LIKELIHOOD ANALYSIS OF POINT PROCESSES AND ITS APPLICATIONS TO SEISMOLOGICAL DATA

by

Y. Ogata

Invited Paper 44th Session of the International Statistical Institute

Madrid - España September 12th - September 22nd 1983

LIKELIHOOD ANALYSIS OF POINT PROCESSES AND ITS APPLICATIONS TO SEISMOLOGICAL DATA*

Yoshihiko Ogata

The institute of statistical mathematics, Tokyo

1. INTRODUCTION

The monograph by Cox and Lewis (1966) and the volume editated by Lewis (1972) showed the development of statistical techniques in point processes and whole range of applications. Moreover Vere-Jones (1970) emphasized the applications of point process models in seismological statistics [see Vere-Jones and Smith (1981) for a survey in statistical seismology]. However the maximum likelihood estimation procedure is not fully developed, despite the general agreement of providing a sensible method for parameter estimation and a sensitive testing of models. A key to the likelihood theory of point processes is the conditional intensity function (C.I.F.) defined by

$$\lambda(t|F_t) = \lim_{\Delta \to 0} \text{Prob}\{\text{Event is } \{t, t+\Delta\} | F_t\} / \Delta \tag{1.1}$$

where F_t is a family of informations (σ -fields) over the time interval (0,t) of observations including the history of the point process itself at time t. A C.I.F. characterizes a point process completely. For example, if a C.I.F. is the function of time t only, the point process is Poisson. Once the C.I.F. is given, simulation of the corresponding point process is easily performed by the so called "thinning technique" (Ogata, 1981) which is an extension of the method of Lewis and Shedler (1979). Also once the C.I.F. is given, the likelihood for the realization in (0,T) can be written down in the form

$$f_{T}(t_{1},t_{2},\cdots,t_{n};n) = \{ \prod_{i=1}^{n} \lambda(t_{i}|F_{t_{i}}) \} \exp\{-\int_{0}^{T} \lambda(t|F_{t})dt \}$$
 (1.2)

where n is the number of events observed in the interval.

Thus it now becomes important to obtain good parametric models of C.I.F. My principal aims are to describe a class of flexible parametric models, like AR model in time series, for the statistical analysis of earthquake catalogues and the assessment of earthquake risks in some areas (see Vere-Jones, 1978). In this paper I will show some examples of systematic modelling of C.I.F. and their applications to the earthquake data.

2. MAXIMUM LIKELIHOOD AND MODEL SELECTION

Consider a C.I.F. $\lambda_{\theta}(t \mid F_t)$ which is parameterized by a n-dimensional vector $\theta = (\theta_1, \cdots, \theta_k)$, and a series of events $\{t_1, \cdots, t_n\}$ which is observed in the time interval [0,T). Then the log likelihood of the statistical model

$$\log L(\theta; t_1, \dots, t_n; T) = \sum_{i=1}^{n} \log \lambda_{\theta}(t_i | F_{t_i}) - \int_{0}^{T} \lambda_{\theta}(t | F_{t}) dt$$
 (2.1)

is a function of the parameter θ only. The maximum likelihood estimator of θ is the value of the parameter which maximizes the log likelihood. In general it is not easy to derive the maximum likelihood estimates explicitly. If the second term in (2.1) can be expressed analytically in θ , then the gradient of the log likelihood function can be easily obtained. In that case the maximization of the likelihood can be carried out by using a standard non-linear optimization technique such as in Fletcher and Powell (1963).

Suppose that we have to choose the best model among amny competing models. Then it is natural to have a measure to see which model will most frequently reproduce, through simulations, similar features to the give data $\{t_1, \dots, t_n\}$. The Akaike Information Criterion (Akaike, 1974)

is the most suitable for such purpose. Here log denotes natural logarithm, and a model with a smaller AIC is considered to be a better fit. The AIC is an estimate of the expected negentropy (Akaike, 1977) which is a natural extension of Boltzmann's probabilistic interpretation of the thermodynamic entropy as the logarithm of the probability of getting a sample distribution. Conventionally the model selection is realized by successively applying the likelihood ratio test to the nested sequence of models. The relationship between the AIC and the likelihood ratio statistic is discussed in Sakamoto and Akaike (1978).

3. ANALYSIS OF AFTERSHOCK OCCURRENCE

3.1. Traditional analysis

The frequency of aftershocks per unit time interval (one day, one month, etc.) is well represented by the modified Omori formula (Utsu, 1961)

$$n(t) = K(t+c)^{-p} (k,c,p: parameters) (3.1)$$

where K depends on the magnitude of the main shock and the lower bound of the magnitude of aftershocks counted, while p is known to be independent of these. The value p is thought to reflect mechanical conditions of earth's crust. For example Mogi (1962) demonstrate a certain systematic regional distribution of p values in Japan. Estimates of the parameter p have been obtained in the following way: Plot n(t) versus time t on a log-log scaled plane and then fit an asymptotic straight line; the slope of the line is an estimate for p. The values of c can be determined by another graphical technique. For example the small squares in the first graph of Figure 1 are obtained by plotting n(t) for the time period up to 27 days immediately after the mainshock of the Tokachi earthquake in 1968. The occurrence time data of all aftershocks with the magnitude $M \ge 1$. 5 for 15 days are listed in Appendix Al, based on the Seismological Bulletin of Japan Meteorological Agency (JMA).

FIG.1 FREQUENCY OF AFTERSHOCKS, Off Tokachi (1968)

3.2. Likelihood analysis

Consider now the occurrence times of aftershock sequence $\{t_1, t_2, \cdots, t_N\}$ in the time interval [S,T], where the origin of the time scale, t=0, corresponds to the occurrence time of the mainshock. Let us assume that the aftershock sequence is distributed according to a non-stationary Poisson process with the C.I.F.

$$\lambda(t;\theta) = K(t+c)^{-p}, \qquad \theta = (K,c,p), \qquad (3.2)$$

which represent the modified Omori formula. Then from (2.1) the log likelihood function of the aftershock sequence is written by

$$\log L(K,c,p) = N \log K - p \sum_{i=1}^{N} \log (t_i+c) - K S(c,p),$$
 (3.3)

where

$$S(c,p) = [(T+c)^{1-p} - (S+c)^{1-p}]/(1-p)$$
 for $p\neq 1$
 $log(T+c) - log(S+c)$ for $p=1$.

