopts only two values)  
which is not very interesting. Hence we put nY  on the 
right scale and location i.e. we consider 

n n

n

Y b
a
−  
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with nb  some sequence of real numbers (location 
correction) and na  some positive numbers (scale 
correction).  
Then  

{ } ( )nn n
n n n n n

n

Y bP x P Y a x b F a x b
a

⎧ ⎫−
≤ = ≤ + = +⎨ ⎬

⎩ ⎭
. 

We try to find sequences { }nb  and { }na  such that 
 ( )lim n

n nn
F a x b

→∞
+  exists =: ( )G x  (1) 

where G  is a non-degenerate distribution function i.e. G 
adopts at least 3 values (extreme value condition). 
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We are going to find all possibilities for G! 

 
In fact we look at 2 questions: 

1. What probability distribution functions G can 
occur as a limit in  (1)? 

2. For each of the G found in (1): what are the 
conditions on the original distribution function F  
such that (1) holds with this given G? (F  is in the 
“domain of attraction of G”, ( )F G∈D ) 
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Preliminary calculations: 

 ( ) ( )n
n nF a x b G x+ →   (for all x with ( ): 0 1G x< < ) (1) 

  8 

 ( ) ( )log logn nn F a x b G x− + → −  (for ( ): 0 logx G x< − < ∞) 
 

This can hold only if ( )log 0.n nF a x b+ →  

Now recall the limit ( )
0

log 1lim 1
s

s
s→

− −
=  

and apply with ( ): 1 n ns F a x b= − + . 
We get ( )

( )
log 1

1
n n

n n

F a x b
F a x b

− +
→

− +
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hence  
   

  8 

   ( )( ) ( )1 logn nn F a x b G x− + → − ,n →∞. (2´) 

With some effort it can be proved that this also holds 
when we replace n by a  continuous parameter t: 

  8 

  ( ) ( )( )( ) ( )1 logt F a t x b t G x− + → −  , t →∞, t  real.  (2) 

Hence ( ) ( )1 2⇔ . I want to derive a third equivalent form 
for the convergence.  

This goes via the inverse function 
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Lemma   Suppose ( )nf x  is non-decreasing  in x  for all n. 

Consider ( )nf x← , the inverse function of 
( )1,2,nf n = … . 

Suppose   ( ) ( )lim nn
f x g x

→∞
=   for all  ( ),x a b∈  

Then   ( ) ( )lim
nn

f x g x← ←

→∞
=   for all ( ) ( )( ),x g a g b∈  

where g← is the inverse function of g . □□□ 
 

(picture) 
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We apply this to 

( )
( )( )
1:

1n
n n

f x
n F a x b

=
− +

 

and 

( )
( )

1:
log

g x
G x

=
−

. 

According to (2´) we have ( ) ( )nf x g x→  for all x. 

Hence ( ) ( )nf x g x← ←→  for all x. 

What are nf
← and g← in this case? First ( )nf x : 
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( )
( )( )

( )
( )

1
1

1 11
1

11
11 .

n
n n

n n
n n

n

n n
n

y f x y
n F a x b

ny F a x b
F a x b ny

F b
nya x b F x

ny a

←

←

= ⇔ =
− +

⇔ = ⇔ + = −
− +

⎛ ⎞− −⎜ ⎟⎛ ⎞ ⎝ ⎠⇔ + = − ⇔ =⎜ ⎟
⎝ ⎠

 

Hence 

( )

11 n

n
n

F b
nxf x

a

←

←

⎛ ⎞− −⎜ ⎟
⎝ ⎠=  
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Simpler notation :  ( ) 1: 1U x F
x

← ⎛ ⎞= −⎜ ⎟
⎝ ⎠

. 

equivalently ( ) ( )1:
1

U x x
F

←
⎛ ⎞= ⎜ ⎟−⎝ ⎠

. 

