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1. Introduction

1.1. Gaussian random fields on manifolds. Let X(p), p ∈ M̃ , be a real-
valued random field on an orientable manifold M̃ . In this article, we consider
a Gaussian random field with a smooth sample path and one-dimensional stan-
dard normal marginals (i.e., X(p) ∼ N(0, 1) for each p ∈ M̃). Let r(p, q) =
Cov(X(p), X(q)) denote the covariance function. If r(p, q) is sufficiently smooth in
a neighborhood of p = q for each p, then the sample path is smooth with probability
one and we can differentiate X(p) to obtain Gaussian random fields ∇X, ∇2X. We
do not consider nonsmooth fields, such as Brownian motions or Ornstein-Uhlenbeck
processes. Let t = (ti), s = (si) denote local coordinate systems around p and q,
respectively, and let Xi(p) = ∂X(p)/∂ti. A metric

(1.1) gij(p) = Cov(Xi(p), Xj(p)) =
∂2r(p, q)
∂ti∂sj

∣∣∣
p=q

is defined at each p ∈ M̃ . This metric is based on the following consideration.
Let ξ1, ξ2, . . . be independent standard normal N(0, 1) random variables and

let {ψk}k≥1 denote an orthonormal basis of a reproducing kernel Hilbert space
(RKHS) associated with the covariance function r(p, q). Then X(p) is expressed as
([2], Theorem 3.7)

(1.2) X(p) =
∞∑

k=1

ξkψk(p),

where
∑∞

k=1 ψk(p)2 = 1 because we have assumed that the variance is equal to one.
If the map p �→ ψ(p) is a smooth injection from M̃ to �2, then a metric on M̃ is
induced from the inner product of �2 as gij(p) =

∑∞
k=1(∂ψk(p)/∂ti)(∂ψk(p)/∂tj),

which is equal to (1.1).
Now, let M be a compact submanifold of M̃ . In this article, we investigate an

approximation to the distribution (upper tail probability) of the maximum of X(p)
over M ,

(1.3) P
(
max
p∈M

X(p) ≥ c
)
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when c is large. Our approach is to approximate (1.3) using integral-geometric
quantities of the submanifold M .

We refer to (1.2) as a Karhunen-Loève (KL) expansion, although it is a gener-
alization of the classical Karhunen-Loève expansion ([2]).

1.2. Tube method and Euler characteristic heuristic. Two methods are
known to be applicable for approximating (1.3). One is the tube method and the
other is the Euler characteristic heuristic. We give expositions of these methods
based on works by the present authors ([26], [29], [42], [43]), J. Taylor and R.
Adler ([44], [5]), and Taylor, et al. [45].

Section 2 presents an exposition of the tube method. A tube means a tubal
neighborhood on the unit sphere in a Euclidean space. H. Hotelling [14] pointed
out the relation between the distribution of the likelihood ratio test for a nonlinear
regression model and the volume of a tube about a curve on the unit sphere and
computed significance levels of the likelihood ratio test by explicitly computing the
volume of the tube. H. Weyl [46] generalized the result to a general dimension.
Their result is now known as the Hotelling-Weyl theorem. Although the Hotelling-
Weyl theorem played an important role in the development of differential geometry
([23], [12]), it has been forgotten in statistics for a long time. More recently,
Knowles and Siegmund [22] and Sun [38], [39] revived Hotelling’s method and
applied the result to some problem by pointing out that the probability (1.3) can
be reduced to the volume of a tube when the KL-expansion (1.2) is a finite sum.
This is the tube method.

We provide a detailed exposition of the Euler characteristic heuristic in Section
3. If the sample paths of a one-dimensional stochastic process X(t), t ∈ T ⊂ R

are smooth, then we can evaluate the expected number of upcrossings, that is,
the number of times the graph (t, X(t)) crosses the horizontal line X(t) = c from
below ([21], [7]). This expected value for a large c has been traditionally used
as an approximation to the tail probability P

(
maxt∈T X(t) ≥ c

)
of the maximum

of the stochastic process in the field of signal processing and other fields. As a
generalization of this method to the general dimension, the Euler characteristic
heuristic was proposed by Adler and A. M. Hasofer (e.g., [4], [13], [1]) and further
developed as a practical method by Worsley (e.g., [48], [49]).

The relation between the tube method and the Euler characteristic heuristic
was initially not understood ([3]). However, the authors ([26], [42]) proved that
these two methods are equivalent for Gaussian random fields with a finite KL-
expansion. The Euler characteristic heuristic is more general than the tube method.
However, the tube method has many applications to multivariate analysis ([29],
[30], [24]) and it presents more concrete geometric pictures in terms of the tubes.
Furthermore, the evaluation of the error term by the tube method can be extended
to the Euler characteristic heuristic. Therefore, we present separate expositions of
the two methods. The results on the Euler characteristic heuristic including the
most recent ones are extensively reviewed in the new book by Adler and Taylor [5].

In statistics, there is a strong need to evaluate the distribution of the maxi-
mum of a random field. Suppose that X(p) is a test statistic for each p. Then,
(1.3) corresponds to the adjustment of the p-value due to multiple testing (multiple
comparisons). In hypothesis-testing problems, where the parameter under an alter-
native hypothesis is restricted to a cone, the asymptotic null distribution of the log
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likelihood ratio statistic is the same as the distribution of the maximum of a Gauss-
ian random field with standard normal marginals, and they can be treated by the
tube method ([41], [32]). More generally, in nonregular parametric statistical mod-
els, which are called singular models (or locally conic models), the asymptotic null
distribution of the log likelihood ratio statistic is the same as the distribution of the
maximum of a Gaussian random field ([8], [11]). Note that Hotelling’s nonlinear
regression model is a typical singular statistical model. For these hypothesis-testing
problems, we need the upper tail probability (such as the upper 5 percentile) and
the approximation for large c is very useful.

In Section 4 we present two applications of the tube method to statistics. For
other applications, see [30], [11], [25]. Other topics closely related to the tube
method and the Euler characteristic heuristic include improvement of joint confi-
dence sets ([34], [18], [40]) and the discrete tube method ([35], [36], [37]).