The maximum likelihood procedure has also the advantage of producing estimates for the asymptotic standard errors of parameters. In our case the Fisher information matrix is given by

$$J(\theta;S,T) = \int_{S}^{T} \frac{1}{\lambda(t;\theta)} \frac{\partial \lambda(t;\theta)}{\partial \theta'} \frac{\partial \lambda(t;\theta)}{\partial \theta} dt$$

$$= \int_{S}^{T} \begin{pmatrix} K^{-1}(t+e)^{-p} & -p(t+e)^{-p-1} & -(t+e)^{-p}ln(t+e) \\ & * & Kp^{2}(t+e)^{-p-2} & Kp(t+e)^{-p-1}ln(t+e) \\ & * & * & K(t+e)^{-p}ln^{2}(t+e) \end{pmatrix} dt,$$

$$(3.4)$$

and the inverse of the matrix (3.4) provides the variance-covariance matrix of the asymptotic standard error. Thus by the data given in Al over the interval up to 27 days from the time origin, we obtained the following results.

TABLE 1

parameter	estimate	variance-covariance matrix					
K c	63.66 0.8799 1.227	.1177x10 ⁴	.1800x10 ² .2942	.7026x10 .1054 .4438x10 ⁻¹			

The smoothed line in the first graph in Figure 1 is obtained by using (3.2) with the maximum likelihood estimates.

Smaller error variances are expected when the number of events is larger with very large mainshocks. However there might be the possibility of an estimation bias. One reason is that the rate of missing events in the beginning of a sequence can be rather large compared to the remainder. The other reason is that the early stages of the aftershock sequence can be more or less complicated. Thus in case of large samples the selection of the time interval [S,T] has to be taken into account. This defines a typical problem of model selection. For detail the reader is referred to Ogata (1982).

Now, from the data in Al we might suspect that the Tokachi earthquake has secondary aftershocks, because of the strong clustering after about 27 days

from the mainshocks. For such the case we consider a version of model of (3.2)

$$\lambda(t;\theta) = K_{1}(t+c_{1})^{-p_{1}} + K_{2}(t-t_{2}+c_{2})^{-p_{2}}H(t;t_{2}),$$

$$\theta = (K_{1},c_{1},p_{1},K_{2},c_{2},p_{2};t_{2})$$
(3.5)

where $H(t;t_2)$ is an indicator function defined by $H(t;t_2)=1$ for $t_2< t$, 0 otherwise. For the triggering shock of the secondary sequence, $t_2=27.5367$ day (which have the magnitude 7.2) was chosen. In this model we might be interested in knowing that whether $p_1=p_2$ holds or not. Using the AIC we can now compare the following these models;

AIC(no secondary aftershocks) =
$$-2x255.4 + 2x3 = -504.8$$

AIC(a secondary aftershock $p_1 = p_2$) = $-2x337.8 + 2x6 = -663.6$
AIC(a secondary aftershocks $p_1 \neq p_2$) = $-2x338.2 + 2x7 = -662.4$

which clearly suggest the existence of secondary aftershock rather with $p_1\!=\!p_2\!=\!1.06$. Parametric estimates are given in the Table 2 together with the estimated standard deviations which are obtained by the inverse of the Hessian matrix $-\vartheta^2\log\,L/\vartheta\vartheta$ of log likelihood function.

TABLE 2

parameter	K	cl	р	K ₂	c ₂
estimate	44.58	0.5731	1.060	13.54	0.1103
s.d.	0.24	0.4113	0.085	0.22	0.6159

It can be also examined statistically by the similar modelling and model selection by AIC that whether a pair of aftershock sequences from different regions or eras have the same p value or not. This is quite similar situation to the problem of comparing the sample averages from normal distributions (see Ogata 1983).

4. LINEARLY PARAMETERIZED INTENSITY

Hereafter we consider a class of linearly parameterized C.I.F.,

$$\lambda_{\theta}(t|F_{t}) = \sum_{k=1}^{K} \theta_{k} Q_{k}(t|F_{t}), \qquad \theta = (\theta_{1}, \dots, \theta_{k}), \qquad (4.1)$$

where $Q_k(t|F_t)$ are some statistics depending on the information F_t but independent of the parameters θ_k . One of the principal advantages of such

parameterization is that the log likelihood function (2.1) has at most one maximum, which is seen from the fact that the Hessian matrix is everywhere negative definite in θ (see Ogata,1978, p.255). Therefore we do not have to worry about the initial guess of parameters. Moreover the second term in (2.1) is given by a linear combination of parameters. This enables us efficient calculations of likelihoods for the nested series K=1,2,...,Kmax. However the major disadvantage is that the C.I.F. in (4.1) can be negative. This is rather easy to take place when the number of parameter in (4.1) is large. Moreover this occasionally causes the difficulty in getting a maximum likelihood estimates, because the negativity of some t contributes the increase of likelihood due to the second term of (2.1). To avoid negative C.I.F. we have to impose restrictions on the parameters. In this paper we use a certain smooth penalty function $R(\theta)$ which takes the value 0 in the restricted region but takes large values on the outside, and then we minimize the following function

