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Abstract

In this paper we propose a clustering technique to separate and find out the two
main component of seismicity: the background seismicity and the triggered one.
The method here proposed assigns each earthquakes to the cluster of earthquakes
or to the set of isolated event according to the intensity function. This function
is estimated by maximum likelihood methods following the theory of point process
and iteratively changing the assignment of the events. This technique develops non-
parametric estimation methods and computational procedure for the maximization
of the point process likelihood function.

1 Introduction

Because of the different seismogenic features controlling the kind of seismic release of
clustered and background seismicity (Adelfio et al. (2005)), to describe the seismicity of
an area in space, time and magnitude domains, it could be useful to study the features
of independent events and strongly correlated ones, separately.

The two different kinds of events give different information on the seismicity of an
area. For the short-term (or real-term) prediction of seismicity and to estimate param-
eters of phenomenological laws we need a good definition of the earthquake clusters.
Furthermore the prediction of the occurrence of large earthquakes (related to the as-
sessment of seismic risk in space and time) is complicated by the presence of clusters of
aftershocks, that are superimposed to the background seismicity and shade its principal
characteristics.

For this purposes the preliminary subdivision of a seismic catalog in background
seismicity and clustered events is required. At this regard, a seismic sequences detec-
tion technique is presented; it is based on MLE of parameters that identify the condi-
tional intensity function of a model that describe seismic activity as a clustering-process,
which represents a slight modification of the ETAS model (Epidemic Type Aftershocks-
Sequences model; Ogata (1988), Ogata (1998)).

2 Previous seismic clustering methods

Several methods are proposed to decluster a catalog. We could identify two main classes:
methods that require the definition of a rectangular time-space window, with size de-
pending on the mainshocks magnitude, around each mainshock (Gardner and Knopoff
(1974)) and methods closed to the single linkage: they identify aftershocks by modelling
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an interaction zone about each earthquake assuming that any earthquake that occurs
within the interaction zone of a prior earthquake is an aftershock and should be consid-
ered statistically dependent on it (Resenberg (1985)). The second class of methods has
the advantage of not imposing a window for the final size or shape of the cluster, but the
choice of coefficients defining the link distances in space and time could be influenced
by researchers experience.

Ogata et al. (2002), to avoid such difficulties, proposes a stochastic method associat-
ing to each event a probability to be either a background event or an offspring generated
by other events, based on the ETAS model for clustering patterns; a random assignment
of events generates a thinned catalog, where events with a bigger probability of being
mainshock are more likely included and a nonhomogeneous Poisson process is used to
model their spatial intensity. This procedure identifies the two complementary subpro-
cess of seismic process: the background subprocess and the cluster subprocess or the
offspring process.

3 Conditional intensity function in point processes

To provide a quantitative evaluation of future seismic activity the conditional intensity
function is crucial. It is proportional to the probability that an event with magnitude
M will take place at time t, in a point in space of coordinates (x, y). The conditional
intensity function of a space-time point process can be defined as:

λ(t, x, y|Ht) = lim
∆t,∆x,∆y→0

Pr∆t∆x∆y(t, x, y|Ht)
∆t∆x∆y

(1)

where Ht is the space-time occurrence history of the process up to time t; ∆t, ∆x,∆y
are time and space infinitesimal increments; Pr∆t∆x∆y(t, x, y|Ht) represents the history-
dependent probability that an events occurs in the volume {[t, t + ∆t) × [x, x + ∆x) ×
[y, y + ∆y)}. The conditional intensity function completely identifies the features of
the associated point process (i.e. if it is independent of the history but dependent only
on the current time and the spatial locations (1) supplies a nonhomogeneous Poisson
process; a constant conditional intensity provides a stationary Poisson process).

Other interesting point processes are defined by different conditional intensity func-
tions. For example, we could consider probability models describing earthquakes cata-
logs as a realization of a branching or epidemic-type point process and models belonging
to the wider class of Markov point processes, that assume previous events have an in-
hibiting effect to the following ones. The first type models could be identified with
self-exciting point processes, while the second are represented by self-correcting pro-
cesses as the strain-release model (Schoenberg and Bolt (2000)).

ETAS model is a self-exciting point process and represents the activity of earthquakes
in a region during a period of time, following a branching structure. In particular it
could be considered as an extension of the Hawkes model (Hawkes (1971)), which is a
generalized Poisson cluster process associating to cluster centers a branching process of
descendants.
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4 The proposed clustering method

The technique of clustering that we propose leads to an intensive computational proce-
dure, implemented by software R (R Development Core Team (2005)).

It identifies a partition of events Pk+1 formed by k + 1 sets: the one of background
seismicity and those of clustered events (k disjoint sets). It iteratively changes the
partition assigning events either to the background seismicity or to the j − th, (j =
1, . . . , k) cluster, given the current partition, on the basis of the likelihood function
variation due to their moving from a set to another one. At each step ML estimation of
seismicity parameters is performed.

4.1 Main steps

Firstly, a starting classification, found by a like single-linkage method procedure, needs.
Moving on, the parameters of the intensity function of ETAS model, describing

clustering phenomena in seismic activity, are estimated, by ML, iteratively. Differently
by ETAS model, in our approach space densities are estimated inside each cluster by
a bivariate kernel estimator. The smoothing constant is evaluated with Silverman’s
formula (Silverman (1986)). Let [T0, Tmax] and Ωxy time and space domains of observa-
tion respectively; according to the theory of point process the likelihood function to be
maximized is:

log L =
n∑

i=1

log λ(xi, yi, ti)−
∫ Tmax

T0

∫
Ωxy

λ(x, y, t)dxdydt (2)

where:

λ(x, y, t) = λtµ(x, y) +
k∑

j = 1
(tj < t)

gj(x, y)
K0 exp[α(mj −m0)]

(t− tj + cj)pj
(3)

In (3) tj and mj are time and magnitude of the mainshock of the cluster j respec-
tively, gj(x, y) is the space intensity function of the cluster j (computed using the nj

points belonging to the j− th cluster including the j− th mainshock) and µ(x, y) is the
background space intensity function (computed using the n0 isolated points and the k
mainshocks).

In the evaluation of (3) we can have two different parametrization: one with a
common parameter c and a common parameter p for the whole partition and one with k
parameters cj and k parameters pj , varying over each cluster, for each found partition.
The choices can be compared at the end of the procedure.

To move events from their current position, the changes in the likelihood function (2)
for each event of coordinates (xi, yi, ti,Mi) needs: indeed, our iterative procedure moves
seismic events assigning each earthquake either to the set of background seismicity or
to the j − th cluster, according to the term of (3) which is maximized.

The iterative procedure stops when the current classification does not change after
a whole loop of reassignment.
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5 Conclusion

Starting from a seismic catalog, the procedure here proposed returns a plausible sepa-
ration of the components of seismicity and clusters that have a good interpretability.

This method could be the basis to carry out an analysis of the complexity of the
seismogenetic processes relative to each sequence and to the background seismicity, sep-
arately. Indeed parameters that control the way in which strain energy is released could
be strongly different through clusters and isolated events; this could be also observed in
significant differences in the parameter estimates of a phenomenological model applied
to sets of earthquakes relative to the two different processes.
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