This was the inverse of ( )nf x . Now about the inverse of g : 

( )
( )

( )

( )

1

1

1
log

. 

y

y

y g x y G x e
G x

x G e

−

−←

= ⇔ = ⇔ =
−

⇔ =
 

 
Conclusion: (1) ⇔  (2) ⇔  
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( )lim n

n
n

U nx b
a→∞

−  ( )1
xG e−←=  for 0x >  (3´) 

integer 8 

  
( )lim t

t
t

U tx b
a→∞

−   ( )1
xG e−←=  for  0x > . (3´) 

continuous variable 8 (subtract the same with  0x = ) 

  
( ) ( )

( )
lim
t

U tx U t
a t→∞

− ( ) ( )1 1 xG e G e−← ← −= −  for  0x > .  (3) 
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Theorem Equivalent are: 

1) ( ) ( )lim n
n nn

F a x b G x
→∞

+ =  

2) ( ) ( )( )( ) ( )lim 1 log 
t

t F b t xa t G x
→∞

− + = −  

3) ( ) ( )
( ) ( ) ( )1 1lim x

t

U tx U t G e G e
a t

−← ← −

→∞

−
= −  

Soon we shall see the use of this theorem. We proceed 
to identify the limit ( )G x .  

The complete class of possible limit distributions G is 
given in the next theorem. 
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Theorem  (Fisher and Tippett 1928, Gnedenko 1943) 

Suppose that for some distribution function F   we have 
( ) ( )n

n nF a x b G x+ → , non-degenerate, for all continuity 
points x.  

Then  ( ) ( )G x G ax bγ= +  for some 0a >   and b where  
( ) ( ){ }1

: exp 1G x x γ

γ γ −= − +  

for all x with 1 0xγ+ >  and where the parameter γ  can 
have any real value (for  0γ =  read the formula as 

{ }exp xe−− ). 
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Remark 
 
There are 3 parameters, γ , a , b but γ  is the only 
important one, the other two just represent scale and 
location.  They are arbitrary since by changing the 
sequences { }na  and { }nb  , one can get any 0a >  and b . 
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Proof: We found 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 :xn
n n n

U tx U tF a x b G eG x
a t

xG e D−← ← −

→∞

−
+ → ⇔ → − =  

Note : ( )1 0D =  . Take  , 0x y >   and write the identity  
 

( ) ( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

U tyx U t U tyx U ty a ty U ty U t
a t a ty a t a t
− − −

= ⋅ +  

( )t →∞   

 ( )D xy    ( )D x  ⇒  ( )
( )

0
say  

A y∗ >  ⇐  ( )D y  
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Hence   ( ) ( ) ( ) ( )D xy D x A y D y∗= +    for all , 0x y > . 

We have to solve this functional equation. 

We write  ( ) ( ) ( ) ( )s t s t tD e D e A e D e+ ∗= +  for all real s, t. 

Introduce  ( ) ( ) ( ): & :( )    s tH s A tD e A e∗= = . 

Then    
( ) ( ) ( ) ( )H t s H s A t H t+ = +  ,t s∀  real 

( ) ( ) ( )& 0 1 0, 0 1    H D A= = =  

or  
( ) ( ) ( ) ( )H t s H t H s A t+ − = ⋅  
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Write this as  

( ) ( ) ( ) ( ) ( )0H t s H t H s H A t
s s

+ − −
= ⋅  . 

Now  H  is monotone hence  t∃  where  ( )'H t      exists. 

The equality above shows that  ( )' 0H  exists hence ( )'H t  
exists for  all t . 

 
Conclusion 

( ) ( ) ( )' ' 0H t H A t= ⋅ . 
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Since H  cannot be constant, this implies ( )' 0 0H >  . 

Write     ( ) ( ) ( ): ' 0HQ t Ht =  .   

Note     ( )0 0Q =      ,  ( )' 0 1Q =  , ( ) ( )'Q t A t=  .  

We know 
( ) ( ) ( ) ( )H t s H t H s A t+ − =  

hence   
 ( ) ( ) ( ) ( ) ( ) ( )'Q t s Q t Q s A t Q s Q t+ − = =  
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Write again ( ) ( ) ( ) ( )'Q t s Q t Q s Q t+ − =   
and, equivalently, ( ) ( ) ( ) ( )'Q t s Q s Q t Q s+ − =    . 