$$G(\theta) = -\log L(\theta) + R(\theta). \tag{4.2}$$

4.1. Trend/cyclic/clustering decomposition of earthquake risk

A systematic trend analysis by the likelihood procedure was carried out by MacLean (1974) and Lewis & Shedler (1976) fitting non-stationary Poisson processes with exponential polynomial intensity, which implies the numerical integrations of the second term in (2.1). Similarly the exponential trigonometric intensity for cyclic effect and its mixture with trend were suggested in Lewis (1970) and Lewis & Shedler (1976). However these were not computationally efficient to see the shape of the periodical change at a known frequency. Ozaki (1981) noted that in many cases a linear trigonometric parameterization

$$\lambda(t) = \sum_{k=1}^{K} A_k \sin(\omega_k t + \psi_k)$$
 (4.3)

is useful, where the frequencies ω_k are suitably chosen and fixed, while the other parameters is to be optimized. For the clustering effect such as aftershocks or earthquake swarms, a "contagious" process in which the C.I.F. takes the form

$$\lambda(t|F_t) = \mu + \sum_{t_i < t} g(t-t_i); \quad g(x) \ge 0, \quad x > 0,$$
 (4.4)

where the parameter $\mu(>0)$ can be interpreted as the rate of an underlying stationary Poisson process initiating clusters, and the function g(x) (which we would like to call the <u>response function</u> of a point) measures the increase in risk due to an earthquake occurring at a time x time units before the time of measurement t. This model was introduced by Hawkes (1971) and has been fitted to earthquake data by Hawkes & Adamopoulos (1973) through the "spectral-likelihood". The fitting of a Hawkes model through the likelihood (2.1) was carried out by Ozaki (1978). It is important from the prediction viewpoint to estimate the response function. Akaike suggested a

parameterization by the Laguerre type polynomial

$$g_{M}(x) = \sum_{m=1}^{M} a_{m} x^{m-1} e^{-cx}$$
 (4.5)

in order to compute the likelihood efficiently (Ogata & Akaike, 1982 and Vere-Jones & Ozaki, 1982).

The model which we will use here takes form

$$\lambda(t|F_t) = \mu + P_J(t) + c_K(t) + \sum_{t_i < t} g_M(t-t_i).$$
 (4.6)

The first component represents the evolutionary trend and is given by

$$P_{J}(t) = \sum_{j=1}^{J} \alpha_{j} \phi_{j}(2t/T-1)$$
 (4.7)

where T is the total length of the observed interval and $\phi_j(x)$ are orthogonal polynomial expansion on [-1,1] such as the Legendre polynomial. The second component stands for the cyclic effect with a known fixed cycle length T_0 and is expressed by the Fourier expansion

$$c_{K}(t) = \sum_{k=1}^{K} \{\beta_{2k-1} \cos(2k\pi t/T_{0}) + \beta_{2k} \sin(2k\pi t/T_{0})\}$$
 (4.8)

The clustering effect corresponds to the last term of (4.6) in which we take the parameterization (4.5). If the scaling parameter c in (4.5) is fixed then the model (4.6) is linearly parameterized. The purpose of the present section is both examining the existence and estimating the shape of each component. This is possible by comparing the AIC values among the triplets (J,K,M).

It is not easy to define an explicit constraint in terms of parameters which ensures the non-negativity of C.I.F. throughout the time interval. Since the last term in (4.6) stands for clustering effect we put the following sufficient constraints for each (J,K,M)

$$g_{\underline{M}}(x) \ge 0 \qquad \text{for } x \ge 0, \text{ and}$$

$$\mu + P_{\underline{J}}(y) + C_{\underline{K}}(y) \ge 0 \qquad \text{for } 0 \le y \le T. \tag{4.9}$$

In order to construct a computationary feasible penalty function in (4.2), we here choose suitable partitions of $[0,\infty)$ and [0,T] to reduce (4.9) to linear constraints of parameters. That is to say, we charge a penalty if any integrals of $g_M(x)$ over the subintervals in $[0,\infty)$ are negative valued. Similar penalty is made for the second inequality in (4.9). More detail is described in Ogata & Katsura (1983).

The occurrence time data in Appendix A2 is selected from the Seismological Bulletin of JMA with the following restrictions; time interval between 1965 and 1980, shallow depth (H<60 kilometer), Richter magnitude M>3.5, and rectangle region from 131°E to 137°E and from 34°N to 38°N. The most shocks took place in the Inner Zone of the Southwest Japan. Here this is reproduced after the transformation into i-day, i.e., the time scale unit is one-day with the origin 0 of the time being equated to the 1st of January 1965. Before fitting the model (4.6) to the data, we had to fit the simpler model (4.4) to find a guess of the optimal exponential coefficient c in the response function (4.5). Orders M up to 15 were examined. M=9 attained the minimum AIC and the maximum likelihood estimate is c=1.854 [see Ogata, Akaike and Katsura (1982) detail for the calculation procedure]. In order to examine the effect of seasonality, T_0 =365.25 in addition to M=9, c=1.854, was fixed in (4.6), and all the pairs (K,J) was examined up to 5 and 15, respectively. We obtained the second part of Table 3 below of AIC values. Also the first part was similarly obtained with the restriction of M=0, i.e., no effect of clustering.

TABLE 3 SOUTHWEST JAPAN DATA

clustering restrictions	M=0			M=9 (c=1.854)				
other restrictions	K=0 J=0	K=0 J≠0	K≠0 J=0	K≠0 J≠0	K=0 J=0	K=0 J ≠ 0	K≠0 . J=0	K≠0 J≠0
minimum AIC, attained (K,J)	3037.7	3017.3	3015.2 (4,0)	3001.6 (4,9)	2854.1	12853.5 (0,1)	2849.5* (4,0)	2851.0 (4,1)

Comparing the AIC values, existence of clustering is clear. Moreover it is suggested that the seasonal effect exists but that the evolutionary trend is constant, since the overall minimum AIC is attained by (M,K,J)=(8,4,0). This was confirmed by comparing the similar tables for some other possible values c. Figure 2 displays the estimated shape of the clustering and seasonality components of the minimum AIC model (the trend component is not included since it is just constant $\mu=0.0562$).

