「地震予測研究の展望」の文献

 

1.  安芸敬一 (1956). 統計地震学の現状, 地震 第2輯 8No. 4, 206-228.2. https://www.jstage.jst.go.jp/article/zisin1948/8/4/8_4_205/_pdf.

2.  Jordan, T. H. (2006). Earthquake predictability, brick by brick, Seismol. Res. Lett., 77(1), 3–6.

3.  Collaboratory for the Study of Earthquake Predictability (CSEP) home page: URL http://www.cseptesting.org/.

4.  Aki, K. (1981). A probabilistic synthesis of precursory phenomena, in Earthquake Prediction, (Maurice Ewing Series, 4), eds. D. W. Simpson and P. G. Richards, Washington, D.C.: American Geophysical Union, 566-574.

5.  Akaike, H. (1985). Prediction and entropy, in ‘A CELEBRATION OF STATISTICS’, The ISI Centenary Volume, A.C. Atkinson and S.E. Fienberg, eds., Springer-Varlag, New York, 1-24.

6.  Boltzmann, L. (1878). Weitere Bemerkungen uber einige Plobleme der mechanischen Warmetheorie, Wiener Berichte, 78,7-46.

7.  Gutenberg, B. and C.F.Richter (1944). Frequency of earthquakes in California, Bull.Seism.Soc.Am.,34,185-188.

8.  Omori, F. (1894). On the aftershocks of earthquake. J. ColI. Sci. Imp. Univ. Tokyo, 7, 111-200.

9.  Utsu, T.( 1961). A statistical study on the occurrence of aftershocks, Geophys. Mag., 30, 521-605.

10.  Utsu, T.(1969). Aftershocks and earthquake statistics(1), J.Fac.Sci., Hokkaido Univ., Ser.7, 2, 129-195.

11.  Utsu, T., Y. Ogata and R.S. Matsu'ura (1995). The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1-33.12.

12.  Ogata, Y. (1986). Statistical models for earthquake occurrences and residual analysis for point processes, Mathematical Seismology (I), Ed., M Saito, The Institute of Statistical Mathematics, Tokyo.

13.  Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Stat. Assoc., 83, 9-27.

14.  Ogata, Y. (1989). Statistical model for standard seismicity and detection of anomalies by residual analysis, Tectonophysics, 169, 159-174.

15.  Ogata, Y. (1998). Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math., 50, 379-402, http://www.ism.ac.jp/editsec/aism/pdf/050_2_0379.pdf

16.  Working Group on California Earthquake Probabilities (2012). The uniform California earthquake rupture forecast, Version 3 (UCERF3) project plan; URL: http://www.wgcep.org/sites/wgcep.org/files/UCERF3_Project_Plan_v55.pdf

17.  Keilis-Borok, V. I., and L. N. Malinovskaya (1964). One regularity in the occurrence of strong earthquakes, J. Geophys. Res., 70: 3019-3024.

18.  Keilis-Borok, V. I., L. Knopoff, I. M. Rotwain, and C. R. Allen (1988). Intermediate-term prediction of occurrence times of strong earthquakes, Nature, 335, 690-694.

19.  Keilis-Borok, V. I., and V. G. Kossobokov (1990). Premonitory activation of earthquake flow: Algorithm M8, Phys. Earth Planet. Inter., 61, 73-83.

20.  Rundle, J. B., K. F. Tiampo, W. Klein, and J. S. S. Martins (2002). Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting, Proc. Nat. Acad. Sci. USA, 99, Suppl. 1, 2514-2521.

21.  Shebalin, P., V. Kellis-Borok, A. Gabrielov, I. Zaliapin, and D. Turcotte (2006). Short-term earthquake prediction by reverse analysis of lithosphere dynamics, Tectonophysics, 413, 63-75.

22.  Sobolev, G. (2001). The examples of earthquake preparation in Kamchatka and Japan, Tectonophysics, 338, 269-279.

23.  Tiampo, K. F., J. B. Rundle, S. McGinnis, S. J. Gross, and W. Klein (2002a). Mean-field threshold systems and phase dynamics: An application to earthquake fault systems, Europhys. Lett., 60, 481-487.

24.  Center for Analysis and Prediction of the State Seismological Bureau (1990-2003) Annual Summary Report on National Earthquake Tendency, 1990, . . ., 2003.

