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We assume that tectonic seismic activity is given by a superposition of earthquake clusters triggered by
relatively large earthquakes. Based on several established empirical laws in the traditional studies of aftershock
statistics, we construct a space-time point-process model in terms of the conditional intensity function which
needs seven parameters to characterize seismicity in a geophysical region. However, as the data size increases,
each characteristic parameter takes significantly different values from place to place. Thus we further need to
consider a hierarchical extension of the model such that each parameter is a function of location. Specifically, it
is represented by two dimensional piecewise linear function consisting of facets defined on Delaunay tessellated
triangles whose vertices are locations of earthquakes in the data. Then the penalized log likelihood is considered
for the trade-off between the good fit to the data and the uniformity of each function (i.e., the facets of the
piecewise linear function are as flat as possible). A Bayesian method is applied for the optimal tuning of the
trade-off to the long-term earthquake occurrence data in and around Japan. Thus we have spatial images of
the parameter changes (the maximum a posteriori estimate) which show regional characteristics of seismicity.
Our final goal is to detect a space-time volume in which a certain unusual seismicity change is revealed.
For this purpose we consider space-time piecewise linear function defined on Delaunay tessellated tetrahedra
whose vertices are locations and times of earthquakes in the data. Then this function and the previously
estimated space-time conditional intensity function multiply to make a new conditional intensity function,
which is applied to the same earthquake data to estimate the piecewise linear function. The estimation is
carred out by means of the Bayesian method for the similar trade-off. Thus the estimated function shows
a three dimensional image indicating space-time volumes of standard, high or low seismicity relative to the
evaluated activity by the previously obtained space-time point-process model, according to that the function
takes equal to, larger or smaller than 1, respectively. Our serious interest is particularly placed on the last case
called ’relative quiescence’ to see whether this could be useful as a precursor to predict the time and location
of forthcoming large earthquakes.
KEYWORDS: Bayesian smoothing procedure; Conditional intensity function; Delaunay tessellation (2D and
3D); Hierarchical space-time point-process model; Residual image; Relative seismic quiescence;

1 Introduction

Space-time aspects of earthquake prediction have been
developed in seismology on the basis of seismicity data
sets. From studies of the seismicity of the northwest-
ern Circum-Pacific seismic belt, Fedotov (1965) and
Mogi (1968) found that seismic gaps in activity have
been successively filled, within several tens of years, by
a series of great earthquakes without significant over-
lap of their rupture zones. According to the studies a
seismic gap roughly corresponds to the aftershock area
of the forthcoming earthquake, that is, the size of the
gap leads to an estimation of the magnitude of the
predicted earthquake. Furthermore, seismic activity
before a large earthquake can be quiet not only in the
seismic gap but also in its wide neighborhood (Inouye,

1965). Together with the observation of the seismic
quiescence, the gap theory gave successful predictions
in some cases (Utsu, 1968, and Ohtake et al., 1977,
for instance). However, this is not frequently the case
and gaps do not always appear very clearly, especially
in the areas where the background activity is high.
Further, the seismicity pattern is usually very compli-
cated, showing various clustering features which make
it difficult to evaluate the significance of smaller gaps.
Thus, the seismic gap theory seems still under devel-
opment and even controversial (e.g., McCann et al.,
1979; Kagan and Jackson, 1991; and Nishenko and
Sykes, 1993).

In seismology it seems very difficult to make any
other mechanism-based forecasting of seismicity in
time nor space. Namely, seismicity patterns vary sub-
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stantially from event to event, even though some of
the fundamental physical process leading to an earth-
quake may be common to all events. They postulate
that fault zone heterogeneity and complexity are re-
sponsible for the observed variations. Therefore, the
problem of developing stochastic point-process models
for earthquake occurrence may be of great interest to
seismologists.

The ultimate objective of our study is to indicate
the location of the anomalous area as well as the
corresponding temporal anomalies for an intermedi-
ate earthquake prediction. In the similar manner to
the application of the Epidemic Type Aftershock Se-
quence (ETAS) model for detection of relatively quiet
period (Ogata; 1988, 1989, 1992 and 2001), we be-
lieve that the sensitivity in detecting such anomalies
can be amplified by contrasting the observed seismic
activity with the predicted intensity of the considered
space-time volume. In other words, we need a suitable
statistical space-time model for the detection of rela-
tively quiet periods and regions from hypocenter data
of earthquakes. Such a model has to be good enough
to represent the seismicity of the considered wide area
throughout the whole period of the available data.

In this paper, the hierarchical space-time ETAS
(HIST-ETAS) model is derived to represent the var-
ious seismicity patterns in and around Japan. Then
the modeling and method of the residual analysis of
a space-time point process is introduced for the de-
tection of anomalous changes in time relative to the
estimated HIST-ETAS model. These are implemented
to the earthquake occurrence data in Japan region for
illustrating the usefulness of the proposed models and
methods. In Section 2 the data for the illustration
and the basic frame of space-time point-process mod-
eling are explained. In Section 3 the derivation of the
optimal space-time extension of the ETAS model are
reviewed to make a further extension to a hierarchi-
cal version of the model (HIST-ETAS model) where
its parameters are dependent on the location of the
earthquakes (Section 4). To estimate the model, we
need a Bayesian smoothing method. The practical
and numerical aspects of the procedure is also given
in Section 4, where the real application is made for the
data explained in Section 2. The space-time residual
analysis of the model is presented in Section 5. The
last section describes the conclusions.

