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1. INTRODUCTION

The monograph by Cox and Lewis (1966) and the volume editated by
Lewis (1972) showed the development of statistical techniques in point processes
and whole range of applications. Moreover Vere-Jones (1970) emphasized the
applications of point process models in seismological statistics [see Vere-Jones
and Smith (1981) for a survey in statistical seismology]. However the maximum
likelihood estimation procedure is not fully developed, despite the general
agreement of providing a sensible method for parameter estimation and a
sensitive testing of models. A key to the likelihood theory of point processes
is the conditional intensity function (C.I.F. ) defined by

AM(t|F,) = lim Prob{Event is [t,t+A)|F }/a (1.1)
A0

where Fy is a family of informations (o-fields) over the time interval (0,t) of
observations including the history of the point process itself at time t.

A C.I.F. characterizes a point process completely. For example, if a C.I.F. is
the function of time t only, the point process is Poisson. Once the C.I.F. is
given, simulation of the corresponding point process is easily performed by the
so called "thinning technique" (Ogata, 1981) which is an extension of the method
of Lewis and Shedler (1979). Also once the C.I.F. is given, the likelihood for
the realization in (0,T) can be written down in the form

fT(t

n T
1’t2""’tn;“) = {i];I; A(ti|Ft )}exp{—Jo)\(t[Ft)dt} (1.2)

i

wnere n is the number of events observed in the interval.



Thus it now becomes important to obtain good parametric models of C.I.F.
My principal aims are to describe a class of flexible parametric models, like
AR model in time series, for the statistical analysis of earthquake catalogues
and the assesment of earthquake risks in some areas (see Vere-Jones, 1978).
In this paper I will show some examples of systematic modelling of C.I.F. and
their applications to the earthquake data.

2. MAXIMUM LIKELIHOOD AND MODEL SELECTION

Consider a C.I.F. Ag(t|Fy) which is parameterized by a n-dimensional
vector 6=(671,°++,08)), and a series of events {tj,-++,t,} which is observed in
the time interval TO,T). Then the log likelihood of the statistical model

n T
L

log Xe(tilFt.) - J xe(t|Ft)dt (2.1)
i 0

is a function of the parameter 6 only. The maximum likelihood estimator of 6
is the value of the parameter which maximizes the log likelihood. In general
it is not easy to derive the maximum likelihood estimates explicitly. If the
second term in (2.1) can be expressed analytically in 6, then the gradient of
the log likelihood function can be easily obtained. In that case the
maximization of the likelihood can be carried out by using a standard
non-linear optimization technique such as in Fletcher and Powell (1963).

log L(e;tl,-~~,tn;T) =

i=1

Suppose that we have to choose the best model among amny competing models.
Then it is natural to have a measure to see which model will most frequently
reproduce, through simulations, similar features to the give data {tl,~'-,tn}.'
The Akaike Information Criterion (Akaike, 1974)

AIC = (-2)maximum log likelihood + 2(number of parameters)

is the most suitable for such purpose. Here log denotes natural logarithm, and
a model with a smaller AIC is considered to be a better fit. The AIC is an
estimate of the expected negentropy (Akaike, 1977) which is a natural extension
of Boltzmann's probabilistic interpretation of the thermodynamic entropy as the
logarithm of the probability of getting a sample distribution. Conventionally
the model selection is realized by successively applying the likelihood ratio
test to the nested sequence of models. The relationship between the AIC and
the likelihood ratio statistic is discussed in Sakamoto and Akaike (1978).

3. ANALYSIS OF AFTERSHOCK OCCURRENCE

3.1. Traditional analysis

The frequency of aftershocks per unit time interval (one day, one month,
etc.) is well represented by the modified Omori formula (Utsu, 1961)



n(t) = K(t+c) P (k,c,p: parameters) (3.1)

where K depends on the magnitude of the main shock and the lower bound of the
magnitude of aftershocks counted, while p is known to be independent of these.
The value p is thought to reflect mechanical conditions of earth's crust. For
example Mogi (1962) demonstrate a certain systematic regional distribution of
p values in Japan. Estimates of the parameter p have been obtained in the
following way: Plot n(t) versus time t on a log-log scaled plane and then fit
an asymptotic straight line; the slope of the line is an estimate for p. The
values of ¢ can be determined by another graphical technique. For example the
small squares in the first graph of Figure 1 are obtained by plotting n(t) for
the time period up to 27 days immediately after the mainshock of the Tokachi
earthquake in 1968. The occurrence time data of all aftershocks with the
magnitude Mzﬁ.ﬁ for 45 days are listed in Appendix Al, based on the
Seismological Bulletin of Japan Meteorological Agency (JMA).