It is suggested in Oike (1977) that the monthly distribution of frequency of shallow shocks in the Inner Zone of the Southwest Japan shows the similar pattern to the rates of change of mean monthly precipitation. In the first graph of Figure 3 we plotted the averaged annual distribution of precipitations (broken line) over 30 years from 1941 through 1970 at Takamatsu, Shikoku Island, and its smoothed line obtained through BAYSEA programed by Akaike and Ishiguro (1980). This is more or less the common seasonal pattern throughout the Southwest Japan, except the area along the coast of Japan Sea where it is snowy in winter. The second graph shows the increasing rate (derivative) of the smoothed precipitation, which has similar variations to the seasonal component of Figure 2, especially at the typhoon season around early September and next to the dry season in winter. As is seen here, it is understood that the drastic change of rainfall can be a triggar of earthquakes.

FIG.2 DECOMPOSED COMPONENTS

FIG.3 PRECIPITATION AVERAGE AND ITS CHANGE RATE

4.2. Relationship between shallow and deep seismicity

We extend the model (4.6) to the following

$$\lambda(t|F_{t}) = \mu + P_{J}(t) + c_{K}(t) + \sum_{i < t} g_{M}(t-t_{i}) + \sum_{u_{i} < t} h_{N}(t-u_{j})$$
(4.10)

where $\{u_j\}$ is another series of events considered as an input of the C.I.F. system, and the response function $h_N(x)$ is parameterized similarly to (4.5),

$$h(x) = \sum_{n=1}^{N} b_n x^{n-1} e^{-dt}$$
 (4.11)

If there is no causal relation between the input $\{u_j\}$ and the output $\{t_i\}$, the response function will be h(x)=0 for all $x\ge 0$. Otherwise we are interested in knowing an approximate shape of h(x).

This model was applied to earthquake occurrence data supplied by Seismological observatory, Geophysics Division, DSIR of New Zealand for shallow and deep earthquakes in a region covering the North Island area, New Zealand, from 1946 through 1980. The area used was a quadrilateral with vertices at the points (40°S, 170°E), (35°S, 175°E), (39°S, 177°W) and (44°S, 178°E), and the shocks with magnitudes 5.5 or over were classified in the following two groups; shallow events with the depth H<40km and deep events with H>150km. Appendix A3 is reproduced after transformation into i-day, i.e., the time scale unit is one-day with origin 0 of the time being equated to the 1st of January 1946. Since several aftershock events or swarms seems to be contained mainly in the earliest part of shallow earthquakes, we removed all such shocks that are clustering both in space (within a sphere with radius 30km) and time (within three months interval), except only one shock with the largest magnitude in each cluster. Similar process was made for the deep group of shocks. The numbers with an asterisk in Appendix A3 are such events to be omitted. In order to confirm that no clustering events are included in both the shallow and deep groups of events, we could have fitted (4.10) to each data. Instead, to save the computing time, we first fitted (4.4) with (4.5) of several orders to find a guess for the scaling parameter c and the order M>1, and then fitted the model (4.6) for all pairs (K,J) up to 5 and 9, respectively, by the same way as in the previous section. The values of AIC to each models are listed in Tables 4 and 5.

TABLE 4 SHALLOW SHOCKS

clustering restrictions	M=0			M=1 (c=0.312x10 ⁻²)				
other restrictions	K=0 J=0	K=0 J≠0	K≠0 J=0	K≠0 J≠0	K=0 J=0	K=0 J≠0	K≠0 J=0	K≠0 J≠0
minimum AICs, attained(K,J)	743.8 (0,0)	724.4* (0,8)	741.6 (1,0)	725.4 (1,7)	738.3	729.4 (0,7)	735.6 (1,0)	729.4 (1,7)

TABLE 5 DEEP SHOCKS

clustering restrictions	M=0			M=1 (c=0.180x10 ⁻²)				
other restrictions	K=0 J=0	K=0 J ≠ 0	K≠0 J=0	K≠0 J≠0	K=0 J=0	K=0 J≠0	K≠0 J=0	K≠0 J≠0
minimum AICs, attained (K,J)	1014.2	1011.8*	1015.6	1013.6	1016.0	1015.2	1016.2	1016.5

Especially it is suggested that the seasonal effect does not exist in both the shallow and deep earthquakes with magnitude M \geq 5.5, although we cannot deny it very definitely for the shallow group because of the small difference between the minimum and second minimum AICs. (Incidentally it was found that the shallow shocks with smaller magnitude (say M \geq 5.0) clearly showed the seasonality.) Thus these preliminary results lead us to the use of the following simpler model than (4.10) to investigate the causal relations between the two series of shocks.

$$\lambda(t|F_t) = \mu + P_J(t) + \sum_{u_j < t} h_N(t-u_j)$$
 (4.12)

First, the series of shallow series is considered as the output $\{t_i\}$ and deep ones as the input $\{u_i\}$. A very practical and computationary efficient procedure is realized by restricting the exponential coefficient d in (4.11) to some finite number of candidate values [say, $d_j = [(\sqrt{5}-1)/2]^j$, j=8,9,...,20 in the present case] and by comparing AIC values among the all doublets (N,J) up to N=5 and J=9, respectively. The Table 6 below presents the minimum AIC values with selected orders (N,J) and d_i among each restrictions.

TABLE 6 SHALLOW SHOCKS

restrictions	N=0, J=0	N=0,J≠0	N≠0,J=0	N≠0,J≠0
minimum AICs dj attained attained(N,J)	743.9	725.0*	745.9 any (1.0)	728.5 0.107x10 ⁻³ (1.8)

Comparing the Table 6 with Table 4, the overall minimum AIC was attained at the model of only trend components with J=7. This may suggest that the occurrence of the shallow earthquakes is not stimulated by the deep earthquakes. The first graph in Figure 4 below displays the shape of the estimated trend of shallow shocks. Histograms for number of shallow shocks in yearly intervals are also included.