2. Tube method

2.1. Volume of tubes and distribution of the maxima. The standard
form of our problem for the case that the KL-expansion is finite, containing n terms,
is written as follows. Let S

n−1 = S(Rn) be the unit sphere in R
n and let M ⊂ S

n−1

be a closed subset of S
n−1. Let the elements of ξ = (ξ1, . . . , ξn) be independent and

standard normal random variables. (We write this as ξ ∼ Nn(0, In).) 〈·, ·〉 denotes
the standard inner product of R

n. Our problem is to find the distribution of the
maximum of the Gaussian random field X(p) = 〈ξ, p〉, p ∈ M :

(2.1) P
(
max
p∈M

〈ξ, p〉 ≥ c
)
.

This corresponds to setting ψ(M) and ψ(M̃) to M and S
n−1 in Section 1.

The tube (spherical tube) of radius θ about M is defined to be the set of points
on S

n−1 whose great-circle distance to M is less than or equal to θ :

Mθ =
{
q ∈ S

n−1 | dist(q, M) ≤ θ
}

, dist(q, M) = min
p∈M

cos−1〈q, p〉.

For an n-dimensional standard normal random vector ξ ∼ Nn(0, In), its “length”
‖ξ‖ and its “direction” ζ = ξ/‖ξ‖ are independently distributed and the distribution
of ζ is the uniform distribution over the unit sphere Unif(Sn−1). Hence,

P
(
max
p∈M

〈ξ, p〉 ≥ c
)

= E

[
P
(
max
p∈M

〈ζ, p〉 ≥ c

‖ξ‖ | ‖ξ‖
)]

(2.2)

= E

[
P
(
dist(ζ, M) ≤ cos−1

( c

‖ξ‖

)
| ‖ξ‖
)]

=
1

Vol(Sn−1)
E
[
Vol
(
Mcos−1(c/‖ξ‖)

)]
,

where Vol(·) is the (n− 1)-dimensional volume. If the volume of the tube Vol(Mθ)
can be evaluated for every θ, then we can integrate it once (that is, we can take the
expected value with respect to ‖ξ‖) to obtain the tail probability of the maximum
(2.1). Furthermore, we know that the square of ‖ξ‖ has the chi-square distribution
with n degrees of freedom. By writing down this expected value and after some
calculations, we obtain
P (maxp∈M 〈ξ, p〉 ≥ c)

cne−c2/2
=

1
2(2π)n/2

∫ ∞

0

Vol(Mcos−1(1/
√

η+1))(η + 1)n/2−1e−c2η/2dη.
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We see that Vol(Mθ) and the probability (2.1) are effectively related by the Laplace
transformation and its inversion, and hence they are in a one-to-one relation. Fur-
thermore, as θ ↓ 0, the asymptotic behavior of Vol(Mθ) corresponds to the asymp-
totic behavior of the upper tail probability (2.1) as c ↑ ∞. As shown in the next
subsection, it is easy to evaluate Vol(Mθ) for small θ. The basic idea of the tube
method is to utilize this information to approximate the upper tail probability of
the maximum as c ↑ ∞.

2.2. Evaluation of the volume of a tube. We make some regularity as-
sumptions on M for evaluating the volume of the tube Mθ. For applications to
multivariate analysis, we need to consider some complicated M ’s, which are de-
fined in terms of linear inequalities or the nonnegative definite constraints of ma-
trices ([27], [24]). With these applications in mind we define “piecewise smooth
manifolds,” which are a generalization of “manifolds with boundaries” ([42]).

Assumption 2.1. Let M be a closed (i.e., without a boundary) m-dimensional
C2-manifold or a piecewise smooth m-dimensional C2-manifold. Here, M is called
a piecewise smooth m-dimensional Cr-manifold if

(i) M is written as a partition M =
⊔m

d=0 ∂Md (∂Mm �= ∅), such that each
component ∂Md is a d-dimensional Cr-manifold consisting of finite connected com-
ponents, and

(ii) M is Cr diffeomorphic to a convex cone R
d ×K in a neighborhood of each

p ∈ ∂Md, where K ⊂ R
m−d is a proper (m − d)-dimensional closed convex cone.

The boundary and the set of inner points of M are ∂M =
⊔m−1

d=0 ∂Md and
int M = ∂Mm, respectively.

In (ii) of Assumption 2.1, we require K to be a convex cone. Therefore M
possesses a convex tangent cone SpM at each p. Since M ⊂ S

n−1, we have SpM ⊂
TpS

n−1, where TpS
n−1 = {v ∈ R

n | 〈v, p〉 = 0} denotes the tangent space of S
n−1

at p.
Let

NpM = {v ∈ TpS
n−1 | 〈v, u〉 ≤ 0, ∀u ∈ SpM}

denote the dual cone (normal cone) of the tangent cone SpM within the tangent
space TpS

n−1. Note that TpS
n−1 is written as a direct sum TpS

n−1 = SpM ⊕NpM .
Let q be a point of S

n−1 outside M . The point p = pr(q) attaining
minp∈M dist(q, p) is called a “projection of q onto M .” For each q ∈ S

n−1 \ M ,
let p = pr(q), ψ = dist(q, p), and v = (q − p cosψ)/ sin ψ. Then q is written as

q = p cosψ + v sin ψ, v ∈ S(NpM) (where S(NpM) = NpM ∩ S
n−1).

If q is close to M , then pr(q) is unique. However, if q is far away from M , then
there may be two distinct points p, p′ ∈ M minimizing the distance from q (they
are equidistant from q). The maximum of the distance guaranteeing the uniqueness
of all the projections is called the critical radius of the tube.

Definition 2.2 (Critical radius). We say that the tube Mθ does not have a
self-intersection if every point q ∈ Mθ \ M is uniquely written as

q = p cosψ + v sin ψ, p ∈ M, v ∈ S(NpM), ψ ∈ (0, θ].

The supremum of the radius θ such that Mθ does not have a self-intersection,

θc = sup{θ ≥ 0 | Mθ does not have a self-intersection},
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is the critical radius (reach) of M (Figure 1).

Figure 1. Tubes with a radius equal to the critical radius

Theorem 2.3 ([43]). If M ⊂ S
n−1 satisfies Assumption 2.1, then its critical

radius θc is positive.

From Definition 2.2, if θ < θc, then Mθ does not have a self-intersection and
q ∈ Mθ \ M is uniquely written in terms of the triplet (p, v, ψ). The elements of
this triplet are called the tube coordinates (Fermi coordinates) of q (Figure 2).

Figure 2. Tube coordinates (Fermi coordinates)

The Jacobian of the transformation q ↔ (p, v, ψ) is given as follows.

Lemma 2.4 ([28], [42]). Let p = pr(q) ∈ ∂Md denote the projection of q ∈
Mθ \ M onto M . Then

(2.3) dSn−1(q) = det(Id cos ψ + Hp(v) sin ψ) sinn−d−2 ψ dMd(p) dψ dSn−d−2
p (v).