2 Data and point processes

We use the Hypocenter Data File of Japan Meteo-
rological Agency (JMA) as the source of the data in
this study. We select the data of earthquakes of mag-
nitude (M) 5.0 or larger with depths shallower than
100 km throughout whole Japan (within the rectan-
gular region bounded by 128◦E and 149◦E meridians,
and 26◦N and 47◦N parallels) for the period from 1926
through 1995. There are substantial changes in detec-
tion capability of earthquakes for the last 75 years as
the seismic network of the JMA has been developed.
The threshold magnitude M5.0 is taken because this
earthquake size or larger are regarded to be almost
detected throughout the whole period and the Japan
area except the north-end off-shore and southern end
of Izu-Ogasawara (Izu-Bornin) Islands in early years.
Incidentally, a quake by M5 event is really astonish-
ing, usually causes substantial damages in the region
near to the hypocenter. The accuracy of the hypocen-
ter depth of the JMA catalog was not enough for the
present analysis until 1983, so that we ignore the depth
axis and consider only longitude and latitude for the
location of an earthquake restricting ourselves to shal-
low events down to 100 km depth. Figure 1 shows such
data set of 4586 earthquakes in space and time.

*** Figure 1 around here ***

Thus, we are concerned with point-process models
for the data of occurrence times and locations of earth-
quakes whose magnitudes equal to or larger than a
certain cut-off magnitude Mc (i.e., M5.0 in the present
data). The conditional intensity function λ(t, x, y|Ht)
of a space-time point process is defined as the occur-
rence rate at time t and the location (x, y) conditional
on the past history of the occurrences such that

Prob{an event occurs in dt× dx× dy | Ht}
= λ(t, x, y|Ht)dtdxdy + o(dtdxdy)

where Ht = {(ti, xi, yi,Mi); ti < t} is the history of
occurrence times {ti} up to time t, with the corre-
sponding epicenters {(xi, yi)} and magnitudes {Mi}.

Assuming stationarity, Hawkes’s self-exciting point-
process model (Hawkes, 1971) is extended to the fol-
lowing form

λ(t, x, y|Ht) = µ(x, y) +
∑

{i: ti<t}
κ(Mi) ×

g(t− ti; Mi)f(x− xi, y − yi; Mi) (1)



at a space-time coordinate (t, x, y) ∈ [0, T ] × A. Here
κ(Mi) is the expected number of aftershocks with mag-
nitude Mc or larger, triggered by the event i; g(τ ; Mi)
is probability density in time; and f(x, y; Mi) is spa-
tial probability density. There are various parametric
forms of these functions as described below. Here-
after we represent the conditional intensity function
λθ(t, x, y|Ht) by the parameter vector θ.

Then, given the data of origin times and space co-
ordinates of earthquakes associated with their magni-
tudes {(ti, xi, yi,Mi); Mi ≥ Mc, i = 1, · · · , n} during
a period [0, T ] and in a region A, the log of likelihood
of the model conditional on the sequence of the mag-
nitudes is given by

logL(θ) =
n∑

i=1

logλθ(ti, xi, yi| Ht)

−
∫ T

0

∫ ∫
A
λθ(t, x, y| Ht)dtdxdy. (2)

An important aspect of space-time modeling is para-
metric form of the functions κ(Mi), g(τ ;Mi), and
f(x, y;Mi) in (1). Musmeci and Vere-Jones (1992)
suggest a diffusion type function and a product-
Cauchy form to apply to the Italian historical earth-
quake data. At about the same time, Kagan (1991)
suggested other parametric forms based on the investi-
gations of the second-order statistical features in time
and space of hypocenter catalogs in California (e.g.,
Kagan and Knopoff, 1978, 1980). Ogata (1993) and
Rathbun (1993, 1994) considers a function of products
of the modified Omori decay in time, the Gaussian ker-
nel in space, and the exponential in magnitude.

3 Space-time ETAS models

3.1 The ETAS model

Ignoring the location coordinates, Ogata (1988) in-
troduced a point-process model for earthquake occur-
rence data as the superposition of the modified Omori
functions (Utsu, 1957, 1961) for aftershocks of each
event i such that

λ(t|Ht) = µ+
∑
ti<t

Ki

(t− ti + c)p
. (3)

A crucial point of the model here is that the restriction
among the parameters {Ki} is considered as a func-
tion of the magnitude Mi of the corresponding event

i, besides a reference magnitude M0 of the data set,
according to the exponential function form,

Ki = K0e
α(Mi−M0), (4)

which is based on the assumption that the expected
number of aftershocks are proportional to the after-
shock area. Relevantly, the statistical law between
aftershock area A (km2) and the magnitude M of the
mainshock was discovered by Utsu and Seki (1955)
such that

log10A = M −D, (5)

where D is about 4.0 for all earthquakes (6.0 ≤MJ ≤
8.5) in and around Japan. Interestingly, the intersect
D of the regression line for the earthquakes occurred
in land and sea are significantly different to each other,
while the slope is not so.

Thus, the maximum likelihood estimates (MLE)
of the parameters θ = (µ, c, p,K0, α) is obtained
by the maximization of the same log-likelihood as
in (2) by substituting the conditional intensity in
(3) with (4). The model for ordinary seismicity de-
fined by (3) with (4) in terms of the occurrence rate
of shocks is called the Epidemic Type Aftershock-
Sequences (ETAS) model.