To see what happens in the opposite direction, the values of AIC of the models (4.12) with the deep series as output $\{t_i\}$ and the shallow series as

input were calculated for all different pairs of orders (N,J) up to N=5 and J=9, respectively, at each fixed $d_j = [(\sqrt{5}-1)/2]^J$, $j=8,9,\cdots,19$. Table 7 lists the AIC values of orders (N,J) with $d_{15}=0.453 \times 10^{-3}$ which contains the overall minimum AIC among the different d_j . Thus the overall minimum AIC is attained at J=0 and N=1, and the estimated parameters of the model (4.12) are $\mu=0.000$ (shocks/day), c=0.453x10⁻³ (1/day) and $b_1=0.727 \times 10^{-3}$ (shocks/day). The second graph in Figure 4 displays the estimated intensity (earthquake risk) of deep series with histograms for numbers of deep shocks in yearly intervals.

TABLE 7 DEEP SHOCKS

restrictions	N=0,J=0	N=0,J≠0	N≠0,J=0	N≠0,J≠0
minimum AICs	1014.2	1011.8	1007.8*	1009.9
d _j attained attained(N,J)	(0.0)	(0,1)	0.453x10 ⁻³ (1.0)	0.453×10^{-3} (1,1)

FIG.4 ESTIMATED INTENSITIES AND YEARLY HISTOGRAMS

The results of the above two analyses clearly show that the earthquake occurrences in deep region, northern New Zealand, significantly receive one-way stimulation from earthquake occurrences in shallow region. Some readers may be remind of the results by Ogata, Akaike and Katsura (1982) in which the existence of the opposite one-way stimulation is concluded by the similar analysis of Utsu data (Utsu, 1975) in Japan. It was found after the present analysis that these two types of relationship between the shallow and deep seismicity in the sestern Pacific region was already discussed by Mogi (1973). Especially he found that the seismic activity in Mariana and Tonga areas

gradually migrated from the shallow to the deep regions within the descending lithosphere, while the opposite migration is found in the Kurile-Kamchatka and northern Japan island-arc region. The migration rate or speed along the deep seismic zone of Tonga arc suggested by Mogi is about 45km per year, with which the above estimated response impulse function seems to be consistent (the mean distance between shallow and deep group of shocks of the data A3 is about 180km). These may indicate that the similar tendency is kept within the Tonga-Kermades-New Zealand techtonic zone.

ACKNOWLEDGEMENTS

I would like to thank to Drs W. D. Smith and M. Reyners and to the Department of Scientific & Industrial Research, New Zealand, for discussions and for supplying data of the present analysis. I am most grateful to Mr. Koichi Katsura for the generous help in calculating the tables and drawing the necessary figures. I am also grateful to Mrs. Mitsue Hasegawa who typed the manuscript with great care and diligence. This work was done as a part of the special research project on the statistical information processing of massive time series data in the Institute of Statistical Mathematics.

BIBLIOGRAPHY

- Akaike, H., 1974, A new look at the statistical model identification, <u>IEEE</u> Transactions on Automatic Control AC-19, 716-723.
- Akaike, H., 1977, On entropy maximization principle. Application of Statistics (P. R. Krishnaiah, ed.), 27-41. Amsterdam: North-Holland.
- Akaike, H., 1983, Information measures and model selection, Proc.44th Session of ISI.
- Akaike, H. and Ishiguro, H., 1980, BAYSEA-a Baysian seasonal justment program, Computer Science Monographs, No. 13, The Institute of Statistical Mathematics, Tokyo.
- Cox, D. R. and Lewis, P. A. W., 1966, <u>The Statistical Analysis of Series of Events.</u> London; Methuen.
- Fletcher, R. and Powell, M. J. D., 1963, A rapidly convergent descent method for minimization, Computer J., 6, 163-168.
- Hawkes, A. G. and Adamopoulos, L., 1973, Cluster models for earthquakes regional comparison. <u>Bull</u>. <u>Int</u>. <u>Statist</u>. <u>Inst</u>. <u>45</u>, 454-461.
- Hawkes, A. G., 1971, Point spectra of some mutually exciting point processes. J. R. Statist. Soc., B. 33, 438-443.
- Lewis, P. A. W., 1970, Remarks on the theory, computation and application of the spectral analysis of series of events. J. Sound Vib. 12, 353-75.

- Lewis, P. A. W., 1972, Stochastic point processes. Wiley, New York.
- Lewis, P. A. W. and Shedler, G. S., 1976, Statistical analysis of non-stationary series of events in a data base system, <u>IBM J. Res. Develop.</u>, 5, 429-528.
- Lewis, P. A. W. and Shedler, G. S., 1979, Simulation of non-homogeneous Poisson processes by thinning, Naval Res. Logistics Quart., Vol. 26, No. 3, 403-413.
- Maclean, C. J., 1974, Estimation and testing of an exponential polyhomial rate function within the non-stationary Poisson process, Biometrika 61, 81-86.
- Mogi, K., 1962, On the time distribution of aftershocks accompanying the recent major earthquakes in and near Japan, <u>Bull</u>. <u>Earthquake</u> <u>Res</u>. <u>Inst</u>., Univ. of Tokyo, 40, 107-124.
- Mogi, K., 1973, Relationship between deep and shallow seismicity in the Western Pacific region. Tectonophysics 17, 1-22.
- Ogata, Y., 1978, Asymptotic behaviour of the maximum likelihood estimators for the stationary point processes, Ann. Inst. Statist. Math., 30, A, 243-261.
- Ogata, T., 1981, On Lewis' simulation method for point processes, <u>IEEE Trans.</u>
 <u>Inform. Theory</u>, <u>IT-27</u>, 23-31.
- Ogata, Y. and Akaike, H., 1982, On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes, <u>J. R. Statist. Soc.</u>, <u>B</u>, 44. No. 1, 102-107.
- Ogata, Y., Akaike, H. and Katsura, K., 1982, The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process, <u>Ann. Inst. Statist. Math.</u>, <u>34</u>, <u>B</u>, 373-387.
- Ogata, Y., 1983, Maximum likelihood estimation of the parameters in the modified Omori formula for aftershock sequences, submitted to <u>J. Phys. Earth.</u>
- Ogata, Y. and Katsura, K., 1983, Point process models with linearly parameterized intensity for the application to earthquake catalogues, preprint.
- Oike, K., 1977, On the relation between rainfall and the occurrence of earthquakes, <u>Bull Disas</u>. <u>Prev. Res. Inst.</u>, 20, Bl, 35-45, (in Japanese).
- Ozaki, T., 1979, Maximum likelihood estimation of Hawkes' self-exciting point processes, Ann. <u>Inst. Statist</u>. Math., 31, B, 145-155.
- Ozaki, T., 1981, Statistical models in hydrology, <u>Mathematical Sciences</u>, No.213, 37-44, (in Japanese).
- Sakamoto, Y. and Akaike, H., 1978, Analysis of cross classified data by AIC, Ann. Inst. Stat. Math., Vol. 30, No. 1, B, 185-197.