Here, dSn−1(q) is the volume element of S
n−1 at q, dMd(p) is the volume element

of ∂Md at p, dSn−d−2
p (v) is the volume element of S(NpM) at v. A d × d matrix

Hp(v) is the v-component of the second fundamental form of ∂Md at p and its
(i, j)-element 〈−∂2φ/∂ti∂tj , v〉|p is given in terms of a normal coordinate system
p = φ(t), t = (ti)1≤i≤d at p.

We obtain the volume of a tube with radius θ smaller than θc by integrating
(2.3) with respect to dSn−1(q) over the region p ∈ ∂Md, v ∈ S(NpM), 0 ≤ ψ ≤ θ
and then summing the terms over all values of d.
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Theorem 2.5 (Volume of a tube, [42]). For 0 ≤ θ ≤ max(θc, π/2),

Vol(Mθ) =
m∑

d=0

∫
∂Md

dMd(p)
∫

S(NpM)

dSn−d−2
p (v)

∫ θ

0

dψ(2.4)

× det(Id cos ψ + Hp(v) sin ψ) sinn−d−2 ψ

= Ωn

m∑
e=0

wm+1−eB̄(m+1−e)/2,(n−m−1+e)/2(cos2 θ).

Here, Ωn = Vol(Sn−1) = 2πn/2/Γ(n/2),

wm+1−e =
1

Ωm+1−eΩn−m−1+e

×
m∑

d=m−e

∫
∂Md

dMd(p)
∫

S(NpM)

dSn−d−2(v) trd−m+eHp(v),

trl is the l-th elementary symmetric function of the eigenvalues of a symmetric
matrix (e.g., tr0A = 1, tr1A = trA, trdA = detA), and

B̄a,b(c) =
Γ(a + b)
Γ(a)Γ(b)

∫ 1

c

(1 − t)a−1tb−1dt

is the upper probability of the beta distribution with parameter (a, b).

The second equality in (2.4) follows from the expansion formula for the deter-
minant det(Id + A) =

∑d
l=0 trlA.

The above formula gives the correct volume only for small radius θ. In the tube
method, we pretend that the volume of the tube (2.4) is correct for all values of θ
and plug it in (2.2). In (2.4), let θ := cos−1(c/‖ξ‖) and take the expected value
with respect to ‖ξ‖2 ∼ χ2

n. Then we obtain the following approximation.

Theorem 2.6 (Approximation by the tube method, [42]). The tube formula
approximation to the upper tail probability ( 2.1) of the maximum of a Gaussian
random field is given by

P̂
(
max
p∈M

〈ξ, p〉 ≥ c
)

=
1

(2π)n/2

m∑
d=0

∫
∂Md

dMd(p)
∫

S(NpM)

dSn−d−2
p (v)

(2.5)

×
∫ ∞

c

dr

∫ ∞

0

ds e−(r2+s2)/2 det(rId + sHp(v))sn−d−2

=
m∑

e=0

wm+1−eḠm+1−e(c2),

where

Ḡν(c) =
1

2ν/2Γ(ν/2)

∫ ∞

c

tν/2−1e−t/2dt

is the upper probability of the chi-square distribution with ν degrees of freedom. (We
have used the notation P̂ as an approximation to a probability measure P .)

We will show in several steps that the above tube method approximation is
indeed a good approximation.
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2.3. Evaluation of the critical radius. Here we present a method to eval-
uate the critical radius θc. It also yields an exact tube formula for the volume of a
tube. The following argument is given in a more general framework by Taylor, et
al. [45].

For each p ∈ M we want to characterize the set of points q such that p is their
projection:

pr−1({p}) = {q ∈ S
n−1 | p = pr(q)}.

Recall that q can be written as q = p cosψ + v sin ψ (v ∈ S(NpM)). Since p is the
closest point to q in M , we have dist(q, p′) > dist(q, p), ∀p′ ∈ M \ {p}. This can be
rewritten as

cotψ >
〈v, p′〉

1 − 〈p, p′〉 , ∀p′ ∈ M \ {p}.

Therefore, if pr(q) = p, then ψ = cos−1〈q, p〉 satisfies

ψ ≤ θc(p, v), where cot θc(p, v) = sup
p′∈M\{p}

〈v, p′〉
1 − 〈p, p′〉 .

Conversely, if ψ < θc(p, v), then the projection of q = p cosψ + v sin ψ is pr(q) = p.
It follows that{

p cosψ + v sin ψ | v ∈ S(NpM), 0 ≤ ψ < θc(p, v)
}

⊂ pr−1({p})

⊂
{

p cosψ + v sin ψ | v ∈ S(NpM), 0 ≤ ψ ≤ θc(p, v)
}
.

Since the difference of the left-hand side and the right-hand side is a null set (a set
of zero spherical volume), by restricting the integral with respect to ψ in (2.4) to
the interval ψ < θc(p, v), the self-intersection of the integration is avoided even for
a tube with radius greater than the critical radius θc.

Theorem 2.7 (Exact tube formula, [43]).

Vol(Mθ) =
m∑

d=0

∫
∂Md

dMd(p)
∫

S(NpM)

dSn−d−2
p (v)

∫ θ

0

dψ

× 1{ψ<θc(p,v)} det(Id cos ψ + Hp(v) sinψ) sinn−d−2 ψ,

where 1{·} is the indicator function taking values 0 or 1.

By the same derivation as that in Theorem 2.6, we have the following result.

Theorem 2.8 (Distribution of the maximum of a Gaussian field, [43]).

P
(
max
p∈M

〈ξ, p〉 ≥ c
)

=
1

(2π)n/2

m∑
d=0

∫
∂Md

dMd(p)
∫

S(NpM)

dSn−d−2
p (v)

∫ ∞

c

dr

∫ ∞

0

ds

(2.6)

× 1{r>s cot θc(p,v)} e−(r2+s2)/2 det(rId + sHp(v))sn−d−2.

We can give the following interpretation of θc(p, v). Consider an arc starting
from p ∈ M in the direction v ∈ S(NpM) along a great circle (i.e., the exponential
map). If the length of the arc is smaller than θc(p, v), then the arc does not intersect
any other arc starting from p′ ∈ M in the direction v′ ∈ S(Np′M). Therefore, a
tube with radius smaller than θc = infp∈M, v∈S(NpM) θc(p, v) does not have a self-
intersection. In addition, a tube with radius greater than θc has at least one point
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of self-intersection. This implies that θc is the critical radius. From this argument,
we have the following theorem.