3.2 Extensions of the ETAS model

In order to recover the ETAS model from the space-
time models (1) when the intensity is integrated (i.e.
superposed) with respect to the space variables (lo-
cation coordinates), the cluster size function (average
number of aftershocks for the event of magnitude M)
in (1) is not only set by

κ(M) = K0e
α(M−Mc), (6)

but also, for the time probability density function in
(1), the modified Omori function (Utsu, 1957, 1961)

g(t) =
(p− 1) cp−1

(t+ c)p
(7)

is adopted, which is dependent on the lapse time t
from the occurrence of triggering event but no more
dependent of its magnitude.

As for the spatial response function f in (1) for
the aftershocks, we see mostly that locations of after-
shocks are approximately elliptically distributed (see
Utsu, 1969, for instance) depending on the ratio of



the length to width of the ruptured fault, its dip an-
gle or the location errors of aftershock hypocenters.
Therefore its common form should be

f(x, y;M) =
|Σ|

2πσ(M)
f0

{
(x, y)Σ(x, y)t

σ(M)2

}
, (8)

in which we will examine whether or not the scale fac-
tor σ(M) works corresponding to the Utsu-Seki law
(5), particularly, in the case where an inverse power
function is assumed for f0 (like the above Modified
Omori function); namely, σ(M) may be either depen-
dent of magnitude M or just a constant. Furthermore,
the anisotropic feature of the clusters is modeled by a
positive-definite 2× 2 symmetric matrix Σ such that

r(x, y) ≡ (x, y)Σ(x, y)t

=
1√

1− ρ2

(
σ2

σ1
x2 − 2ρxy +

σ1

σ2
y2

)
, (9)

for positive constants σ1, σ2 and ρ; and the estimation
procedure of these parameters for each earthquake will
be discussed in Section 4.1 later. Then the main issues
in modeling the spatial response function are:

1. the character of the functional form of f0(r):
either short range decay (e.g., normal etc.) or
long range decay (e.g.., inverse power law),
namely, either f0(r) ∝ exp(−r/d) or ∝ (r + d)−q

for some d > 0, and

2. the dependence of the scale factor on magnitude:
namely, either σ(M) ∝ 1 or ∝ exp(αM).

Ogata (1998) implemented the comparison of those
possible models by fitting the two data sets from plate
boundary and intraplate regions, respectively, first as-
suming a constant back-ground intensity µ and further
the identity matrix for Σ. Then the best model was
of the form

f(x, y;M) =
(q − 1)dq−1|Σ|
2πeα(M−Mc)

{
(x, y)Σ(x, y)t

e2α(M−Mc)
+ d

}−q

.

(10)
The result did not change for the different data sets
and different threshold magnitudes Mc. Moreover, the
differences of the AIC values increased with increased
data size by decreased threshold magnitude, which im-
plies that the result get clearer for data set with lower
threshold magnitude levels.

In summary, the result indicates that: [1] the clus-
ters in space extend beyond the traditional aftershock

regions, having a diffuse boundary with power law de-
cay rather than forming a well-defined region with
a fairly sharp boundary; [2] there may be perhaps
two components (near field and far field) with dif-
ferent characteristics, the near field component cor-
responds to the traditional aftershock area, and the
far field component may relate to the so called the im-
migrations of earthquake activity or causal relations
between the distant regions; and [3] the cluster re-
gions scale with magnitudes firmly according to the
Utsu-Seki formula.

For the numerical computations the adopted model
is rewritten by the following simplified form of param-
eterization,

λ(t, x, y|Ht) = µ+K0

∑
ti<t

(t− ti + c)−p ×
{
r(x− xi, y − yi)
e2α(Mi−Mc)

+ d

}−q

, (11)

where r(x, y) is given in (9), and the parameters to be
estimated are θ = (µ,K0, c, α, p, d, q).

4 Modeling of spatially heteroge-
neous seismicity

4.1 Preliminary arrangement of data for
anisotropic clusters

It is often the case that the epicenter of a mainshock
is located at the margin of its aftershock area be-
cause the epicenter listed in the catalog corresponds
to the location of earthquake rupture initiation. In
such an earthquake (say, i-th event), the epicenter lo-
cation (xi, yi) in the catalog is not quite suitable for
the present models in (1) with spatial response func-
tion given in (10) with (9), or the intensity (11) with
(9). Therefore, in place of the location (xi, yi), we
consider the centroid epicenter of aftershocks which is
estimated as follows: First, we have to identify clusters
of aftershocks, the algorithm of which is provided be-
low. Then, we take the average of the locations of the
cluster members to replace the catalogue’s epicenter
of the mainshock only when the two are significantly
different to each other as determined by the method
below.

Also, we see mostly that locations of aftershocks are
approximately elliptically distributed (see Utsu, 1969,
for instance) as described by the matrix Σ in (9) ow-
ing to the several reasons described in Section 3.2. For



the location coordinates of events relative to the main-
shock’s epicenter in each cluster, a bivariate Normal
distribution is fitted to obtain the MLEs σ̂1, σ̂2 and
ρ̂, only when each of them is respectively significantly
different from the null hypothesis (i.e., µ1 = µ2 = 0,
σ1 = σ2 = 1 and ρ = 0). Namely, the model with the
minimum AIC value (Akaike, 1974) is adopted among
all the nested models that include the null hypoth-
esis (c.f. Ogata, 1998). For the rest of events in the
cluster, the null hypothesis is always adopted; namely,
the same epicenter as that of catalog and the identity
matrix for Σ.