Subtract, then 

( ) ( ) ( ) ( ) ( ) ( )' '=  Q t Q s Q t Q s Q s Q t− −  
i.e. 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )' 1 0' 1 ' 1  Q s Q s Q s QQ t Q t Q t
s s s
− −

= − = −  . 

Hence ( )0s →   
( ) ( ) ( ) ( )( ) ( )'' 0 ' 0 ' 1 ' 1Q t Q Q Q t Q t= − = −  
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We know that 'Q  exists hence we differentiate the 
equation and get  

 

( ) ( ) ( )' '' 0 '' Q t Q Q t=  
 

hence 
( ) ( ) ( )

( )
( )''log ' ' '' 0 :

'
= = Q tQ t Q

Q t
γ= ∈\     for all t . 

 

Now we just work backwards. 
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Since  ( )' 0 1Q =  , by integration we get 
( ) ( )log ' i.e. '      tQ t t Q t eγγ= =  

 

and (since   ( )0 0Q = ) again by integration  

 ( )
0

1tt
s eQ t e ds

γ
γ

γ
−

= =∫   . 

 (but if 0γ =  we get ( )Q t t=  )    . 
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We go through the transformations  

Q H D G G←→ → → →  
In order to identify the function G . 

Q H→  :  Note that   ( )0 0H =  . Write ( ): ' 0a H= . 
 

( ) ( ) ( )
def . 1' 0  

teH t H Q t a
γ

γ
−= = ⋅  

and (H D→ ) 

( ) ( )
def . 1log tt H t aD

γ

γ
−= = ⋅   . 
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D G←→  : going further back recall that 

( ) ( )
1

1 
tD t G e G e

−← ← −⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 

hence (write   ( )1:b G e← −=  ) 
 

1 1 
t tG e b a

γ

γ
−← −⎛ ⎞ = + ⋅⎜ ⎟

⎝ ⎠
 . 
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G G← → :  apply  G to both sides: 
 

{ }1 1exp tG b a
t

γ

γ
−⎛ ⎞− = +⎜ ⎟

⎝ ⎠
 . 

 

Replace  t  by ( )( )
111 a x b γγ −+ −   . We get 

( )
1

exp 1 x b G x
a

γ
γ

−⎧ ⎫−⎪ ⎪⎛ ⎞− + =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

Quod erat demonstrandum.  
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Consider the graphs of  Gγ  . 

Note that if   0γ <    

( ) 1G xγ =       for  1x
γ

≥ −   . 

That means that no value beyond 1
γ−   is possible.  

Define in general for a prob. dist. function F  
 

( ) ( ){ }: max : 1x x F x F x∗ ∗= = < ≤ ∞. 
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Note that for  Gγ  :  
( )
( )
( )

0

0

0

x G

x G

x G

γ

γ

γ

γ

γ

γ

∗

∗

∗

⎧ > ⇒ = ∞
⎪

< ⇒ < ∞⎨
⎪

= ⇒ = ∞⎩

. 

If  ( ) ( )n
n nF a x b G xγ+ →  , for  F   we have similar behaviour  

( )
( )

0
0
0 : can be both  

x F
x F

γ

γ
γ

∗

∗

> ⇒ = ∞⎧
⎪ < ⇒ < ∞⎨
⎪ =⎩

  

Hence :  ( )0 x Fγ ∗< ⇒ < ∞  . 
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We consider the cases, 0γ > , 0γ = , 0γ <  separately. 
  
 



Introduction to Extreme Value Theory   Laurens de Haan, ISM Japan, 2012 
 

30 

1) 0γ = : ( ) ( )0 exp xG x e−= −   .  
Note that ( )00 1G x< <  for all x  hence the distribution 
has no lower or upper bound (all real values are 
possible).   Also, since 

  
0

1lim 1
y

y

e
y

−

→

−
= ,  we have with xy e−=  : 

  
( )01lim 1xx

G x
e−→∞

−
= . 