Theorem 2.9 ([11], Section 3.4).

cot θc = sup
p∈M, q∈M\{p}

maxv∈S(NpM)〈v, q〉
1 − 〈p, q〉 .

Note that maxv∈S(NpM)〈v, q〉 is the length of the orthogonal projection of q in
R

n onto the cone NpM ⊂ R
n.

2.4. Bounding the error in the tube method. The error ∆P (c) of the
tube formula is given by the difference between (2.5) and (2.6) :

∆P (c) =P̂
(
max
p∈M

〈ξ, p〉 ≥ c
)
− P
(
max
p∈M

〈ξ, p〉 ≥ c
)

= − 1
(2π)n/2

m∑
d=0

∫
∂Md

dMd(p)
∫

S(NpM)

dSn−d−2
p (v)

∫ ∞

c

dr

∫ ∞

0

ds

× 1{c≤r≤s cot θc(p,v)} e−(r2+s2)/2 det(rId + sHp(v))sn−d−2.

We expand det(rId + sHp(v)) as det(rId + sHp(v)) =
∑d

l=0 rd−lsltrlHp(v) and
consider bounding each term in terms of the eigenvalues of Hp(v) from above. We
also bound the indicator function of the region for integration as

1{c≤r≤s cot θc(p,v)} ≤ 1{c≤r}1{c tan θc≤s}

and integrate with respect to r, s. Then we have the following upper bound for the
error.

Theorem 2.10 ([29]). There exists a constant K such that

|∆P (c)| ≤ KḠn((1 + tan2 θc)c2) ( = O(cn−2e−(1+tan2 θc)c2/2) , c → ∞).

The larger the critical radius θc is, the smaller the error term becomes. The
terms in the tube method approximation (2.5) in Theorem 2.6 are of the order
Ḡν(c2) = O(cν−2e−c2/2) as c → ∞. Therefore, as long as θc > 0, the error of the
tube method is exponentially smaller than the terms in the approximation.

2.5. The case of a closed manifold. As the last topic of the tube method,
we consider the case that the manifold M is an m-dimensional closed manifold (i.e.,
a manifold without a boundary). The tube approximation is written as

P̂
(
max
p∈M

〈ξ, p〉 ≥ c
)

=
1

(2π)n/2

∫
M

dM(p)
∫

S(NpM)

dSn−m−2
p (v)

×
∫ ∞

c

dr

∫ ∞

0

ds e−(r2+s2)/2 det(rIm + sHp(v))sn−m−2,

where dM(p) is the volume element of M at p.
Since NpM is a linear space, the integration (with respect to v) of a product of

an odd number of elements of the second fundamental form is zero by symmetry.
We now consider integration with respect to v and s. Note that

1
(2π)(n−m−1)/2

dSn−m−2
p (v)e−s2/2sn−m−2ds (v ∈ S(NpM), s ∈ (0,∞))
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is a probability measure. Under this measure, the random variable sv has the
standard normal distribution over the linear space NpM . Since sHp(v) = Hp(sv),
the integral of the integrand with respect to s, v can be expressed as the expected
value with respect to the random variable sv.

In the following we consider a covariant tensor field on M . For simplicity, we
consider a field expressed in terms of an orthonormal frame.

We refer to a covariant tensor A = (ai1···ik;j1···jk
) of even rank 2k as a “double

form” of type (k, k) if A is antisymmetric in the first half of the indices i1, . . . , ik
as well as in the second half of the indices j1, . . . , jk. We denote the set of these
tensors by Dk,k = Dk,k(M) ([12]).

For two double forms A = (ai1···ik;j1···jk
) ∈ Dk,k, B = (bi1···il;j1···jl

) ∈ Dl,l,
their product AB = C = (ci1···ik+l;j1···jk+l

) ∈ Dk+l,k+l is defined as follows:

ci1···ik+l;j1···jk+l
=

1
k! l!

∑
π, σ∈Sk+l

sgn(π)sgn(σ)

× aiπ(1)···iπ(k);jσ(1)···jσ(k)biπ(k+1)···iπ(k+l);jσ(k+1)···jσ(k+l) ,

where Sk+l is the set of permutations of {1, . . . , k + l}. The set of all double forms⊕
k≥0 Dk,k constitutes a commutative algebra.

Any covariant tensor A = (aij) of rank 2 can be regarded as a double form of
type (1, 1). The following relations hold for double forms: (A2)i1i2;j1j2 = 2(ai1j1ai2j2−
ai1j2ai2j1), (AB)i1i2;j1j2 = ai1j1bi2j2 − ai1j2bi2j1 − ai2j1bi1j2 + ai2j2bi1j1 . Note also
that the curvature tensor is a double form of type (2, 2).

Define the trace of A ∈ Dk,k by

Tr A = Tr(ai1···ik;j1···jk
) =

1
k!

m∑
i1,...,ik=1

ai1···ik;i1···ik
.

Then the following formulas hold ([9], [44]).
(i) Let A = (ai;j)m×m be a double form of type (1, 1) and regard it as a square

matrix. Then its determinant can be written as

detA =
1
m!

Tr(Am).

(ii) Let A = (ai1···ik;j1···jk
) ∈ Dk,k (1 ≤ i1, . . . , jk ≤ m) and I = (δi;j) ∈ D1,1

(m × m identity matrix). Then

Tr(AIj) =
(m − k)!

(m − k − j)!
Tr A.

In particular,

Tr(Ij) =
m!

(m − j)!
.

Let V be the standard normal random vector over the linear space NpM . We
regard the V component of the second fundamental form H(V ) = (Hij(V )) at point
p as a double form of type (1, 1). The relation (the Gauss equation) between the
curvature tensor and the second fundamental form is given by

−Rijkl = E[Hik(V )Hjl(V ) − Hil(V )Hjk(V )] + (δikδjl − δilδjk)

([46]). This relation can be simply written as −R = (1/2)(E[H(V )2]+I2) in terms
of the double form. From the properties of moments of the Gaussian distribution,
we have the following lemma.
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Lemma 2.11 ([44]).

E[H(V )2j ] =
(2j)!
j! 2j

(−2R − I2)j .

Note that the case j = 1 is the Gauss equation. In the following we abbreviate
H(V ) as H:

E[det(rIm + H)] =
1
m!

E[Tr(rI + H)m](2.7)

=
1
m!