The algorithm for identifying the aftershock clusters
starts with selecting the largest shock in the catalog
for the mainshock. If there are plural largest shocks,
the earliest one is adopted for the mainshock. Then, to
form a cluster, we set a space-time window where the
bounds of distance and time depending on the magni-
tude of the mainshock which are based on the empir-
ical laws of aftershocks (c.f., Utsu, 1969; Ogata et al,
1995) as explicitly given below. All the earthquakes
within the window are considered to be the cluster
members, and removed from the catalog. Then the
largest events in the remainder are selected to con-
tinue the same procedure. This procedure lasts up un-
til only isolated events remain. The time span of the
window is taken to be max(100,100.5M−1) days (i.e.
100 days for M = 5 ∼ 6 and 1000 days for M = 8) af-
ter the main shock. The side length of square area for
the space window centered at a mainshock epicenter
is taken to be 2× (0.015× 100.5M−2 + ε) degrees (i.e.,
about 70 km for M = 5 and 400 km for M = 8): here,
we took ε = 0.3 degrees (33.3 km) taking account of
the error of epicenter determination in early years of
the JMA catalog.

4.2 Hierarchical space-time ETAS model

We learn by experience that, as the number of data
events increases by lowering the magnitude threshold
or as the area of the investigation get wider, the dif-
ference of parameter values of the model at different
subregions get more significant. Therefore, it will be
practical to assume that the parameters of the model
in (11), except for c and d, are the functions of location
(x, y) as follows.

Consider the Delaunay triangulation (e.g., Green
and Sibson, 1978) of the whole region A tessellated
by the locations of earthquakes and some additional
points {(xi, yi) ∈ A; i = 1, · · · , N + n}, where n is

the number of the additional points on the rectangu-
lar boundary including the corners. Figure 2b show
such tessllation based on the epicenters of the present
data set consisting of the N=4586 events (Figure 2a)
and the additional points (n=81), which make 9251
Delaunay triangles.

*** Figures 2a and b around here ***

Then, consider piecewise linear function ϕ(x, y) de-
fined on the tessellation where, for each vertex (xi, yi)
of a triangle, it takes the value φi = ϕ(xi, yi). Thus
the function value at any location (x, y) is given as
follows: let (x1, y1), (x2, y2) and (x3, y3), say, be the
coordinates of vertices of the Delaunay triangle which
includes (x, y), then consider the linear equation

a1x1 + a2x2 + a3x3 = x

a1y1 + a2y2 + a3y3 = y

a1 + a2 + a3 = 1

to obtain the non-negative solution â1, â2 and â3 so
that we have

ϕ(x, y) = â1φ1 + â2φ2 + â3φ3

Using such piecewise linear functions we define the
functions for the parameters µ, K0, α, p and q of the
space-time ETAS model (11) in the form of

µ(x, y) = µ̂ eϕ1(x,y); K(x, y) = K̂0e
ϕ2(x,y);

α(x, y) = α̂ eϕ3(x,y); p(x, y) = p̂ eϕ4(x,y);

and q(x, y) = q̂ eϕ5(x,y), (12)

avoiding negative function values, where µ̂, K̂0, α̂, p̂
and q̂ are suitable reference values. From here on,
we call the conditional intensity function (11) with
location-dependent parameters (12) the hierarchical
space-time ETAS (HIST-ETAS) model. This model
actually need about five times as many coefficients as
the number of events in the data, namely, the unknown
parameters are θ = {(φki; i = 1, · · · , N + n); k =
1, · · · , 5} with φki = ϕk(xi, yi) in (12). Therefore we
need to formulate the penalized log likelihood (Good
and Gaskins, 1971)

R(θ| w) = logL(θ)−Q(θ| w), (13)

where w = (w1, · · · , w5) and the penalty Q is defined
by

Q(θ| w) =
5∑

k=1

wk

∫ ∫
A

{(
∂ϕk

∂x

)2

+
(
∂ϕk

∂y

)2
}
dxdy.

(14)



The penalized log likelihood is thus considered for the
trade-off between the good fit to the data and the uni-
formity of each function (i.e., the facets of the piece-
wise linear function are as flat as possible).

4.3 An objective Bayesian procedure

In order to find optimal weights ŵ = (ŵ1, · · · , ŵ5)
we adopt a Bayesian procedure where the exponen-
tial to the negative penalty stands for a prior density,
denoted by prior(θ|w) hereafter. Since the penalty
function in (14) has quadratic form with respect to
the parameters θ, the prior is a multivariate Normal
distribution in which the variance-covariance matrix
is the inverse of the Hessian matrix HQ that consists
of the negative second order partial derivatives of the
penalty function Q. Actually, the Hessian matrix in
the present case has the diagonal form of five indepen-
dent sub-matrices corresponding to each ϕk-function
such that

HQ = diag{H1
Q,H

2
Q,H

3
Q,H

4
Q,H

5
Q}, (15)

since we do not assume any prior restrictions between
the different ϕk-functions. Here all sub-matrices ofHk

Q
are sparse and have the same configuration of non-zero
elements; that is to say, the (i, j)-element is non-zero
if and only if the pair of points i and j are vertices of
the same Delaunay triangle.