Hence the tail of the distribution ( )( )01 G x= −  goes 
down to zero very quickly. This means for example 
that all moments exists (are finite). We say that the 
distribution is light tailed. 
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2) 0γ > : Note that ( ) 1G xγ <  for all x hence there is no 
upper bound.   Also, we see  

( ) 1

1

1
lim 0 

 x

G x
x

γ

γ

γ γ −

−→∞

−
= >  

hence the tail is approximately a power function 
1

x γ− . 
This means that ( )1 G xγ−  goes to zero much more 
slowly than in the case 0γ = .  
In particular some moments are not finite. We say 
that in this case the distribution is heavy tailed. 

Note: often in finance we have this case 0γ > .  



Introduction to Extreme Value Theory   Laurens de Haan, ISM Japan, 2012 
 

32 

 
3) 0γ < : Note that ( ) 1G xγ =  for all 1x γ≥ − .  

Hence no values larger than 1 γ−  are possible.  

We say that the distribution is short tailed. 
 
 
 

Note: In environmental data we often find γ  close 
to zero. In financial data we often find γ  positive.  
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In some cases we can simplify the formula for Gγ : 
1) 0γ > : In the formula 
 ( ) ( )( ){ }1

exp 1G x ax b γ

γ γ −= − + +  
we can choose 1a γ=  and 1b γ= . Then 

 ( )
1

expG x x γ

γ

−= −  

In this case one simplifies by writing α  for 1 γ  and  
we get (traditionally)  

 ( ) ( )expx x α
α

−Φ = −  for 0x >  (and 0=  for 0x ≤ ). 

In this form it is referred to as the Fréchet class of 
extreme value distributions  ( )0α > .  
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2) 0γ < : Take 1a
γ

= −  and   
1b
γ

= −   

in the formula 
 ( ) ( )( ){ }1

exp 1G x ax b γ

γ γ −= − + +  

and write  α  (again!) for 1
γ

− .  

Then we get    

 ( ) ( )expx x α
α

−Ψ = − −⎡ ⎤⎣ ⎦ for 0x <  (and 1=  for 1x ≥ ). 

In this form it is referred to as the reverse-Weibull class 
of distributions  ( )0α > .  
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3) 0γ = :  
 

 ( ) ( ){ }exp xG x eγ
−= − . 

 
This one is sometimes called the Gumbel 
distribution.  

 
 

We are now able to reformulate the Theorem: 
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Theorem   

For  γ ∈R  the following statements are equivalent: 
 

1) There exist real constants 0na >  and nb   real, such that 
 ( ) ( ) ( )( )1

lim exp 1n
n nn

F a x b G x x γ

γ γ −

→∞
+ → = − + , (4) 

 
for all x with  1 0xγ+ >  . 
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2) There exists a positive function a such that for 0x >   

 
( ) ( )

( )
1lim

t

U tx U t x
a t

γ

γ→∞

− −
= , (5) 

where for 0γ =  the right-hand side is interpreted as 
log x . 

 

 
3) There exists a positive function a such that  

 ( ) ( )( )( ) ( )
1

lim 1 1
t

t F a t x U t x γγ −

→∞
− + = + , (6) 

for all x with  1 0xγ+ >  . 
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4) There exist a positive function f  such that  

 
( )( )

( )
( )

11
lim 1

1t x

F t xf t
x

F t
γγ

∗

−

↑

− +
= +

−
, (7) 

for all x which  1 0xγ+ >  , where ( ){ }sup : 1x x F x∗ = <  . 
 

 
Moreover (4) holds with ( ):nb U n=  and ( ):na a n= . Also (7) 
holds with ( ) ( )( )( )1 1f t a F t= −  . 
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Remark:  
We say that ( )F D Gγ∈  if the conditions of the Theorem 
hold for F . The parameter γ  is called the extreme value 
index. 
 
 
The class of distributions satisfying the condition is very 
wide. 
 
The condition reflects a property of the far tail of F . 
 
Let us look at three cases:  0γ > , 0γ =  and 0γ <  . 
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0γ >  
 
It can be proved that in that case one can take ( )f t tγ=  
in (7).  
 
Hence ( )F D Gγ∈  with 0γ >  if and only if 

( )
( )

11
lim

1t

F tx
x

F t
γ−

→∞

−
=

−
   for  0x >  

(“F  has regularly varying tail”). 
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Such distribution function is called “heavy tailed” since  
 

( )( )
1  if   

max ,0
1  if    .

a
E X

a

α γ

γ

⎧ < ∞ <⎪⎪= ⎨
⎪= ∞ >
⎪⎩

 

 
 
Hence not all moments exist. 
 



