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AIM: To show how B̊ath’s law arises in an
elementary aftershock model

I. Model Assumptions and Basic Model
Properties

(a) The magnitudes of successive events in a sequence are distributed identi-

cally and independently (independently also of the number N(M ∗) in the

sequence) with common distribution

1 − F (M) = Pr{Mag > M} = e−β(M−M0) = 10−b(M−M0) ;

β ≈ 2.30b. (1)

(Notes: M0 here is a scaling origin, commonly but not necessarily related

to catalogue completeness. For mathematical convenience, in the rest of the

poster we use logarithms to base e rather than to base 10, hence β rather

than b.)

(b) The aftershock structure is determined by the magnitude of the initiating

event. In particular, the expected number E[N(M ∗)] ≡ µ(M ∗) of events

above the threshold M0, and generated by an initiating event of magnitude

M∗, is assumed to satisfy the scaling relation

µ(M∗) = Aeα(M∗−M0), (2)

Figure 1(a) compares (2) with the empirical results from the California

data, as described in Section IV, with α = β and b = 0.91 from Reasenberg

and Jones (1989).

(c) It follows that the expected number of events above some intermediate

threshold Mc, given an initiating event of size M ∗, is given by

µ(Mc | M ∗) = p µ(M ∗) = e−β(Mc−M0)A eα(M∗−M0), (3)

since each of the initial events has the same probability p = e−β(Mc−M0) of

reaching the threshold Mc.

(d) The expected number of events larger than the initiating event is thus given

by

ρ(M∗) ≡ µ(M ∗ | M ∗) = Ae(α−β)(M∗−M0). (4)

If α > β the system is essentially unstable since the larger the event the more

likely it is to produce an even larger aftershock. Thus interest centres on sys-

tems with α ≤ β, and particularly with the case α = β, which corresponds

to the critical case in branching models and is associated with self-similarity.

(e) If the right side of (4) is small enough (say below 10%), then

Pr{largest aftershock ≥ M ∗} ≈ ρ(M ∗) = Ae(α−β)(M∗−M0). (5)

The left side here can be interpreted as the probability that the initiat-

ing event is a foreshock. If α = β, this probability is independent of the

magnitude of the initiating event: ρ(M ∗) ≈ A. Results from the California

data are shown in Figure 1(c) and compared with the proportion .05.
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Figure 1: (a) The cluster size (in log base 10), excluding the initial event, plotted against

M ∗ together with the line log10(A) + b(M ∗ − 2.5), where A = 0.05 and b = 0.91. (b)

The frequency of cluster sizes; the line is for a geometric distribution. (c) The proportion of

initiating events that are foreshocks.

II. Expected value of the magnitude of the
largest aftershock

(a) Now let Mmax denote the magnitude of the largest event in the sequence

(excluding the initiating event). For given N , the distribution of Mmax−M0

is given by

Fmax(M | N) = Pr{Mmax − M0 ≤ M | N} = [1 − e−β(M−M0)]N . (6)

(b) This has mode (1/β) log N and mean

E[Mmax − M0 | N ] =
1

β

[

1 +
1

2
+

1

3
+ . . .

1

N − 1

]

≈
1

β

(

log N + γ
)

(7)

where γ ≈ .577 is Euler’s constant.

(c) Taking expectations over N , using the first order approximation E[log N ] ≈

log[E(N)], and substituting from (2) we obtain

E[Mmax − M0] ≈
1

β
log[µ(M ∗)] =

α

β

(

M∗ − M0

)

+
log A

β
, (8)

whence

E[M∗ − Mmax] =
β − α

β

(

M∗ − M0) −
1

β
log A =

1

β
log ρ(M∗). (9)

This equation reflects Utsu’s (1961) empirical law for the B̊ath’s law

discrepancy.

(d) Equations (5) and (9) link the foreshock probability to the expected dis-

crepancy in B̊ath’s law. Taking A = .05 as a representative value of the

former, and assuming α = β, the model predicts an average B̊ath’s law

discrepancy of about 3/2.3 ≈ 1.3.

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

x

f ∆(x
)

−2 −1 0 1 2 3
0

0.2

0.4

0.6

x
−2 −1 0 1 2 3
0

0.1

0.2

0.3

x

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

f ∆(x
)

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
−2 −1 0 1 2 3
0

0.1

0.2

0.3

x

β = 2.1 (GEO)β = 2.1 (POI) β = 2.1 (NB)

β = 2.3 (POI) β = 2.3 (GEO) β = 2.3 (NB)

 α = 2.5

α = 2.1  
α = 1.7 

 α = 2.7

α = 2.3

α = 1.9

p.d.f. of ∆

α = 1.7 
α = 2.1  

 α = 2.5

α = 1.7 
α = 2.1  

 α = 2.5

α = 2.3
α = 1.9

 α = 2.7

α = 2.3
α = 1.9

 α = 2.7

Figure 2: The p.d.f. of ∆ = M ∗−Mmax with N (M ∗) ∼ POI(λ), GEO(p), and NB(K, p̂),

where M ∗ = 4.5, M0 = 2.5, and A = .05, so that µ(4.5) = Ae2α = λ = 1−p
p = K 1−p̂

p̂ .