[m/2]∑
j=0

(
m

2j

)
rm−2jE[Tr(Im−2jH2j)]

=
[m/2]∑
j=0

1
(2j)!

rm−2jE[Tr(H2j)]

=
[m/2]∑
j=0

(−1)j

j!
rm−2jTr

(
R +

1
2
I2
)j

.

Integrating both sides with respect to

(2.8)
1

(2π)(m+1)/2

∫
M

dM(p)
∫ ∞

c

e−r2/2dr,

we obtain the following theorem.

Theorem 2.12 (The case of a closed manifold (the first statement), [44]).

(2.9) P̂
(
max
p∈M

〈ξ, p〉 ≥ c
)

=
[m/2]∑
j=0

wm+1−2jḠm+1−2j(c2),

where

(2.10) wm+1−2j =
(−1)j Γ((m + 1)/2 − j)

π(m+1)/2 2j+1 j!

∫
M

Tr
(
R +

1
2
I2
)j

dM(p).

We continue expanding for obtaining another expression:

RHS of (2.7) =
[m/2]∑
j=0

(−1)j

j!
rm−2j

j∑
l=0

(
j

l

)
1

2j−l
Tr(RlI2(j−l))

=
[m/2]∑
j=0

(−1)j

j! 2j
rm−2j

j∑
l=0

(
j

l

)
2l (m − 2l)!

(m − 2j)!
Tr Rl

(put k = j − l)

=
[m/2]∑
l=0

(−1)l

l!
Tr Rl

[(m−2l)/2]∑
k=0

(−1)k

2k k!
(m − 2l)!

(m − 2l − 2k)!
rm−2l−2k

=
[m/2]∑
l=0

(−1)l

l!
Tr RlHm−2l(r),

where

Hn(r) =
[n/2]∑
k=0

(−1)k

2k k!
n!

(n − 2k)!
rn−2k
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is the Hermite polynomial of degree n. We again integrate with respect to (2.8).

Theorem 2.13 (The case of a closed manifold (the second statement), [44]).
(2.11)

P̂
(
max
p∈M

〈ξ, p〉 ≥ c
)

=
1

(2π)(m+1)/2

[m/2]∑
l=0

(−1)l

l!
e−c2/2Hm−2l−1(c)

∫
M

TrRldM(p),

where e−c2/2H−1(c) =
∫∞

c
e−r2/2dr.

3. Euler characteristic heuristic

3.1. The excursion set. In this section, we survey the Euler characteristic
heuristic, which is another method for approximating the distribution of the max-
imum of a random field with a smooth sample path. We explain the expression
for the approximation formula, the equivalence of the Euler characteristic heuristic
and the tube method applied to Gaussian random fields with a finite KL-expansion,
and the bound for the approximating error, in that sequence.

Let M̃ be an orientable m-dimensional C3-manifold. Consider a random field
X(p), p ∈ M̃ , defined on M̃ with a sample path of C2-class. Assume that the
random field has a variance, and that Corr(X(p), X(q)) = 1 ⇔ p = q. We do not
assume the normality of the random field for a while. Let M ⊂ M̃ be a piecewise
smooth C3-submanifold in the sense of Assumption 2.1. We consider approximating
the distribution of the maximum maxp∈M X(p) over M .

The set of indices p ∈ M such that the value X(p) is greater than or equal to
a threshold c is called the excursion set

Ac = {p ∈ M | X(p) ≥ c}.
From the definition of the excursion set, it follows that

P
(
max
p∈M

X(p) ≥ c
)

= P (Ac �= ∅) = E[1{Ac �=∅}].

Here, 1{·} is a random variable taking the value 1 when the event occurs, and the
value 0 otherwise. The Euler characteristic of Ac is denoted by χ(Ac). If we can
assume the approximation

(3.1) 1{Ac �=∅} ≈ χ(Ac) (when c is large),

then, by taking the expectations of both sides, we have the approximation formula

P
(
max
p∈M

X(p) ≥ c
)

= E[1{Ac �=∅}] ≈ E[χ(Ac)] (when c is large).

This approximation is called the Euler characteristic heuristic. As we will see,
it is simpler to evaluate the integral E[χ(Ac)] than E[1{Ac �=∅}]. Thus, the above
argument is useful.

Approximation (3.1) is based on the following intuitive arguments. If c is very
large such that c > maxp∈M X(p), then Ac = ∅ and (3.1) holds trivially in the
form 1{Ac �=∅} = χ(Ac) = 0. In addition, unless the random field has some special
structures, the point p = p∗ that attains the maximum should exist uniquely. If
c = X(p∗) exactly, then Ac = {p∗}. If c < X(p∗) but c is very close to X(p∗), then
Ac should be a set containing p∗ homeomorphic to a closed ball. For these regions,
we have 1{Ac �=∅} = χ(Ac) = 1, and (3.1) holds again. We cannot say anything more
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in general when c is smaller. However, it is clear from the above observation that
(3.1) holds in some form.

3.2. Morse’s theorem and the approximation formula. As stated in
Section 1, we consider the index set M̃ as an m-dimensional manifold endowed with
the metric defined by the covariance matrix gij = Cov(Xi, Xj) of the differential
field Xi = ∂X/∂ti. In the following, we use local coordinates (ti)1≤i≤m of M̃ around
x ∈ ∂Md such that (i) td+1 = · · · = tm = 0 represents ∂Md, (ii) (ti)1≤i≤d forms
local coordinates of ∂Md around x, and (iii) at x′ ∈ ∂Md in the neighborhood of x,
(∂/∂ti)x′ (i = d + 1, . . . , m) is orthogonal to Tx′∂Md.

We consider expressing the Euler characteristic of the excursion set by means
of Morse’s theorem. For this purpose, we provide a version of Morse’s theorem for
piecewise smooth manifolds.

The gradient of a function f on M̃ is written as ∇f = (∂f/∂ti)1≤i≤m using local
coordinates. The restriction of the function f to ∂Md is denoted by f|∂Md

. Using the
local coordinates of ∂Md, the gradient f|∂Md

and the Hesse matrix (Hesse form)
are defined by ∇f|∂Md

= (∂f|∂Md
/∂ti)1≤i≤d, and ∇2f|∂Md

= (∂2f|∂Md
/∂ti∂tj −∑d

k=1 Γk
ij∂f|∂Md

/∂tk)1≤i,j≤d, respectively. Here, Γk
ij =

∑d
l=1 Cov(Xij , Xl)glk is

the connection coefficient of ∂Md. The points where the gradient becomes 0 are
called the critical points.