FIG.1 FREQUENCY OF AFTERSHOCKS, Off Tokachi (1968)
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3.2. Likelihood analysis

Consider now the occurrence times of aftershock sequence {tl,tg,'°°,tN} in
the time interval [S,T], where the origin of the time scale, t=0, corresponds
to the occurrence time of the mainshock. Let us assume that the aftershock
sequence is distributed according to a non-stationary Poisson process with the
C.I.F.

A(t38) = K(t+e) P, 8 = (K,c,p), (3.2)

which represent the modified Omori formula. Then from (2.1) the log likelihood
function of the aftershock sequence is written by

N
log L(K,c,p) = N log K - p ) log (ti+c) - K s(e,p), (3.3)
i=1



where

S(c,p) = [(T+c)'P -
log (T+c) - log (S+c)

(S+c)l'p]/(l—p)

for p#l
for p=1.

The maximum likelihood procedure has also the advantage of producing

estimates for the asymptotic standard errors of parameters.

Fisher information matrix is given by

In our case the

T
. a 1 ar(t;6) aa(t30)
J(8;8,1) = Js A(t;8) 20’ 36 dt
r 1 1 ]
K (t+c) P —p(t+e)7P” ~(t+c) Pin(t+e)
T 2 -p-2 -p-1
= J * Kp~(t+c) P~ Kp(t+e) P 1n(t+e)| dt,
S
* * K(t+c) P1n° (t+c)
L (3.4)

and the inverse of the matrix (3.4) provides the variance-covariance matrix of
the asymptotic standard error. Thus by the data given in Al over the interval
up to 27 days from the time origin, we obtained the following results.

TABLE 1
parameter estimate variance-covariance matrix
K 63.66 .1177x10h .1800x102 . 7026x10
c 0.8799 .2942 L1054
D 1.227 .4438x1071

The smoothed line in the first graph in Figure 1 is obtained by using (3.2)
with the maximum likelihood estimates.

Smaller error variances are expected when the number of events is larger
with very large mainshocks. However there might be the possibility of an
estimation bias. One reason is that the rate of missing events in the
beginning of a sequence can be rather large compared to the remainder. The
other reason is that the early stages of the aftershock sequence can be more
or less complicated. Thus in case of large samples the selection of the time
interval [S,T] has to be taken into account. This defines a typical problem of
model selection. For detail the reader is referred to Ogata (1982).

Now, from the data in Al we might suspect that the Tokachi earthquake has
secondary aftershocks, because of the strong clustering after about 27 days



from the mainshocks. For such the case we consider a version of model of (3.2)

Py Pa

A(t;0) = K (t+cl)_ + Kz(t—t +02)— H(t;tz),

1 2

6 = (Kl,cl,pl,K2,02,p2;t2) (3.5)

where H(t;ty) is an indicator function defined by H(t;t,)=1 for to<t, O
otherwise. For the triggering shock of the secondary sequence, tp=27.5367 day
(which have the magnitude T7.2) was chosen. In this model we might be interested
in knowing that whether pj=pp holds or not. Using the AIC we can now compare
the following these models;

AIC(no secondary aftershocks) = -2x255.4 + 2x3 = -504.8
AIC(a secondary aftershock pl=p2) = -2x337.8 + 2x6 = -663.6
AIC(a secondary aftershocks pl#pz) = -2x338.2 + 2x7 = -662.4

which clearly suggest the existence of secondary aftershock rather with
pl=p2=l.06. Parametric estimates are given in the Table 2 together with the
estimated standard deviations which are obtained by the inverse of the Hessian
matrix -32 log L/36'36 of log likelihood function.