- Utsu, T., 1961, A statistical study on the occurrence of aftershocks. Geophys. Mag., 30, 521-605.
- Utsu, T., 1975, Correlation between shallow earthquakes in Kwanto region and intermediate earthquakes in Hida region, central Japan, Zisin (J. Seism. Soc., Japan), 2nd Ser., 28, 303-311 (in Japanese).
- Vere-Jones, D., 1970, Stochastic models for earthquake occurrence (with discussion). J. R. Statist. Soc., B. 32, 1-62.
- Vere-Jones, D., 1978, Earthquake prediction A statistician's view, J. Phys. Earth, 26, 129-146.
- Vere-Jones, D. and Ozaki, T., 1982, Some examples of statistical inference applied to earthquake data, Ann. Inst. Stat. Math., 34, 189-207.
- Vere-Jones, D. and Smith, E. G. C., 1981, Statistics in seismology, Commun. Statist. Theor. Mech., Alo (15), 1559-1585.

SUMMARY

The conditional intensity function is known to characterize a point process, and also provides the explicit form of the likelihood function. In this paper classes of flexible parametric models are developed to carry out the maximum likelihood calculation efficiently. Model selections are performed by using the Akaike Information Criterion. The modified Omori model is fitted to investigate the reducing rate of aftershock frequencies. Then the linearly parameterized intensity models are fitted to carry out the decomposition of the intensity of events into components of evolutionary trend, clustering and periodicity (seasonality), and also to investigate the causal relationship betwen two data sets of point processes. For the demonstration of the use of these models, Japanese and New Zealand earthquake data are considered.

RESUME

Il est connu que la fonction d'intensité conditionelle caractérise un processus ponctuel, et elle donne aussi une forme explicite de la fonction de vraisemblance. Dans cet article nous développons des modèles paramétriques flexibles pour executer les calculations du maximum de vraisemblance d'une manière efficace. Pour la sélection d'un modèle nous nous servons du critère d'information de Akaike. Le model de Omori modifié est ajusté pour examiner le degré de réduction dans la fréquence des répliques d'un séisme. Ensuite nous ajustons des modèles où l'intensité dépend linéairement des paramètres pour effectuer la décomposition de l'intensité des évènements en composants d'une tendance évolutionnaire, des agglomérations et des périodicités saisonnières. En plus, nous étudions à l'aide de ces modèles les rapports de cause entre deux processus ponctuels. Pour démontrer l'usage de ces modèles, nous considérons des données des tremblements de terre au Japon et en Nouvelle-Zélande.