Definition 3.1 (Morse function). Let M̃ be an m-dimensional C3-manifold
and let M ⊂ M̃ be a piecewise smooth m-dimensional C3-submanifold. A C2-
function f on M̃ is called the Morse function on M if

(i) the critical points of f do not exist on the boundary ∂M =
⊔

d<m ∂Md of
M , and

(ii) for every dimension 1 ≤ d ≤ m, f|∂Md
is not degenerate, that is, the Hesse

matrix ∇2f|∂Md
is not degenerate on the critical points of f|∂Md

.

The set of all critical points of f|∂Md
is denoted by Zd. It can be proved that

Zd is a finite set if f is a Morse function on M . The number of negative eigenvalues
of the Hesse matrix evaluated at the critical point x∗ ∈ Zd of the function f|∂Md

is
called the index and denoted by index∇2f|∂Md

(x∗).

Theorem 3.2 (Morse’s theorem for piecewise smooth manifolds, [10], [42]). If
a C2-function f on M̃ is a Morse function on M , then the following holds:

χ({x ∈ M | f(x) ≤ u})

=
m∑

d=0

d∑
k=0

(−1)k#{x∗ ∈ Zd | index∇2f|∂Md
(x∗) = k,

−∇f(x∗) ∈ Nx∗M, f(x∗) ≤ u}

=
m∑

d=0

∑
x∗∈Zd

1{−∇f(x∗)∈Nx∗M, f(x∗)≤u} sgn det∇2f|∂Md
(x∗).

Here, NxM = {v ∈ TxM̃ | 〈v, u〉 ≤ 0, ∀u ∈ SxM} is the normal cone of M at x,
and sgn is the sign function taking values ±1 according to the sign of the argument.

Morse’s theorem for the manifold with boundaries (i.e., ∂Md = ∅, d ≤ m − 2)
is given in Morse and Cairns [33], Theorem 10.2. This theorem is regarded as
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an extension of it. The critical point x∗ ∈ Zd of f|∂Md
is said to be an augmented

critical point if −∇f(x∗) ∈ Nx∗M . Theorem 3.2 states that the Euler characteristic
of a piecewise smooth manifold can be calculated by summing the indices of the
augmented critical points.

Let (Tx∂Md)⊥ be the orthogonal complement of Tx∂Md in TxM̃ . Since ∂Md ⊂
M , we have NxM ⊂ (Tx∂Md)⊥. On the other hand, at the critical point x∗ ∈ Zd,
we see that ∇f(x∗) ∈ (Tx∗∂Md)⊥. Let ∇⊥

∂Md
f(x) denote the orthogonal projection

of ∇f(x) ∈ TxM̃ onto (Tx∂Md)⊥, that is,

∇⊥
∂Md

f(x) = (0, . . . , 0, ∂f/∂td+1, . . . , ∂f/∂tm)|x ∈ TxM̃.

Then the condition −∇f(x∗) ∈ Nx∗M is equivalent to −∇⊥
∂Md

f(x∗) ∈ Nx∗M .
In order to obtain the Euler characteristic of the excursion set, we apply Theo-

rem 3.2 by letting f := −X and u := −c. For that purpose, −X has to be a Morse
function on M . Including this condition, Adler and Taylor [5] refer to the sufficient
conditions under which the Euler characteristic heuristic is valid as the “suitable
regularity” ([5], Theorem 11.3.1). They are too complicated to describe here in the
general setting. We will give them later in the case of Gaussian random fields.

Under suitable regularity, the random field −X becomes a Morse function on
M with probability 1, and

χ(Ac) =χ({p ∈ M | X(p) ≥ c})

=
m∑

d=0

∑
p∗∈Zd

1{∇⊥
∂Md

X(p∗)∈Np∗M, X(p∗)≥c} sgn det(−∇2X|∂Md
(p∗)) a.s.

Let εD
d ⊂ R

d be a d-dimensional ball centered at the origin and with radius ε. Let

δε(p) =
1{∇X|∂Md

(p)∈εDd}

Vol(εDd)
.

As ε → 0, the measure δε(p) | det∇2X|∂Md
(p)|
∧d

i=1 dti|p converges to the Dirac
measure at the critical point p∗. Since the critical points are finite and discrete,
the summation

∑
p∗ can be replaced by the integration using δε. Because of

sgn(det∇2X|∂Md
) | det∇2X|∂Md

| = det∇2X|∂Md
, we have

χ(Ac) =
m∑

d=0

lim
ε→0

∫
∂Md

1{∇⊥
∂Md

X(p)∈NpM, X(p)≥c} det(−∇2X|∂Md
(p)) δε(p)

d∧
i=1

dti|p.

(Note that “sgn” has vanished.) Consider taking the expectations of both sides. Let
θ∇X|∂Md

(p)(0) denote the density function of ∇X|∂Md
(p) = (Xi(p))1≤i≤d evaluated

at 0. Then we have limε→0 E[δε(p)] = θ∇X|∂Md
(p)(0). Moreover,

E[χ(Ac)] =
m∑

d=0

lim
ε→0

∫
∂Md

E
[
E[1{∇⊥

∂Md
X(p)∈NpM, X(p)≥c}

× det(−∇2X|∂Md
(p)) | ∇X|∂Md

(p)] δε(p)
] d∧

i=1

dti|p.
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Under suitable regularity, the integration and the limit are interchangeable and

E[χ(Ac)] =
m∑

d=0

∫
∂Md

E
[
1{∇⊥

∂Md
X(p)∈NpM, X(p)≥c}

(3.2)

× det(−∇2X|∂Md
(p)) | ∇X|∂Md

(p) = 0
]
θ∇X|∂Md

(p)(0)
d∧

i=1

dti|p.

Note that thus far we did not assume the normality of the random field. Worsley
[47] derived the expectation of the Euler characteristic heuristic for certain classes
of the chi-square random field, the F random field, and the t random field. The
authors [31] gave the approximations of the distributions of the largest eigenvalues
of real random matrices following the Wishart distribution, the multivariate beta
distribution, and the inverse Wishart distribution by considering the maxima of the
quadratic forms of matrices.