25.  Zechar, J.D. and Zhuang, J. (2010). Risk and return: evaluating Reverse Tracing of Precursors earthquake predictions, Geophys.J. Int., 182, 1319-1326, doi:10.1111/j.1365-246X.2010.04666.x, 2010.9.

26.  International Commission on Earthquake Forecasting for Civil Protection (Jordan, T. H., Chen, Y-T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., Papadopoulos, G., Sobolev, G., Yamaoka, K., and Zschau, J. (2011). Operational earthquake forecasting. State of knowledge and guidelines for utilization, Ann. Geophys., doi: 10.4401/ag-5350, URL: http://www.annalsofgeophysics.eu/index.php/annals/article/view/5350/5371.

27.  庄建倉, 尾形良彦 (2011). 警報型地震予測の性能評価法について, 地震予知連絡会会報20112, 85(12-7), pp.451-452.

28.  Zhuang, J. and Jiang, C. (2012). Scoring annual earthquake predictions in China, submitted.

29.  Ogata, Y. and Akaike, H. (1982). On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes, J. Roy. Statist. Soc. B, .44, ..102-107.

30.  Ogata, Y., Akaike, H. and Katsura, K. (1982). The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process, Ann..Inst. Statist. Math., 34,.373-387. http://www.ism.ac.jp/editsec/aism/pdf/034_2_0373.pdf

31.  Ogata, Y. (1983). Likelihood analysis of point processes and its applications to seismological data, Bull. Int. Statist. Inst., 50, Book2, .943-961.

32.  Ogata, Y. and Katsura, K. (1986). Point-process models with linearly parameterized intensity for application to earthquake data, in Essays in Time Series and Allied Processes (Papers in honour of E.J. Hannan), Eds. Gani, J. and Priestley, M. B., J.Appl. Probab., 23A, 291-310.

33.  尾形良彦、庄建倉 (2001). 異常現象データと地震発生の相関解析および複合危険度予測:北京付近における日別地電位異常強度データ (1982-1997) を例として, 地震予知連会報66, (10-4), 562-570.

34.  Zhuang J., Vere-Jones D., Guan H., Ogata Y. and Ma L. (2005). Preliminary analysis of observations on the ultra-low frequency electric field in a region around Beijing. Pure and Applied Geophysics, 162: 1367-1396, doi:10.1007/s00024-004-2674-3 (with data).

35.  宇津徳治 (1979). 地震予知の適中率の計算(伊豆大島近海地震を例として), 地震予知連会報21, (7-4) 164-166. http://cais.gsi.go.jp/YOCHIREN/report/kaihou21/07_04.pdf

36.  宇津徳治 (1982). 地震予知の適中率と予知率 (2)地震研究所彙報57499524. http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/12855/1/ji0573005.pdf

37.  Ogata, Y., Utsu ,T. and Katsura, K. (1995). Statistical features of foreshocks in comparison with other earthquake clusters, Geophys. J. Int., 121, 233-254.

38.  Ogata, Y., Utsu, T. and Katsura, K. (1996). Statistical discrimination of foreshocks from other earthquake clusters, Geophys. J. Int., 127, 17-30.

39.  尾形良彦 (2011a). 前震の確率予報の実施, 地震予知連絡会会報20112, 85 (12-7), 440-444.

40.  尾形良彦 (2011b). 前震の確率予報の実施と評価: 東北地方太平洋沖地震までの15年間. 予知連絡会報201111, 86(3-18), 123-125.

41.  Ogata, Y. and Katsura, K. (2012). Prospective foreshock forecast experiment during the last 17 year, Geophys. J. Int., in press.

42.  Utsu, T. (1965). A method.for determining the value ofb in a formula log n = a - bM showing the magnitude-frequency' relation for earthquakes. Geophys. Bull. Hokkaido Univ. 13, 99-103.

43.  Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a - bm and its confidence limits. Bull. Earthq. Res. Inst., Tokyo Univ. 43, 237-238. http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/12198/1/ji0432001.pdf.

44.  Ogata, Y. (1983). Estimation of parameters in the modified Omori Formula for aftershock frequencies by the maximum likelihood procedure, J. Phys. Earth., 31,115-124.