Then, we consider the posterior probability density
function

p(θ| w) =
L(θ) · prior(θ| w)

Λ(w)
(16)

with normalizing factor

Λ(w) =
∫
Θ
L(θ) · prior(θ| w) dθ. (17)

Maximization of (17) or its logarithm with respect to
the hyperparameters w is called the method of the
type II maximum likelihood, due to Good (1965).
Then the minimized solution of the penalized log-
likelihood in (13) corresponds to the (optimal) maxi-
mum a posteriori (MAP) estimate.

However, the integration of the posterior function
in (17) cannot be analytically carried out because the
likelihood function of the point-process model is not
Normal. Nevertheless, by virtue of the Normal prior,
the Normal approximation of the posterior function is

useful. That is to say, the penalized log-likelihood is
well approximated by the quadratic form

T (θ|w) ≡ logL(θ) + log {prior(θ|w)} (18)

≈ T (θ̂|w) − 1
2
(θ − θ̂)HT (θ̂|w)(θ − θ̂)t,

where θ̂ = arg{maxθ T (θ|w)}, and HT (θ|w) is the
Hessian matrix of T (θ|w) consisting of its negative
second-order partial derivatives with respect to θ. We
further assume that the Hessian matrix below Equa-
tion (18) is approximated by the diagonal form of the
five sub-matrices,

HT = diag{H1
T ,H

2
T ,H

3
T ,H

4
T ,H

5
T }, (19)

which also assume independency between the coeffi-
cients of the different ϕk-functions in the penalized
log-likelihood (13).

Thus, the log likelihood of the present Bayesian
model is given by

log Λ(w) = log
∫
L(θ) · prior(θ|w) dθ (20)

≈ T (θ̂|w) − 1
2
log ‖HT (θ̂|w)‖+

dim(θ)
2

· log 2π

= R(θ̂|w) − 1
2
log ‖HR(θ̂| w)‖+

1
2
log ‖HQ(θ̂| w)‖,

where HR is the similar diagonal Hessian matrix of
the functions R in (13), and ‖ · ‖ is the determinant of
the matrices.

In order to get the optimal hyperparameters, one
has to repeat the following calculations:

(A). For a given w being fixed, get the maximizing
parameters θ̂ of the penalized log likelihood T
in (18) with respect to θ on the one-dimensional
straight line determined by the initial parameter
vector θ0 and gradient vector of the function T (θ)
at θ0 (Linear Search, e.g., Kowalik and Osborne,
1968).

(B). Set this maximizing parameter θ̂ to be the next
starting parameter θ0. Then, using the gradient
vector of the function T (θ) at θ0 and solving In-
complete Cholesky Conjugate Gradient (ICCG)
method (e.g., Mori, 1986), find the new vector
for the direction of the next Linear Seach to re-
peat the present step up until the series of maxi-
mumized function values of T and θ̂ converge to
the max T and the maximum a posteriori (MAP)
solution, respectively.



(C). Calculate log Λ(w) using the approximation in
(18) around θ̂. We further need to maximize the
log-likelihood with respect to the hyperparame-
ters w by a direct search method such as the sim-
plex method (e.g., Kowalik and Osborne, 1968;
Murata, 1992).

(D). The steps (A)-(C) are repeated in turn up until
the step (C) converges.

It is noteworthy that the convergence in step (B)
have been very fast in spite of the very high dimen-
sionality of θ. This can be expected if quadratic ap-
proximations of T are adequate for a wide enough re-
gion around the MAP solution. After all, assuming
unimodality of the posterior function, one can get the
optimal MAP solution θ̂ for the maximum likelihood
estimate ŵ. Also, the Hessian matrix for error assess-
ment is given by N(θ̂,HT (θ̂|ŵ)−1).

4.4 Application of nonhomogeneous Pois-
son field to the spatial data

In order to demonstrate the present Bayesian pro-
cedure, we apply this to the data of spatial point
pattern of the earthquake locations {(xi, yi), i =
1, · · · , 4586} in Figure 2a. The intensity function of
non-homogeneous Poisson field of the form

λθ(x, y) = exp{ϕθ(x, y)},

is considered to avoid taking negative values, where
ϕθ(x, y) is the same sort of piecewise linear function
on the Delaunay tessellation as described in Section
4.2. Then we consider the penalized log-likelihood in
(13) where the log-likelihood is given by

logL(θ) =
n∑

i=1

log λθ(xi, yi)−
∫ ∫

A
λθ(x, y)dxdy,

=
n∑

i=1

ϕθ(xi, yi) −
∫ ∫

A
exp{ϕθ(x, y)}dxdy,

and the penalty in (14) is restricted by setting w2 =
w3 = w4 = w5 = 0. By the same computation proce-
dure as explained in Section 4.3, we have the optimum
hyper-parameter value (weight) ŵ1 = 0.6222 which at-
tain the maximum likelihood log Λ(ŵ) = 14833.5 in
(20). Under the optimal weight ŵ1 we have the MAP
estimate for the intensity function λˆθ

(x, y) shown in
Figure 3.

*** Figure 3 around here ***

This MAP estimate appears consistent with the real
seismic activity in and around Japan. In particular,
the changes in the eastern off-shores of the northern
Japan appear very large, taking account of the con-
tours drawn in logarithmic scale. Furthermore, the
parameterization using Delaunay tessellation does ap-
pear very suitable for the observations on highly non-
homogeneous or clustered point pattern. That is to
say, we can see detailed estimate of changes where the
observations are densely populated, while smoother
changes are expected in the region of sparsely pop-
ulated. This is somewhat similar idea to the kernel
estimation with variable bandwidths (e.g., Choi and
Hall, 1999; Zhuang et al., 2000).