3.3. The case of Gaussian random fields. From now on, we assume that
X(p), p ∈ M̃ , is a Gaussian random field with mean 0 and variance 1. Taking the
differentials of both sides of Var(X(p)) = 1 yields Cov(X(p), Xi(p)) = 0, which
implies that X(p) and ∇X(p) are independent for each p. Furthermore, the regres-
sion residual of the second derivatives −Xij(p) = −∂2X(p)/∂ti∂tj onto X(p) and
∇X(p) = (Xi(p))1≤i≤m is

Hij(p) = − Xij(p) − E[−Xij(p) | X(p), ∇X(p)]

= − Xij(p) − {gij(p)X(p)− Γk
ij(p)Xk(p)}

= − (∇2X(p))ij − gij(p)X(p).

From the property of the normal distribution, H(p) = (Hij(p)) is independent of
X(p) and ∇X(p) for each p. Since ∇X(p) follows the normal distribution with
mean 0 and covariance matrix (gij(p))1≤i,j≤m, we have

θ∇X(p)(0) = det(gij(p))−1/2/(2π)m/2.

Applying the same argument to the restriction X|∂Md
of X to ∂Md, we can rewrite

(3.2) for the case of Gaussian random fields.
The suitable regularity for Gaussian random fields is given as follows ([5], Corol-

lary 11.3.2, Theorem 12.4.2).

Assumption 3.3. Let t = (ti)1≤i≤m be a normal coordinate system of M̃
around p ∈ M . Put Xi = ∂X/∂ti and Xij = ∂2X/∂ti∂tj .

(i) For each p ∈ M , the joint distribution of ((Xi(p))1≤i≤m, (Xij(p))1≤i≤j≤m)
is not degenerate.

(ii) There exist constants K, α > 0 such that for all p ∈ M and q in its
neighborhood, we have

max
1≤i,j≤m

Var(Xij(p) − Xij(q)) ≤ K| log ‖t − s‖|−(1+α).

(Here, we put the local coordinates of p, q as t, s.)
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Theorem 3.4. Suppose that X(p), p ∈ M̃ , is a Gaussian random field satisfy-
ing Assumption 3.3. Then,

E[χ(Ac)] =
m∑

d=1

1
(2π)d/2

∫
∂Md

E
[
1{X(p)≥c, ∇⊥

∂Md
X(p)∈NpM}(3.3)

× det(X(p)Id + H(p))
]
dMd(p).

Here, H(p) = (Hij(p))d×d with Hij(p) = −(∇2X|∂Md
)ij(p) − δijX(p) is expressed

in terms of a normal coordinate system of ∂Md around p.

We consider Theorem 3.4 restricted to the Gaussian random field with a finite
KL-expansion

(3.4) X(p) = 〈ξ, p〉, p ∈ M ⊂ S
n−1, where ξ = (ξi)1≤i≤n ∼ Nn(0, In).

In a neighborhood of the point p ∈ ∂Md, the points of ∂Md are assumed to
have a parameter representation in the form of φ(t) ∈ ∂Md, t = (ti)1≤i≤d. Put
φi = ∂φ/∂ti, φij = ∂2φ/∂ti∂tj , and so on. Moreover, let φ(t) be a normal coordi-
nate system around p. Then Xi(p) = 〈ξ, φi〉|p and gij(p) = Cov(Xi(p), Xj(p)) =
〈φi, φj〉|p = δij . Therefore X(p), X1(p), . . . , Xd(p) are distributed independently
according to the standard normal distribution. Moreover, since Xij(p) = 〈ξ, φij〉|p,
Γk

ij(p) = Cov(Xij(p), Xk(p)) = 〈φij , φk〉|p = 0, and 〈φij , φ〉|p = −δij , we observe
that

Hij(p) = 〈ξ,−φij − δijφ〉|p = 〈V (p),−φij |p〉,

where

V (p) = ξ − 〈ξ, φ〉φ|p −
∑d

i=1〈ξ, φi〉φi|p.

V (p) follows the multivariate standard normal distribution in the linear space
(Tp∂Md)⊥ independently of X(p),∇X|∂Md

(p) = (Xi(p))1≤i≤d. Let φd+1, . . . , φn−1

form a basis of the complement subspace of Tp∂Md in TpS
n−1. Then, V (p) =∑n−1

i=d+1〈ξ, φi〉φi|p. This implies V (p) = ∇⊥
∂Md

X(p).
By letting r = X(p), s = ‖V (p)‖, and v = V (p)/‖V (p)‖, and writing the

expectation in an integration form, E[χ(Ac)] in (3.3) is reduced to the tube method
approximation formula (2.5). This is the equivalence between the tube method and
the Euler characteristic heuristic.

However, differently from the tube method, the approximation formula by the
Euler characteristic heuristic does not contain the dimension n of the ambient
manifold. Therefore, it is applicable to Gaussian random fields without a finite
KL-expansion.

Remark 3.5 (The Chern-Gauss-Bonnet theorem). Let M be an m-dimensional
closed manifold. Since the excursion set A−∞ with the threshold c = −∞ is just
the set of whole indices, (2.11) yields

E[χ(A−∞)] = χ(M) =

⎧⎨⎩
(−1)m/2

(2π)m/2 (m/2)!

∫
M

Tr Rm/2dM(p) (m : even),

0 (m : odd).
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3.4. Approximation error in the Euler characteristic heuristic. Fi-
nally, we briefly introduce the idea of Taylor, et al. [45] to bound the approximation
error in the Euler characteristic heuristic for Gaussian random fields.

Recall that the approximation by the Euler characteristic heuristic is stated in
terms of random variables, and hence it is independent of the number of random
variables forming the Gaussian random field (i.e., the number n of terms in the
KL-expansion). In the tube method, by restricting the range of the integral to

(3.5) r > sup
q∈M\{p}

〈sv, q〉
1 − 〈p, q〉 ,

the integration was completed without overlapping, and accordingly, the distribu-
tion of the maximum was obtained exactly. However, sv ∈ NpM is an (n − d)-
dimensional vector, and in this sense (3.5) contains n. In the following, by rewrit-
ing (3.5) into an expression in terms of random variables, we consider its analogue,
which is applicable to the case of an infinite KL-expansion. For the sake of simplic-
ity, we treat the case where M is an m-dimensional closed manifold.

We attempt to establish the correspondence with the finite-dimensional case.
Let X(p) = 〈ξ, p〉, p ∈ M . From the consideration in the previous subsection, using
the local coordinates p = φ(t), we have r = X(p), sv = ∇⊥

MX(p) = ξ − 〈ξ, φ〉φ|p −∑m
i=1〈ξ, φi〉φi|p, and 〈sv, q〉 = X(q)−E[X(q) |X(p)]−E[X(q) | ∇X(p)]. Moreover,

〈p, q〉 = E[X(p)X(q)]. Summarizing the above, the random variable expression of
(3.5) is written as

(3.6) X(p) > sup
q∈M\{p}

Wp(q), Wp(q) =
X(q) − E[X(q) |X(p), ∇X(p)]

1 − E[X(p)X(q)]
.