Introduction to Extreme Value Theory   Laurens de Haan, ISM Japan, 2012 
 

42 

 
Sufficient condition: 
 

( )
( )

 ' 1lim  
1x

x F x
F x γ→∞

=
−

 . 

 
 
Examples:  Cauchy’s distribution 
 Any Student distribution 
 Pareto distribution ( )

1

1 ,   1F x x xγ−= − >  
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0γ =   Sufficient condition: 
 
 

( ) ( )( )
( )( )2

'' 1
lim  1

'x x

F x F x

F x∗↑

−
= −  

where ( ){ }: sup 1x x F x∗ = < ≤ ∞. 
“Light tailed” since   ( )( )max ,0E X

α
< ∞  0a∀ >  

Examples:  Normal distribution 
 Exponential distribution 
 Any Gamma distribution 
 Lognormal distribution  
 ( ) 11 xF x e= +      for  0x <  
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0γ <  
Then the probability distribution has an upper bound: 

 ( )
1  for   some  
1  for   .

x x
F x

x x

∗

∗

= ≥⎧
= ⎨

< <⎩
 

It can be proved that one can take  ( ) ( )f t x tγ ∗= − − . 
Leads to a simple criterion: 

 ( )
( )

1 

0

1
lim  

1t

F x tx
x

F x t
γ

∗
−

∗↓

− −
=

− −
  for  0x >  

(is again a kind of regular variation condition) 
 “Short tailed” 
Examples:  uniform distribution 
 any Beta distribution 
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A sufficient condition valid for all domain of attraction:  

If   ( ) ( )( )
( )2

'' 1
lim  1

't x

F x F x

F t
γ

↑ ∗

−
= − − ,  then ( )F D Gγ∈ . 

A necessary and sufficient condition (provided that 
0x∗ > ) is : 

 

If  
( )( ) ( )( )

( )( )

2

2
2 2

1      if   01 1  
lim  1  if   0,

1 21

x x

t y

t x x

t

F t F x x dx dy

t F x x dx

γ γ
γ γ
γ

∗ ∗

∗

−

↑ ∗
−

+ >⎧− −
⎪= −⎨ ≤⎛ ⎞ ⎪ −− ⎩⎜ ⎟

⎝ ⎠

∫ ∫

∫

 

then ( )F D Gγ∈ . 
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There are probability distributions that are not in any 
domain of attraction. 
 
 
Examples:   

 geometric distribution ( ) [ ]1 xF x e−= −   for 0x >  

 Poisson distribution  ( )
0 !

x
n

n

eF x
n

λ

λ
−

=
= ∑   for  0x ≥  

 von Mises' example  ( ) sinx xF x e− −=   for  0x ≥  
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Remark 
 
Let  X  be a r.v. with distribution function F . 
Relation (7) can be reformulated as follows: 

 
( )

( ) ( )
1

1   X tP x X t x t
f t

γγ −⎧ ⎫−
> > → + →∞⎨ ⎬

⎩ ⎭
  for 0x > . 

 
(Generalized Pareto distribution)  
(model for residual life time) 
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View towards applications 
 
 

n observations, t  large  

t
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The overshoots of t  are i.i.d. observations and they 
follow approximately a generalized Pareto distribution 

( )
1

1 1  ,  x γγ γ−
− + ∈\ . 

They can be used to estimate the parameter of the Pareto 
distribution. 
Then we can use the fitted Pareto distribution to 
estimate the distribution function beyond the 
observations. 
In fact we take t  to be one of the observations say, the 
k th−  highest observation ,n k nX −  . 
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We should choose k  in such way, that k  depends on n, 

 ( )k k n= →∞  (allowing the use of CLT)  

 ( ) 0
k n

n
→  (implies staying in the tail) . 

Then we use only  

, 1, ,, , ,n k n n k n n nX X X− − + …  

for estimating the parameter of the Pareto distribution 
and also for estimating the probability of extreme events 
beyond the range of the sample. 
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