4.5 Application of the HIST-ETAS model

First of all, we apply the space-time ETAS model de-
scribed in (11) to the data that have been rearranged
as described in Section 4.1 to take account of the
significant anisotropic features of each event, if any.
Then, we obtained the MLEs µ̂, K̂, ĉ, α̂, p̂, d̂ and q̂
which are listed in the first row of Table 1. The techni-
cal details for the likelihood computation is described
in Ogata (1998).

*** Table 1 around here ***

However, it is shown in Ogata (1998) that those
MLEs are biased (for example, p̂ takes lower value
than 1.0) owing to the restriction that the constant
background rate µ is assumed throughout the Japan
area in the model (11). Therefore, we consider a
piecewise-linear function on the Delaunay tessellation
(Figure 2b) for the nonhomogeneous background rate
µ(x, y) by which we replace the constant µ in the con-
ditional intensity (11). Fix the other parameters of
the space-time ETAS model in (11) to the same MLE
values in the first row of Table 1. Then, we get the
optimal MAP estimate µ̂(x, y) by the Bayesian proce-
dure using the log-likelihood function in (2) and the
restricted penalty in (14) assuming w2 = · · · = w5 = 0.
Next, replace µ in (12) again by µ(x, y) = ν ·µ̂(x, y) for
the fixed MAP solution µ̂(x, y) in order to get the new
MLEs ν̂, K̂, ĉ, α̂, p̂, d̂ and q̂, which are listed in the
second row of Table 1. Furthermore, we fix ν̂, K̂, ĉ, α̂,
p̂, d̂ and q̂ to get the MAP estimate µ̂(x, y) again; then
for the fixed µ̂(x, y) we get the corresponding MLEs



ν̂, K̂, ĉ, α̂, p̂, d̂ and q̂, which are listed in the third
row of Table 1. We repeat this procedure up until the
MLEs converge.

Setting the MLEs, ν̂, K̂, α̂, p̂ and q̂ in the last row of
Table 1 as the corresponding reference values in (12),
we prepare five sets of the piecewise linear functions
{ϕk; k = 1, · · · , 5} for estimating the location depen-
dency of the parameters µ, K0, α, p and q, while the
parameters c and d are always fixed to be the last
MLEs ĉ and d̂ in Table 1. To define those piecewise
linear functions on the Delaunay tessellated area, we
have about five times as many coefficients {φk,i} to
be estimated as the number of data events, namely,
about 23,000 unknown coefficients. Furthermore, we
have five hyper-parameters (weights) to be tuned si-
multaneously by the Bayesian procedure described in
Section 4.3.

We start with setting φk,i = ϕk(xi, yi) = 0 in (12)
for all k = 1, · · · , 5 and all i = 1, 2, · · · , N + n as the
initial coefficients values. By the Bayesian procedure
we can objectively obtain the optimal weights simul-
taneously together with the corresponding MAP esti-
mate of the coefficients of the piecewise linear func-
tions. The attained values of the hyper-parameters
ŵ = (ŵ1, · · · , ŵ5) in (20) for the roughness penalty is
given in Table 2.

Incidentally, it is confirmed that the all the MLEs in
Table 1 except for the MLE in the first row led to the
very similar optimal MAP solution of the HIST-ETAS
model.

*** Table 2 around here ***

The parameter functions with the optimal maxi-
mum posterior (MAP) solutions are shown in Fig-
ures 4a-e. Figure 4a shows the estimated spatial
background rate µ̂(x, y). Taking account of the con-
tours being drawn in logarithmic scale, the seismicity
changes in the eastern off-shores of Japan appear very
large. Here, in comparison with Figure 3a, we can see
that clustering effects (aftershocks) have been well re-
moved from the total seismic activity, particularly in
the regions where the seismic activity had been low
before the large earthquakes took place. Figure 4b
shows the regional change of K̂(x, y) which shows not
only the average number density of the aftershocks per
unit area relative to the magnitude of the mainshock
but also significantly distorted spatial distribution of
aftershocks relative to the assumed elliptical distribu-
tion in the model. In the active swarm areas such as

Matsushiro and Izu Islands, this has high values. The
low values of α should have expected similarly in the
swarm area, but we cannot see it in Figure 4c probably
owing to the high threshold magnitude (M5.0) of the
present data. The p-value distribution in Figure 4d
varies in the reasonable range between 0.98 and 1.33
in which p-values of the most individual aftershock
studies in and around Japan (e.g., Utsu, 1969; Guo
and Ogata, 1996) are included. Finally, the change of
the q-value is very small in the value, but slight sys-
tematic decrease in Figure 4e from the west to the east
is seen.

*** Figures 4a-e around here ***

5 Space-time residual analysis

5.1 Method

Let λ̂(t, x, y| Ht) be the conditional intensity function
of the HIST-ETAS model with the MAP estimates ob-
tained in Section 4.5. In order to detect the temporal
deviations of the seismicity from the one predicted by
the conditional intensity, we consider a flexibly param-
eterized indicator function ξ(t, x, y;θ) that composes
a new intensity function such that

ηθ(t, x, y) = λ̂(t, x, y| Ht) eξ(t,x,y;θ) (21)

to apply the same the data again. The estimated
HIST-ETAS model λ̂(t, x, y|Ht) is shown to be a good-
fit in the space-time volume where ξ(t, x, y;θ) ≈ 0
hold. However, we are particularly interested in the
significant volume where ξ(t, x, y;θ) takes negative
values, which means that the volume is systematically
quiet relative to the estimated intensity.