The top three graphs correspond to β = 2.1, α = 1.7, 2.1, 2.5, the bottom three to

β = 2.3, α = 1.9, 2.3, 2.7.

III. Distribution of the magnitude of the
largest aftershock

(a) Let GM∗(z) = E(zN) be the probability generating function (p.g.f.) of the

number N = N(M ∗) of aftershock events with M > M0, initiated by an

event of magnitude M ∗. Taking expectations over N in (6), and setting

Mmax = M0 if N = 0, leads to

Fmax(M) = GM∗[1 − e−β(M−M0)]. (10)

(b) Hence, if ∆ = M ∗ − Mmax,

1 − F∆(x) = Pr(∆ ≥ x) = Pr(Mmax ≤ M∗ − x)

= GM∗[1 − e−β(M∗−M0−x)]. (11)

Here negative values of x correspond to cases where the initiating event

acts as a foreshock. Positive values of x are restricted to the region

x ≤ M ∗ − M0, as illustrated by the vertical bars in the Figure 2.

(c) Specific examples can now be studied by selecting particular forms for the

distribution of N(M ∗). Figure 2 shows probability densities for ∆ for three

choices of the distribution of N(M ∗) − Poisson, geometric, and negative

binomial with shape parameter K = 0.2 − and various values of α and β.

The empirical number distribution is shown in Figure 1(b).

(d) All graphs show a peak at close to 1.3, the value suggested by the link to the

foreshock probability referred to earlier. The width of the peak (and hence

the effect of the truncation), varies according to the tail of the number dis-

tribution. It is much broader in the third example, which has the longest tail.

(e) Empirical results are shown for the California data in Figure 3, using a

3-point moving average.

−2 −1 0 1 2 3
0

2

4

6

8

10

12

14

−2 −1 0 1 2 3
0

2

4

6

8

10

12

14

−2 −1 0 1 2 3
1

2

3

4

5

6

fr
eq

ue
nc

y

∆ ∆ ∆

2.95 < M* < 3.05 3.95 < M* < 4.35 4.45 < M* < 5.05 

Figure 3: The frequency distribution of ∆ for various M ∗, obtained from the California data.

The graphs include the magnitude differences of doublets which could not be fitted by ellipses.
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Figure 4: Three examples of the ellipse fitting. Each map is centred on the mean of the

epicentre distribution. The width of each map corresponds to twice the search radius of the

mainshock as given in the caption of each figure.

IV. Comparison with the California Data

Although the model is crude, it can be put into rough comparison with empirical

data provided one can find objective and consistent definitions of an ‘initiating

event’ and a ‘sequence’. For this purpose we used the methodology developed

by Christophersen (2000), as outlined briefly below, on California data from the

ANSS (Advanced National Seismic Systems) for 1984−2004 between latitude

31−43 North and longitude 127−112 East. Data were restricted to events with

depths shallower than 40 km and magnitudes above 2.49.

We defined earthquake clusters via a two step process. First the catalogue was

searched for sequences containing at least one earthquake above a minimum

magnitude (3 was chosen in the examples illustrated). Events considered as

possibly belonging to the sequence associated with any one such earthquake

were required to lie within a radial distance from the largest event in the se-

quence, following Uhrhammer (2005); radii of 4 km, 9km, 20km, 45km to 92

km were used to define regions associated with earthquakes of magnitude, 3, 4,

5, 6, and 7 respectively. A time delay of at most 10 days from the previous most

recent event associated with the sequence was used to determine the duration

of the sequence.

Each initial sequence with at least 3 earthquakes was then fitted by an ellipse

using the scatter of the epicentres (for more details see Christophersen, 2000).

Figure 4 shows three examples illustrating three different magnitudes for the

initiating event. The first event in time that occurred within the ellipse was

defined as the initiating earthquake for the purposes of the previous analysis.

We calculated the magnitude difference between the initiating event and the

largest earthquake within the ellipse, or the second largest if the largest earth-

quake occurred first.

V. Discussion

Despite the simplicity of the model, there are good qualitative and even quanti-

tative agreements between the predictions of the model and the empirical data.

The most obvious discrepancies relate to the distribution of the numbers of

events for an initiating event of given magnitude. The real data include com-

plex sequences with several stages or branching episodes, which are not well

captured within this simple model framework. However, the broad agreement

with the scaling relation (4), the near constancy of the foreshock probability

(9), and, perhaps less convincingly, the shape of the B̊ath’s law discrepancy ∆,

all suggest that switching the focus of the discussion from the magnitude of the

largest event in the sequence, to the magnitude of the initiating event has some

basis in the physical reality which the model is trying to capture.

Overall, the model and analysis provide support for the idea that B̊ath’s law

does not have a separate physical cause, but is rather a consequence of basic

scaling relationships for the magnitudes of the earthquakes and the events re-

lated to them. Some further discussions of this issue are listed in the references.
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