TABLE 2

parameter Kl cl P K2 C2
estimate Lk .58 0.5731 1.060 13.54 0.1103
s.d. 0.24 0.4113 0.085 0.22 0.6159

It can be also examined statistically by the similar modelling and model
selection by AIC that whether a pair of aftershock sequences from different
regions or eras have the same p value or not. This is quite similar situation
to the problem of comparing the sample averages from normal distributions
(see Ogata 1983). ‘

4. LINEARLY PARAMETERIZED INTENSITY
Hereafter we consider a class of linearly parameterized C.I.F.,

K
Ag(t]F,) = kZleka(tlFt), 8 = (6),°00,0,), (k1)

where Q(t|Fy) are some statistics depending on the information Fy but
independent of the parameters 6y. One of the principal advantages of such



parameterization is that the log likelihood function (2.1) has at most one
maximum, which is seen from the fact that the Hessian matrix is everywhere
negative definite in 0 (see Ogata,1978, p.255). Therefore we do not have to
worry about the initial guess of parameters. Moreover the second term in (2.1)
is given by a linear combination of parameters. This enables us efficient
calculations of likelihoods for the nested series K=1,2,++°,K ... However the
major disadvantage is that the C.I.F. in (L4.1) can be negative. This is rather
easy to take place when the number of parameter in (4.1) is large. Moreover
this occasionally causes the difficulty in getting a maximum likelihood
estimates, because the negativity of some t contributes the increase of
likelihood due to the second term of (2.1). To avoid negative C.I.F. we have
to impose restrictions on the parameters. In this paper we use a certain
smooth penalty function R(6) which takes the value O in the restricted region
but takes large values on the outside, and then we minimize the following
function

G(8) = -log L(6) + R(8). (4.2)

L4.1. Trend/cyclic/clustering decomposition of earthquake risk

A systematic trend analysis by the likelihood procedure was carried out
by MacLean (1974) and Lewis & Shedler (1976) fitting non-stationary Poisson
processes with exponential polynomial intensity, which implies the numerical
integrations of the second term in (2.1). Similarly the exponential
trigonometric intensity for cyclic effect and its mixture with trend were
suggested in Lewis (1970) and Lewis & Shedler (1976). However these were not
computationally efficient to see the shape of the periodical change at a known
frequency. Ozaki (1981) noted that in many cases a linear trigonometric
parameterization

K

AMt) = ] Asin(o t+p ) (4.3)
k=1

is useful, where the frequencies wy are suitably chosen and fixed, while

the other parameters is to be optimized. For the clustering effect such as
aftershocks or earthquake swarms, a "contagious" process in which the C.I.F.
takes the form

AMe|F) = u +t2t glt-t;);  glx) >0, x>0, (b.4)
i<

where the parameter u(>0) can be interpreted as the rate of an underlying
stationary Poisson process initiating clusters, and the function g(x) (which
we would like to call the response function of a point) measures the increase
in risk due to an earthquake occurring at a time x time units before the time
of measurement t. This model was introduced by Hawkes (1971) and has been
fitted to earthquake data by Hawkes & Adamopoulos (1973) through the
"spectral-likelihood". The fitting of a Hawkes model through .the likelihood
(2.1) was carried out by Ozaki (1978). It is important from the prediction
viewpoint to estimate the response function. Akaike suggested a




parameterization by the Laguerre type polynomial
M m-1 -cx
gM(x) = ) ax e (L4.5)
m
m=1

in order to compute the likelihood efficiently (Ogata & Akaike, 1982 and
Vere-Jones & Ozaki, 1982).

The model which we will use here takes form

Me|F) = u o+ Po(t) + ¢ (t) +t {t g, (t-t,). (4.6)
i

The first component represents the evolutionary trend and is given by

J
P(t) = ) a4, (2t/7-1) (h.7)
J =1 33
J
where T is the total length of the observed interval and ¢:(x) are orthogonal
polynomial expansion on [-1,1] such as the Legendre polynomial. The second
component stands for the cyclic effect with a known fixed cycle length To and
is expressed by the Fourier expansion

cos (2kmt/T)) + B, sin(2kmt/T )} (4.8)

K
e (t) = Z o1

k=1

The clustering effect corresponds to the last term of (4.6) in which we take
the parameterization (4.5). If the scaling parameter c¢ in (4.5) is fixed then
the model (4.6) is linearly parameterized. The purpose of the present section
is both examining the existence and estimating the shape of each component.
This is possible by comparing the AIC values among the triplets (J,K,M).