In order to estimate ξ(t, x, y;θ), the whole three-
dimensional volume [0, T ] × A is divided into the De-
launay tetrahedra (e.g., Tanemura et al., 1983) whose
vertices consist of the hypocenter coordinates of earth-
quake data set {(ti, xi, yi); i = 1, · · · , N} and some
(say, n) additionally placed points on the boundary
surface, edges and vertices of the whole space-time
volume. Those are all associated with unknown pa-
rameters {ξi; i = 1, · · · , N+n} to be estimated. Then,
three-dimensional piecewise linear function ξ(t, x, y;θ)
is defined on the tessellated volume. Specifically, for
any location (t, x, y) in the space-time volume, find the
tetrahedron which includes (t, x, y). Let these vertices
be {(tik , xik , yik); k = 1, 2, 3, 4}. Then we have

ξ(t, x, y) = â1ξi1 + â2ξi2 + â3ξi3 + â4ξi4 , (22)



where the values {âk, k = 1, 2, 3, 4} are non-negative
solution of the linear equation

a1ti1 + a2ti2 + a3ti3 + a4ti4 = t

a1xi1 + a2xi2 + a3xi3 + a4xi4 = x

a1yi1 + a2yi2 + a3yi3 + a4yi4 = y

a1 + a2 + a3 + a4 = 1.

If the conditional intensity λθ in the log likeli-
hood (2) is replaced by the intensity ηθ in (21), we
can define the log likelihood function of the indica-
tor function ξ(t, x, y;θ). On the other hand, for the
smoothness constraint of parameters θ, we consider
the penalty

Q(θ) =
∫ T

0

∫ ∫
A

{
w1ξ

2
t +w2

(
ξ2
x + ξ2

y

)}
dtdxdy, (23)

where ξt, ξx and ξy are partial derivative of the func-
tion ξ(t, x, y;θ) with respect to the variables t, x and
y, respectively. Since the above penalty function is
quadratic with respect to the parameters, the prior
is multivariate Normal distribution. Therefore, the
Normal approximation of the posterior function is
useful in order to find the optimal hyper-parameters
w = (ŵ1, ŵ2) which maximize the log likelihood in
(20). Simultaneously, maximizing the penalized log-
likelihood in (13) with the penalty function in (23)
for the fixed ŵ1 and ŵ2, we can also get the MAP
estimates {ξ̂i; i = 1, · · · , N +n} attached to the coor-
dinates of vertices {(ti, xi, yi); i = 1, · · · , N+n} of the
Delaunay tetrahedron. Thus, the image {ξijk} on the
three dimensional lattice (ti, xj , yk) can be calculated
by the linear interpolation in (22).

5.2 Application

Based on the estimated intensity function of the HIST-
ETAS model in Section 4.5, we want to detect signifi-
cant temporal changes of the seismicity relative to the
one predicted by the estimated model. Thus, we have
a space-time conditional intensity function in (21) to
fit the same data again to obtain the estimate of the
indicator function ξθ. By the Bayesian optimization
procedure, we have the maximizing hyper-parameter
(weights) ŵ1 = 0.0164 and ŵ2 = 0.0814 for the penalty
in (23) with log Λ(ŵ) = −2265.37.

The MAP estimate {ξ̂(t, x, y)} provides the residual
image {ξ̂ijk}, which is explored by means of the Ap-
plication Visualization System (AVS, Stardent Com-
puter Inc.). One of its tools is to show cross-sectional

images. An example is shown by Figures 5 and 6.
This section cut through one of the most active area,
off the east coasts of Japan (141◦-145◦E, 38◦-42◦N),
where we have dense enough earthquake occurrences
for a high precision of the image to see the signifi-
cant changes. Figure 6 shows such cross-sectional im-
age of latitude versus time associated with the earth-
quake locations within the volume. The yellow color
of the image stands for the ξ̂-value around zero, and
the warmer and colder colors stand for the ξ̂ values
larger and smaller than zero, respectively.

*** Figures 5 and 6 around here ***

First of all, general impression of the residual im-
age is gradually tending from warm to colder colors
in time, which means that the trend of the seismic
activity appears decreasing. In fact, as shown in Fig-
ure 7, the trend of earthquake activity (M ≥ 5.0) in
whole Japanese region is decreasing for the later pe-
riod of 50 years except for the occasional jumps owing
to the aftershocks especially that of the 1968 Tokachi-
Oki great event of MJ7.9. Incidentally, Ogata and
Abe (1989) discuss that the similar trend is seen in
the long-term global seismic activity. Now, let us con-
centrate on the changes in shorter frequencies. Then,
we see a number of hollows with colder colors before
the large earthquakes of MJ7.5 or larger, about the
source (aftershock) region, which show the lowering of
the seismicity rates (relative quiescence) compared to
those predicted by the estimated HIST-ETAS model
whose coefficients are shown in Figure 4a-e.