45.  Ogata, Y. and Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, Geophys. J. Int., .113, 727-738.

46.  尾形良彦 (2005). 地震検出率とb値の同時推定と余震の確率予測, 地震予知連絡会会報20053, 73 (11-10), 666-669.

47.  Ogata, Y. and Katsura, K. (2006). Immediate and updated forecasting of aftershock hazard, Geophys. Res. Lett., 33, No.10, L10305, doi:10.1029/2006GL025888.

48.  Ishimoto, M., and K. Iida (1939). Observation of earthquakes registered with the microseissmograph constructed recently (I), Bull. Earthquake Res. Inst. Univ. Tokyo, 17, 443–478.

49.  Hainzl, S. and Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling, J. Geophys. Res., 110, B05S07, doi:10.1029/2004JB003247.

50.  Dieterich, J., V. Cayol and P. G. Okubo (2000). The use of earthquake rate changes as a stress meter at Kilauea volcano, Nature, 408, 457-460.

51.  Toda, S., R. S. Stein, and T. Sagiya (2002). Evidence from the A.D. 2000 Izu Islands swarm that seismicity is governed by stressing rate, Nature, 419, 58–61.

52.  尾形良彦 (1993). 地震学とその周辺の地球科学分野における統計モデルと統計的方法, 日本統計学会誌, 22, No.3 (日本統計学会創立 60周年記念特集), 413-463.

53.  Ogata, Y. (1999). Seismicity analysis through point-process modeling: A review, Pure Appl. Geophys., 155, 471-507.

54.  Lei, X., Yu, G., Ma, S., Wen, X. and Q. Wang (2008). Earthquakes induced by water injection at 3 km depth within the Rongchang gas field, Chongqing, China, J. Geophys. Res., 113, B10310, doi:10.1029/2008JB005604.

55.  Lei, X., Xie, C. and B. Fu (2011). Remotely triggered seismicity in Yunnan, southwestern China, following the 2004 Mw9.3 Sumatra earthquake, J. Geophys. Res., 116, B08303, doi:10.1029/2011JB008245.

56.  Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018-1040.

57.  Harris, R. A. (1998). Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res., 103, 24,347–24,358.

58.  Steacy, S, Gomberg, .J. and M. Cocco (2005). Introduction to special section: Stress transfer, earthquake triggering, and timedependent seismic hazard, J. Geophys. Res., 110, B05S01, doi:10.1029/2005JB003692.

59.  Ogata, Y. (2004). Seismicity quiescence and activation in western Japan associated with the 1944 and 1946 great earthquakes near the Nankai trough, J. Geophys. Res., 109, No. B4, B04305, doi:10.1029/2003JB002634.

60.  Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601-2618.

61.  van Stiphout, T., Zhuang, J. and D. Marsan (2012). Declustering; the Community Online Resource for Statistical Seismicity Analysis (CORSSA) http://www.corssa.org/articles/themev/van_stiphout_et_al/vanstiphoutetal2012.pdf.

62.  Zhuang, J., Ogata, Y. and Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences, J. Amer. Statist. Assoc., 97, 369-380.

63.  Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model, J. Geophys. Res., 97, 19,845-19,871.

64.  Ogata, Y., and S. Toda (2010). Bridging great earthquake doublets through silent slip: On- and off-fault aftershocks of the 2006 Kuril Island subduction earthquake toggled by a slow slip on the outer-rise normal fault the 2007 great earthquake, J. Geophys. Res., doi:10.1029/2009JB006777.

65.  尾形良彦 (2009). 地震予知連絡会構成機関の活動(10年を振り返って), (4) 大学共同利用機関法人 情報・システム研究機構 統計数理研究所, 地震予知連絡会40年のあゆみ, 地震予知連絡会編, 374pp., 国土地理院. http://www.ism.ac.jp/~ogata/yotiren/Yotiren2008ISM.pdf.

66.  Ogata, Y. (2001). Increased probability of large earthquakes near aftershock regions with relative quiescence, J. Geophys. Res., 106, B5, 8729-8744.

67.  Ogata, Y. (2005a). Detection of anomalous seismicity as a stress change sensor, J. Geophys. Res., 110, B05S06, doi:10.1029/2004JB003245.