It is not easy to define an explicit constraint in- terms of parameters
which ensures the non-negativity of C.I.F. throughout the time interval. Since
the last term in (4.6) stands for clustering effect we put the following
sufficient constraints for each (J,K,M)

gM(x) >0 for x > 0, and

(y) >

v
(@]

u o+ PJ(y) +C for 0 <y <T. (4.9)

K

In order to construct a computationary feasible penalty function in (4.2), we
here choose suitable partitions of [0,~) and [0,T] to reduce (4.9) to linear
constraints of parameters. That is to say, we charge a penalty if any
integrals of gy(x) over the subintervals in [0,») are negative valued. Similar
penalty is made for the second inequality in (4.9). More detail is described
in Ogata & Katsura (1983).



The occurrence time data in Appendix A2 is selected from the Seismological
Bulletin of JMA with the following restrictions; time interval between 1965 and
1980, shallow depth (H<60 kilometer), Richter magnitude M>3.5, and rectangle
region from 131°E to 137°E and from 34°N to 38°N. The most shocks took place
in the Inner Zone of the Southwest Japan. Here this is reproduced after the
transformation into i-day, i.e., the time scale unit is one-day with the origin
0 of the time being equated to the 1lst of January 1965. Before fitting the
model (4.6) to the data, we had to fit the simpler model (4.L) to find a guess
of the optimal exponential coefficient ¢ in the response function (4.5). Orders
M up to 15 were examined. M=9 attained the minimum AIC and the maximum
likelihood estimate is c=1.854 [see Ogata, Akaike and Katsura (1982) detail for
the calculation procedure]. In order to examine the effect of seasonality,
To=365.25 in addition to M=9, c=1.854, was fixed in (4.6), and all the pairs
(K,J) was examined up to 5 and 15, respectively. We obtained the second part
of Table 3 below of AIC values. Also the first part was similarly obtained
with the restriction of M=0, i.e., no effect of clustering.

TABLE 3 SOUTHWEST JAPAN DATA

clustering

restrictions M=0 M:9»(C=1'85h)
other K=0 K=0 K#0 K#0 K=0 K=0 K#0 K#0
restrictions J=0 J#0 J=0 J#0 J=0 J#0 . J=0 J#0

minimum AIC, 3037.7 3017+3 3015.2 3001.6 | 285L4.1 12853.5 2849.5% 2851.0
attained (K,J) (0,0) (0,9)  (4,0) (L,9) (0,0) (0,1) (k,0) (4,1)

Comparing the AIC values, existence of clustering is clear. Moreover it is
suggested that the seasonal effect exists but that the evolutionary trend is
constant, since the overall minimum AIC is attained by (M,K,J)=(8,4,0). This
was confirmed by comparing the similar tables for some other possible values c.
Figure 2 displays the estimated shape of the clustering and seasonality
components of the minimum AIC model (the trend component is not included since
it is just constant u=0.0562).

It is suggested in Oike (1977) that the monthly distribution of frequency
of shallow shocks in the Inner Zone of the Southwest Japan shows the similar
pattern to the rates of change of mean monthly precipitation. In the first
graph of Figure 3 we plotted the averaged annual distribution of precipitations
(broken line) over 30 years from 1941 through 1970 at Takamatsu, Shikoku Island,
and its smoothed line obtained through BAYSEA programed by Akaike and
Ishiguro (1980). This is more or less the common seasonal pattern throughout
the Southwest Japan, except the area along the coast of Japan Sea where it is
snowy in winter. The second graph.shows the increasing rate (derivative) of
the smoothed precipitation, which has similar variations to the seasonal
component of Figure 2, especially at the typhoon season around early September
and next to the dry season in winter. As is seen here, it is understood that
the drastic change of rainfall can be a triggar of earthquakes.
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4.2. Relationship between shallow and deep seismicity

We extend the model (4.6) to the following

= u + + + - + h_(t- .
Ae[F) = w+ P () + () ) gy (t-t,) ) e uj) (4.10)
t.<t u,<t
i J
where {u.} is another series of events considered as an input of the C.I.F.
system, and the response function hy(x) is parameterized similarly to (L.5),

N
h(x) = ) b x"te™ (4.11)
n=1

If there is no causal relation between the input {uj} and the output {tj}, the
response function will be h(x)=0 for all x>0. Otherwise we are interested in
knowing an approximate shape of h(x).