*** Figure 7 around here ***

Although such lowering of the residual image was
not always followed by a large event, the present re-
sult shown in Figure 6, for example, is encouraging in
that we may hope to forecast the time and region of
forthcoming great earthquake using abundant space-
time data of the smaller earthquakes.

6 Conclusions

In this paper we have reviewed the derivation of the
suitable form of the space-time ETAS model in (1)
with (10), or in (11), based on the empirical laws in
seismology and also on the model selection procedure.
Then the hierarchical space-time ETAS (HIST-ETAS)
model are considered. Namely, the function for each



parameter is expanded by the two dimensional piece-
wise linear function consisting of facets defined on the
Delaunay tessellated triangles whose vertices are lo-
cations of the earthquakes in the data and the addi-
tional points in the boundary of the whole volume.
It is notable that the present function form based on
the Delaunay tessellations is very suitable for highly
nonhomgeneous or clustered sampling data sets.

Then the penalized log likelihood in (13) is consid-
ered for the trade-off between the good fit to the data
and the uniformity of each function. The Bayesian
method is applied, for solving the trade-off objec-
tiviely, to the long-term earthquake occurrence data
in and around Japan. Thus, we have the MAP spatial
images of the parameter changes of the HIST-ETAS
model which show regional characteristics of seismic-
ity in and around Japan.

For the residual analysis, we fit to the same data
again a new conditional intensity function in (21) that
is the multiplication of the estimated intensity func-
tion of the HIST-ETAS and the indicator function
ξ(t, x, y) expanded by the space-time piecewise linear
function defined on the Delaunay tessellated tetrahe-
dra whose vertices are locations and times of the earth-
quakes in the data and the additional points on the
boundaries of the whole space-time volume. The es-
timation is objectively carried out by means of the
Bayesian method for the similar trade-off with the
roughness penalty in (23).

The estimated three dimensional MAP image {ξijk}
shows not only the decrease trend of seismicity in time
on the whole but also the relatively quiet volume be-
fore and around the source of the forthcoming great
events in the area of active region of plate boundary
where enough number of events are available to reveal
such a local detail.

The present experiment also demonstrated that
parameterization of the indicator function ξ(t, x, y)
through Delaunay tessellation has a great advantage
for smoothing functions on the three or higher dimen-
sional space.

Finally, I would conclude that the HIST-ETAS
model and the proposed residual analysis are useful for
measuring characteristic of seismic activity and also
for the space-time forecasting of the large earthquakes.
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Figure captions

Figure 1. Space-time configuration of earthquakes of
magnitude 5.0 and larger in and around Japan for
the period 1926-1995. The vertical axis stands for
time which runs upwards from the bottom.

Figure 2. Earthquakes of magnitude 5.0 and larger in
and around Japan for the period 1926-1995. (a)
Epicenter locations and (b) Delaunay tessellation
connecting the epicenters of the earthquakes of
the data.

Figure 3. The MAP estimate of the spatial intensity
fitted to the events shown in Figure 2a. The con-
tours are equi-spaced in logarithmic scale, ranging
from 1.24×10−6∼0.0612/deg2/day.

Figure 4. The MAP estimates of the hierarchical
space-time ETAS model. The contours are equi-
spaced in the respective scale below: (a) µ-values,
ranging 0.925×10−6∼0.0492/deg2/day in loga-
rithmic scale; (b) K0-value, ranging 0.306×10−5

∼0.134×10−3/deg2/day in linear scale; (c) α-
value, ranging 1.46∼1.76 in linear scale; (d) p-
value, ranging 0.982∼1.33 in linear scale; and (e)
q-value, ranging 1.86∼1.91 in linear scale.

Figure 5. The different perspective of the data
from Figure 1 with a plane for the 2-dimension
cross-sectional image of the 3-dimensional image
ξ̂(t, x, y) at the longitude of 143◦E which is shown
in Figure 6. The time axis runs from the front to
back.

Figure 6. Latitude versus time cross-sectional im-
age of the estimated ξ̂(t, x, y) on the plane shown
in Figure 5. Black dots show the earthquakes of
M5.0 and larger within a zone of one degree dis-
tances from the cross sectional plane.

Figure 7. Earthquakes of magnitude 5.0 and larger
in and around Japan for the period 1926-1995.
(a) Epicenter location and (b) cumulative number
versus time. The dotted line shows the extrapo-
lation of expected seismicity based on the rate of
the early one.

See tne next page.



TABLE 1. The MLE of the space-time ETAS model

Step AIC ν̂ (µ̂ for Step 0) K̂ ĉ α̂ p̂ d̂ q̂
(unit) (event/deg2/day) (event/deg2/day) (days) (1/mag) (degrees)

0 41722.8 1.92×10−4 7.60×10−4 0.0134 1.42 0.99 0.200 2.84
1 41700.9 2.79×10−4 3.86×10−5 0.0320 1.63 1.11 0.00191 1.74
2 41705.8 2.90×10−4 2.05×10−5 0.0370 1.64 1.14 0.00214 1.88
3 41704.1 2.91×10−4 1.99×10−5 0.0376 1.65 1.14 0.00214 1.88
4 41704.0 2.91×10−4 1.99×10−5 0.0376 1.65 1.14 0.00214 1.88

TABLE 2. The estimated hyperparameters (weights) of
the HIST-ETAS model

log Λ(ŵ) ŵ1 ŵ2 ŵ3 ŵ4 ŵ5

–22507.75 0.4803 0.4774 137.7 55.79 6112.