APPENDIX Al AFTERSHOCK, OFF TOKACHI (1968)

```
0.01100
            0.04369
                       0.08969
                                   0.11621
                                              0.14363
                                                         0.15708
                                  0.19645
                                              0.20540
 0.17309
            0.18245
                       0.18492
                                                         0.23708
                                              0.33174
 0.24163
            0.27717
                       0.29173
                                  0.31325
                                                         0.33979
            0.40982
                       0.46422
                                  0.47268
                                              0.48997
 0.35182
                                                         0.49773
 0.51948
            0.52165
                       0.52568
                                  0.52831
                                              0.54211
                                                         0.55122
 0.56068
            0.58583
                       0.60519
                                  0.62755
                                              0.64223
                                                         0.64785
 0.66695
            0.68950
                       0.69397
                                  0.71203
                                              0.74614
                                                         0.76936
            0.80197
                       0.80810
                                  0.81478
 0.77273
                                              0.82781
                                                         0.84341
 0.85905
            0.92775
                       0.96027
                                  0.96360
                                              0.98300
                                                         1.06913
                                              1.23307
 1.07900
            1.13786
                       1.15800
                                  1.18794
                                                         1.34233
 1.41237
            1.47533
                       1.50953
                                  1.58627
                                              1.63436
                                                         1.69381
            1.74532
                       1.79169
 1.72789
                                   1.83837
                                              1.90785
                                                         1.93630
 2.02421
            2.16822
                       2.17161
                                   2.26080
                                              2.34640
                                                         2.50454
 2.55484
            2.61444
                       2.69351
                                   2.76961
                                              2.98542
                                                         3.05856
            3.38830
                       3.51007
                                  3.51543
                                              3.59393
 3.08916
                                                         3.89434
 4.07141
            4.10237
                       4.14293
                                  4.15874
                                              4.19909
                                                         4.22666
 4.25323
                       4.57145
            4.27662
                                  4.65105
                                              4.69091
                                                         4.96440
 5.07029
            5.14060
                       5.59815
                                  5.61047
                                              5.63574
                                                         6.17669
 6.41875
            6.44076
                       6.58421
                                  6.62539
                                              6.77814
                                                         6.93738
 7.56702
            7.84637
                       7.96353
                                  8.54567
                                              8.55380
                                                         8.79083
 8.86494
            8.95041
                       9.46113
                                  9.53404
                                              9.56256
                                                        10.55232
10.70331
           10.73993
                      10.92384
                                 11.22847
                                             11.40914
                                                        12.48086
12.57044
           12.77230
                      12.92481
                                 13.33782
                                             14.34405
                                                        15.79381
                      17.29936
16.00492
           16.40479
                                 18.20746
                                             19.59813
                                                        19.61244
19.68538
           20.26890
                      20.35707
                                 21.15397
                                             21.73091
                                                        21.85302
22.91530
           23.08034
                      23.83741
                                 24.54115
                                             24.71548
                                                        25.07625
           27.53669
                      27.56146
                                 27.56833
                                                        27.57589
26.84277
                                             27,56978
27.57998
           27.58546
                      27.58830
                                 27.59719
                                             27.60761
                                                        27.61828
27.62505
           27.64888
                      27.65299
                                 27.69053
                                             27.71048
                                                        27.74997
27.75473
           27.78295
                      27.78458
                                 27.79136
                                             27.80853
                                                        27.81350
           27.88108
                      27.89537
                                 27.91885
                                                        27.99536
27.85259
                                             27.96951
           28.05332
                      28.20552
                                 28.33283
                                             28.46351
                                                        28.58843
28.03750
           28.77940
                      28.84838
                                 28.95079
                                             28.99805
28.64424
                                                        29.00622
29.03314
           29.10370
                      29.21953
                                 29.32843
                                             29.46091
                                                        30.06984
                      30.79464
                                 31.24376
                                             31.45073
30.11277
           30.46851
                                                        31.82627
                      32.67176
32.46113
           32.66390
                                 32.75118
                                             32.75589
                                                        32.89470
           33.33858
                      33.68177
                                 34.03428
                                             34.71836
33.28421
                                                        34.76673
35.30988
           35.72465
                      35.76244
                                 36.64848
                                             37.01642
                                                        37.34667
37.42843
           38.17289
                      38.18864
                                 38.56786
                                             40.94748
                                                        41.21214
41.39927
           41.81761
                                 42.87870
                      42.68266
                                             42.93399
                                                        43.05714
43.36220
           43.37167
                      43.56603
                                 43.72753
                                             44.14713
```

0.55185	56.65478	59.01948	59.16178	62.18566
64.05680	65.12051	92.32569	95.79133	98.72842
127.12600	147.70163	148.72135	165.43222	195.80255
196.36056	200.54450	285.52526	345.66464	350.28550
351.89263	361.15919	379.80892	388.74662	430.37357
433.53381	435.06099	441.51291	471.15394	479.59011
490.00923	510.32620	530.72962	539.14792	544.89024
579.44229	585.34047	611.20516	634.90734	640.23018
645.35955	672.23544	680.93440	682.96206	726.03466
731.23352	752.66424	772.16355	829.99117	833.48425
921.73438	948.86906	972.23092	986.40002	994.93872
1001.19558	1001.34239	1005.59203	1064.89725	1081.61927
1114.48029	1118.70253	1130.71283	1139.48016	1156.44833
1156.45170	1164.91750	1166.76617	1173.52309	1179.44324
1184.16978	1184.17336	1184.21202	1187.11158	1207.27947
1217.44484	1218.93505	1224.97367	1225.00237	1245.82624
1254.34396	1288.85767	1296.30555	1298.72971	1325.67515
1325.67583	1325.68042	1325.87783	1328.32205	1329.55334
1330.68395	1334.91578	1334.95340	1335.68149	1338.46816
1341.26278 1364.28576 1448.28505 1509.40968 1611.82267 1646.76105 1713.24800 1736.42365 1782.40752 1828.61271	1342.00045 1371.20434 1462.90059 1509.61797 1625.04391 1649.32815 1713.49728 1745.20457 1789.95391 1884.50997	1345.06682 1374.19173 1497.37353 1534.02095 1628.07315 1650.48924 1714.75652 1751.07522 1798.90806 1896.90339	1349.61746 1383.16239 1507.85904 1534.43275 1631.64834 1650.80683 1715.15177 1757.97728 1814.88640 1897.93545	1356.65760 1419.75774 1509.28969 1602.03184 1631.67208 1697.33640 1721.09402 1766.45231 1824.05900
1905.52766 1937.98594 2020.51029 2058.15813 2159.55232 2333.35761 2455.42316 2576.62651 2644.28946 2692.85181	1907.28831 1952.71955 2034.52809 2058.24565 2179.64903 2337.19204 2483.22290 2576.64644 2660.18686 2694.55578	1918.41820 1962.57998 2036.30898 2058.58172 2216.38497 2362.76923 2488.15882 2588.77666 2660.19307 2704.85473	1922.07066 1966.71480 2039.06502 2097.79973 2316.21012 2441.32421 2518.67510 2590.92311 2675.74525 2764.63290 (to	1935.75074 1967.29349 2042.95791 2152.04680 2325.55703 2449.92620 2558.78623 2619.01751 2676.43205 2780.25576 be continued)