This model was applied to earthquake occurrence data supplied by
Seismological observatory, Geophysics Division, DSIR of New Zealand for shallow
and deep earthquakes in a region covering the North Island area, New Zealand,
from 1946 through 1980. The area used was a quadrilateral with vertices at the
points (L40°S, 170°E), (35°s, 175°E), (39°S, 177°W) and (44°S, 178°E), and the
shocks with magnitudes 5.5 or over were classified in the following two groups;
shallow events with the depth H<4Okm and deep events with H>150km. Thus
Appendix A3 is reproduced after transformation into i-day, i.e., the time scale
unit is one-day with origin O of the time being equated to the 1lst of January
1946. Since several aftershock events or swarms seems to be contained mainly
in the earliest part of shallow earthquakes, we removed all such shocks that
are clustering both in space (within a sphere with radius 30km) and time
(within three months interval), except only one shock with the largest magnitude
in each cluster. Similar process was made for the deep group of shocks. The
numbers with an asterisk in Appendix A3 are such events to be omitted. In order
to confirm that no clustering events are included in both the shallow and deep
groups of events, we could have fitted (4.10) to each data. Instead, to save
the computing time, we first fitted (4.4) with (4.5) of several orders to find
a guess for the scaling parameter c and the order M>1, and then fitted the
model (L4.6) for all pairs (K,J) up to 5 and 9, respectively, by the same way
as in the previous section. The values of AIC to each models are listed in
Tables L4 and 5.

TABLE 4 SHALLOW SHOCKS

clustering _ — - -2
restrictions M=0 M=1 (c=0.312x10"%)
other K=0 K=0 K#0 K#0 K=0 K=0 K#0 K#0
restrictions J=0 J#0 J=0 J#0 J=0 J#0 J=0 J#0
minimum AICs, 743.8  72Lh.h*  Thi.6  T725.4 | 738.3  729.4  735.6 729.L4
attained (K,J) (0,0) (0,8) (1,0) (1,7) | (0,0) (0,7) (1,0) (1,7)



TABLE 5 DELEP SHOCKS

clustering M=0 M=1 (c=0.180x10"2)
restrictions

other K=0 K=0 K#0 K#0 K=0 K=0 K#0 K#0
restrictions J=0 J#0 J=0 J#0 J=0 J#0 J=0 J#0
minimum AICS, 1014.2 1011.8% 1015.6 1013.6 | 1016.0 1015.2 1016.2 1016.5
attained (K,J) (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (2,0) (1,1)

Especially it is suggested that the seasonal effect does not exist in both the
shallow and deep earthquakes with magnitude M>5.5, although we cannot deny it
very definitely for the shallow group because of the small difference between

the minimum and second minimum AICs.

(Incidentally it

was found that the

shallow shocks with smaller magnitude (say M>5.0) clearly showed the

seasonality.)

Thus these preliminary results lead us to the use of the

following simpler model than (4.10) to investigate the causal relations
between the two series of shocks.

A(tlFt)

u,<t
J

W+ Po(t) + ) h(t-u)

(h.12)

First, the series of shallow series is considered as the output {t } and

deep ones as the input {ujl}.

A very practical and computationary eff1c1ent

procedure is realized by restrlctlng the exponential coefficient d in (4.11) to

some finite number of candidate values [say, d

—[(/_-1)/2]J, 3=8,9,+++,20 in

the present case] and by comparing AIC values among the all doublets (N J) up to

N=5 and J=9, respectively.
with selected orders (N,J) and 4,

The Table 6 below presents
J

TABLE 6 SHALLOW SHOCKS

the minimum AIC values

among each restrictions.

restrictions N=0,J=0 N=0,J#0 N#0,J=0  N#0,J#0
minimum AICs T43.9 T725.0% T45.9 728.5

d; attained any 0.107x10-3
a%tamed(N J) (0,0) (0,7) (1,0) (1,8)

Comparing the Table 6 with Table L4, the overall minimum AIC was attained at the

model of only trend components with J=T.
of the shallow earthquakes is not stimulated by the deep earthquakes.