68.  Ogata, Y. (2005b). Synchronous seismicity changes in and around the northern Japan preceding the 2003 Tokachi-oki earthquake of M8.0, J, Geophys, Res., 110, B08305, doi:10.1029/2004JB003323.

69.  Ogata, Y. (2006a). Monitoring of anomaly in the aftershock sequence of the 2005 earthquake of M7.0 off coast of the western Fukuoka, Japan, by the ETAS model, Geophys. Res. Let., 33, L01303, doi:10.1029/2005GL024405.

70.  Hashimoto, C, A. Noda1, T.i Sagiya and M. Matsu'ura1 (2009). Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion, Nature Geoscience 2, 141 – 144.

71.  Ogata, Y. (2006c). Seismicity anomaly scenario prior to the major recurrent earthquakes off the east coast of Miyagi Prefecture, northern Japan, Tectonophysics, 424, 291-306, doi:10.1016/j.tecto.2006.03.038.

72.  Ogata, Y. (2007). Seismicity and geodetic anomalies in a wide preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan, J. Geophys. Res., 112, B10301, doi: 10.1029/2006JB004697.

73.  Ogata, Y. (2010). Anomalies of seismic activity and transient crustal deformations preceding the 2005 M7.0 earthquake west of Fukuoka, Pure and Applied Geophysics, 167, 1115-1127, doi:10.1007/s00024-010-0096-y.

74.  Kumazawa, T., Ogata, Y. and Toda, S. (2010). Precursory seismic anomalies and transient crustal deformation prior to the 2008 Mw = 6.9 Iwate-Miyagi Nairiku, Japan, earthquake, J.Geophys. Res., 115, B10312, doi:10.1029/2010JB007567.

75.  Ogata, Y. (2011). Pre-seismic anomalies in seismicity and crustal deformation: case studies of the 2007 Noto Hanto earthquake of M6.9 and the 2007 Chuetsu-oki earthquake of M6.8 after the 2004 Chuetsu earthquake of M6.8, Geophys. J. Int., 186, Issue1, pp.331-348, doi:10.1111/j.1365-246X.2011.05033.x.

76.  尾形良彦 (2012). 東北地方太平洋沖地震の前震活動と広域的静穏化について, 地震予知連絡会会報201111, 86(3-20), pp.134-141.

77.  Ogata, Y. (2010). Space-time heterogeneity in aftershock activity, Geophys. J. Int., 181, Issue 3, 1575-1592, doi:10.1111/j.1365-246X.2010.04542.x.

78.  尾形良彦 (2005). 福岡県西方沖の余震活動について: 最大余震 (M5.8) 以前に報告された相対的静穏化と余震域をストレスシャドウにするような前駆すべりのシナリオ, 地震予知連絡会会報20059, 74(10-19), 529-535.

79.  Akaike, H. (1980). On the use of the predictive likelihood of a Gaussian model. Ann. Inst. Statist. Math., 32, 311-324. http://www.ism.ac.jp/editsec/aism/pdf/032_3_0311.pdf.

80.  Nomura, S., Ogata, Y., Komaki, F. and Toda, S. (2011). Bayesian forecasting of the recurrent earthquakes and its predictive performance for a small sample size, J. Geophys.Res., 116, B04315, doi:10.1029/2010JB007917.

81.  Ogata, Y. (1998). Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math., 50, 379-402. http://www.ism.ac.jp/editsec/aism/pdf/050_2_0379.pdf.

82.  Ogata, Y., Katsura, K. and Tanemura, M. (2003). Modelling heterogeneous space-time occurrences of earthquakes and its residual analysis, Applied Statistics (J. Roy. Statist. Soc. Ser. C), 52,.499-509.

83.  Ogata, Y. (2004a). Space-time model for regional seismicity and detection of crustal stress changes, J. Geophys. Res., 109, B03308, doi: 10.1029/2003JB002621.

84.  Ogata, Y. and J. Zhuang (2006). Space-time ETAS model and an improved extension, Tectonophysics, 413, 13-23.

85.  Ogata, Y. (2011). Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity, Earth, Planets and Space, 63, 217-229, doi:10.5047/eps.2010.09.001.

86.  松浦充宏 (2012). 東北沖超巨大地震とプレート沈み込み帯のマルチ地震サイクル, 地質学雑誌, 118, 313-322, doi:10.5575/geosoc.2012.0028.