(continued from the previous page)

```
2799.70438
             2799.71344
                          2802.89975
                                        2806.72866
                                                     2813.58704
                                        2857.13280
2813.63042
             2824 • 46666
                          2848.20496
                                                     2889.70304
             2928.49221
                                        2932.44707
                          2932.09026
2916.18634
                                                     2943.82783
                          2976 • 54425
                                        2977.79843
             2975.66524
2956.33346
                                                     2989.81326
3011.76138
             3018.72086
                          3053.96415
                                        3100.24275
                                                     3158.79924
             3185.47297
3176.74081
                          3185.64119
                                        3185.84667
                                                     3186.42340
                                        3199.74833
3188.16275
             3191 • 15034
                          3191.15064
                                                     3221.57226
                          3304.28662
3250.38737
             3266.96397
                                        3304.54439
                                                     3310.33258
3324.18685
             3327.74423
                          3327.88124
                                        3338.59219
                                                     3348•46860
             3407.25617
                                        3514.92551
3372,93329
                          3469.37662
                                                     3526.61785
3539.35063
             3548.98228
                          3598.06678
                                        3607.11951
                                                     3640.75782
3712.69058
             3724.95575
                          3739,68287
                                        3743.56293
                                                     3779.01948
             3807.88796
                          3825.95069
3801.09786
                                        3831.85249
                                                     3874.78978
                                        3943,99778
3915.68364
             3918.44677
                          3942.83565
                                                     3952,58585
3977.95725
             4008.65548
                          4029.39121
                                       4035.80705
                                                     4044.46137
4052.40273
             4069•48951
                          4077 • 86940
                                        4121•26526
                                                     4124.34496
4222.40844
             4224.91823
                          4245.36516
                                        4249.43524
                                                     4268.60349
4274.90441
             4278.36109
                                        4294.17949
                          4291.31875
                                                     4308.20432
             4349 • 82554
                                        4372.33647
4332.25341
                          4364 • 16630
                                                     4378.45107
             4387.32612
                          4398 • 55300
                                        4398.60136
                                                     4398.68947
4386.11664
                          4504 • 05767
             4442.90365
                                        4504 • 17173
                                                     4505.81063
4422.42947
4532.18817
             4563.58544
                          4598.03987
                                        4600 • 11427
                                                     4601.18561
4602.08987
             4602.12206
                          4603.73318
                                        4609.87719
                                                     4611.02270
4611.19981
             4612.20087
                          4638 • 28655
                                        4643.51537
                                                     4655.68277
4674.97260
             4711.53715
                          4741.65435
                                        4754.25089
                                                     4774.83453
                                                     4840.46120
4786.14808
             4799.34710
                          4830 • 48213
                                        4834.11215
4843.02679
             4853.35591
                          4877 • 91041
                                        4893.94684
                                                     4894.80278
4902.21103
             4902.21313
                          4902.21466
                                        4902.21662
                                                     4902.22050
4902.22509
             4902.22925
                          4902,25219
                                        4902.26457
                                                     4902.26589
                          4902.31592
4902.26915
             4902.27705
                                        4902,45701
                                                     4902.80177
                                                     4935.47644
4902.91548
             4903.00243
                          4911.01123
                                        4912.48898
             4958.57329
                          4974.33823
                                        4993.06744
                                                     4993.13424
4937.98475
                          5027.55475
4996.64507
             5026.83155
                                        5030 • 13227
                                                     5030.16836
             5048.47794
                          5060.75177
                                        5086.35009
                                                     5146.00717
5040.66680
5148.13041
             5157.75353
                          5164.19986
                                        5169.74059
                                                     5172.34240
                          5187 • 44198
                                        5188.93280
                                                     5193.68007
             5183.82193
5180.82862
             5213.51724
5211.92563
                          5214.58261
                                        5219.85166
                                                     5262.43953
5264.31457
             5295.34517
                          5344.18178
                                        5361.84670
                                                     5367.39926
5371.42530
             5373.42047
                          5398.68750
                                        5399.07227
                                                     5401.32360
5437.35839
             5474.99587
                          5479.94386
                                        5483.00279
                                                     5500.25971
5561.45085
             5591.59966
                          5619.43774
                                        5619.71275
                                                     5674.48433
5710.19205
             5732.86537
                          5738.77498
                                        5739.50621
                                                     5739.59513
             5755.10489
                                        5814.00892
5748.89628
                          5758.31471
                                                     5833.95446
5837.95174
             5842.76251
```

APPENDIX A3 NEW ZEALAND DATA, 1946-1980

SHALLOW EARTHQUAKES

34.908	42.262	56.230	128.174	266.278
311.268	448.856	489.087	501.296	603.568
603.681*	604.630*	611.587*	615.917*	622.385
676•945*	874.725	1005.915	1043.208	1070.347*
1073.845	1257.219	1447.400	1467.598*	1472.867
1472.868*	1494.671*	1519.791	1532.402*	1610.841
1708.086	1866.144	1938.285	2000.196	2101.735
2430.445	2632.467	3681.363	3681•418*	3724•655*
4013.600	4069.021	4240.217	4250.242	4413.273
4781.975	4889.290	5110.999	5146.098	5255.043
5839.992	5866.285	5973.188	6088.845	6108.631
6113.611*	6310.362	7105.389	7367.999	7417.284
8339.064	9248.605	9912.613	10285.583	10535.444
10752.425	10986.126	11035.749	11035.754*	11339.237
12695.648	12745.182			•

DEEP EARTHQUAKES

412.409	556.215	717.670	736.894	873,507
957.848	1109.196	1134.730	1146.810	1244.759
1473.426	1511.448	1628.664	1662.199	1704.013
1837.492	1912.080	2026.420	2133.849	2688.808
2702.054	2715.859	2828.067	3485.090	3611.878
3662.236	3671.751	3690.440	4003.238	4089.383
4489.158	4662.318	4726.294	4771.451	4853.052
4900.721	4959.862	5063.231	5194.064	5194.067*
5198.978	5198.979*	5296.561	5324.660	5375.129
5435.262	5511.523	5685.388	5746.591	5920.673
6013.262	6116.473	6231.035	6378.694	6626.075
6717.932	7020.256	7280.352	7281•754	7373.293
7378.701	7482.428	7482.908	7509.451	7667.964
7792.451	8005.724	8159.379	8203.749	8339.574
8690.684	9175.337	9235.026	9865.579	9874.840
10034.950	10222.256	10413.649	11091.209	11312.851
11395.522	11436.076	11545.617	11952.446	12357.397
12773.841				