This may suggest that the occurrence

The first

graph in Figure U4 below displays the shape of the estimated trend of shallow

shocks.
included.

Histograms for number of shallow shocks in yearly intervals are also

To see what happens in the opposite direction, the values of AIC of the
models (4.12) with the deep series as output {tj} and the shallow series as



input were calculated for all different pairs of orders (N,J) up to N=5 and J=9,
respectively, at each fixed dj=[(/§;l)/2]j, j=8,9,+++,19. Table T lists the AIC
values of orders (N,J) with dy =0.h53x10'3 which contains the overall minimum
AIC among the different d;. us the overall minimum AIC is attained at J=0 and
N=1, and the estimated parameters of the model (L4.12) are p=0.000 (shocks/day),
¢=0.453x10-3 (1/day) and b1=0.727x10-3 (shocks/day). The second graph

in Figure 4 displays the estimated intensity (earthquake risk) of deep series
with histograms for numbers of deep shocks in yearly intervals.

TABLE 7 DEEP SHOCKS

restrictions N=0,J=0 N=0,J#0 N#0,J=0 N#£0,J#0
minimum AICs 101k.2 1011.8 1007.8*% 1009.9

d; attained 0.453x103 0.453x10"3
attained (N,J) (0,0) (0,1) (1,0) (1,1)

FIG.4 ESTIMATED INTENSITIES AND YEARLY HISTOGRAMS
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The results of the above two analyses clearly show that the earthquake
occurrences in deep region, northern New Zealand, significantly receive one-way
stimulation from earthquake occurrences in shallow region. Some readers may be
remind of the results by Ogata, Akaike and Katsura (1982) in which the
existence of the opposite one-way stimulation is concluded by the similar
analysis of Utsu data (Utsu, 1975) in Japan. It was found after the present
analysis that these two types of relationship between the shallow and deep
seismicity in the sestern Pacific region was already discussed by Mogi (1973).
Especially he found that the seismic activity in Mariana and Tonga areas



gradually migrated from the shallow to the deep regions within the descending
lithosphere, while the opposite migration is found in the Kurile-Kamchatka and
northern Japan island-arc region. The migration rate or speed along the deep
seismic zone of Tonga arc suggested by Mogi is about 45km per year, with which
the above estimated response impulse function seems to be consistent (the mean
distance between shallow and deep group of shocks of the data A3 is about
180km). These may indicate that the similar tendency is kept within the
Tonga-Kermades-New Zealand techtonic zone.
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SUMMARY

The conditional intensity function is known to characterize a point
process, and also provides the explicit form of the likelihood function. In
this paper classes of flexible parametric models are developed to carry out the
maximum likelihood calculation efficiently. Model selections are performed by
using the Akaike Information Criterion. The modified Omori model is fitted to
investigate the reducing rate of aftershock frequencies. Then the linearly
parameterized intensity models are fitted to carry out the decomposition of the
intensity of events into components of evolutionary trend, clustering and
periodicity (seasonality), and also to investigate the causal relationship
betwen two data sets of point processes. For the demonstration of the use of
these models, Japanese and New Zealand earthquake data are considered.

RESUME

Il est connu que la fonction d'intensité conditionelle caractérise un
processus ponctuel, et elle donne aussi une forme explicite de la fonction de
vraisemblance. Dans cet article nous développons des modéles paramétrigues
flexibles pour executer les calculations du maximum de vraisemblance d'une
maniére efficace. Pour la sélection d'un modéle nous nous servons du critére
d'information de Akaike. Le model de Omori modifié est ajusté pour examiner le
degré de réduction dans la fréquence des répliques d'un séisme. Ensuite nous
ajustons des modeles ol l'intensité dépend linéairement des paramétres pour
effectuer la décomposition de l'intensité des événements en composants d'une
tendance évolutionnaire, des agglomérations et des périodicités saisonniéres.
En plus, nous étudions & l'aide de ces modéles les rapports de cause entre
deux processus ponctuels. Pour démontrer l'usage de ces modéles, nous
considérons des données des tremblements de terre au Japon et en
Nouvelle-Zé&lande.
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. APPENDIX A3

SHALLOW EARTHQUAKES

NEW ZEALAND DATA, 1946-1980
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