Note that Wp(q) (∀q �= p) is independent of X(p) because X(q) − E[X(q) |X(p),
∇X(p)] is independent of X(p) for each q.

Actually, by taking the expectation for (3.3) within the restricted range (3.6),
the exact distribution of the maximum is obtained under some additional regularity
conditions. The approximation error of the Euler characteristic heuristic is written
as follows:

∆P (c) = E[Ac] − P
(
max
p∈M

X(p) ≥ c
)(3.7)

= − 1
(2π)m/2

∫
M

E
[
1{c≤X(p)≤supq∈M\{p} Wp(q)} det(X(p)Im + H(p))

]
dM(p).

Noting the expansion det(X(p)Im + H(p)) =
∑m

l=0 X(p)m−ltrlH(p) and

1{c≤X(p)≤supq∈M\{p} Wp(q)} ≤ 1{c≤X(p)}1{c≤supq∈M\{p} Wp(q)},

as well as the independence of the triplet X(p), supq∈M\{p} Wp(q), and H(p), the
absolute value of the right-hand side is bounded above by

1
(2π)m/2

∫
M

E
[
1{c≤X(p)}X(p)m−l

]
E
[
1{c≤supq∈M\{p} Wp(q)} |trlH(p)|

]
dM(p)

(l = 0, . . . , m). Moreover, by Hölder’s inequality, we have

E
[
1{c≤supq∈M\{p} Wp(q)} |trlH(p)|

]
≤ E
[
|trlH(p)|r

]1/r

P
(

sup
q∈M\{p}

Wp(q) ≥ c
)1/s
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(1/r+1/s = 1). Applying Borell’s inequality ([2]) about the maximum of Gaussian
random fields to the zero-mean Gaussian random field Wp(q), q ∈ M \ {p}, we
obtain the asymptotic upper bound

lim
c→∞

c−2 log P
(

sup
q∈M\{p}

Wp(q) ≥ c
)
≤ − 1

2σ2
c

, σ2
c = sup

p∈M, q∈M\{p}
Var(Wp(q)),

where

Var(Wp(q)) =

1 − Cov(X(q), X(p))2 − Cov(X(q),∇X(p))Var(∇X(p))−1Cov(∇X(p), X(q))
(1 − Cov(X(q), X(p)))2

.

In addition, since the marginal distribution of X(p) is the standard normal, we
have

lim
c→∞

c−2 log E
[
1{c≤X(p)}X(p)m−l

]
= −1

2
.

Combining the above relations and adjusting r and s according to c as

r → ∞, c−2 log E[|trlH(p)|r]1/r → 0 (c → ∞)

(note that s → 1), we can show that

(3.8) lim sup
c→∞

c−2 log |∆P (c)| ≤ −1
2

(
1 +

1
σ2

c

)
.

In the setting of the finite KL-expansion (3.4), after some simple calculations
we see that σ2

c = cot2 θc. This is consistent with the exponential order of the
approximating error of the tube method given in Theorem 2.10. As a counterpart
of the critical radius, σ2

c is called the critical variance.
When the random field is non-Gaussian, it is possible to write down the upper

bound for the approximating error |∆P (c)| corresponding to (3.7). However, it
seems difficult to give some asymptotic bounds in general settings such as those
in (3.8). The asymptotic error bounds of the Euler characteristic heuristic for the
chi-square random fields, the beta random fields, and the inverse chi-square random
fields defined by the quadratic forms of real random matrices are given in [31].

4. Applications to statistics

4.1. The maximum of multilinear forms and the multiway analysis
of variance. Suppose that each element of the k-way array Ξ = (ξj1···jk

), ji =
1, . . . , qi, i = 1, . . . , k, is distributed independently according to the standard normal
distribution N(0, 1). For i = 1, . . . , k, let hi = (hi1, . . . , hiqi

) ∈ S
qi−1 be a qi-

dimensional unit coefficient vector, and define a k-linear form with respect to the
hi’s:

(4.1) 〈ξ, h1 ⊗ · · · ⊗ hk〉 =
q1∑

j1=1

· · ·
qk∑

jk=1

ξj1...jk
h1j1 · · ·hkjk

.

Here, ⊗ denotes the Kronecker product and ξ = (ξ11...1, ξ11...2, . . . , ξq1q2...qk
) is the

vector of the lexicographically ordered elements of Ξ.
The maximum of this multilinear form,

(4.2) max
hi∈Sqi−1, ∀i

〈ξ, h1 ⊗ · · · ⊗ hk〉,
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is an extension of the largest singular value of a matrix. In particular when k = 2,
the maximum is the largest singular value of the q1×q2 random matrix consisting of
independent standard normal random variables, and the distribution is reduced to
that of the square root of the largest eigenvalue of the q2 × q2 Wishart distribution
Wq2(q1, Iq2) with q1 degrees of freedom.

The distribution of the maximum of the multilinear form (4.2) is required in
the statistical testing for the hypothesis of no interaction in a multiway analysis
of variance model. For testing the hypothesis of no interaction in the two-way
data without replication {xij}I×J , we have to model the interaction. Johnson and
Graybill [19] modeled the interaction term as a bilinear form of rank 1 as follows:

(4.3) xij = αi + βj + φuivj + εij , i = 1, . . . , I, j = 1, . . . , J.

Here, αi, βj , φ, ui, and vj are unknown parameters, and εij is the error term
distributed independently according to N(0, σ2). When σ2 is known, the likelihood
ratio test for testing the hypothesis of no interaction H0 : φ = 0 has the same
distribution of the maximum (4.2) with k = 2, q1 = I − 1, and q2 = J − 1 under
the null hypothesis.

For the three-way data {xijk}I×J×K without replication, Kawasaki and
Miyakawa [20] proposed the following model as an extension to (4.3) :

xijk = (αβ)ij + (αγ)ik + (βγ)jk + φuivjwk + εijk,

i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

Under the null hypothesis of no three-factor interaction H0 : φ = 0, the null dis-
tribution of the likelihood ratio test is reduced to the distribution of the maximum
(4.2) with k = 3, q1 = I − 1, q2 = J − 1, and q3 = K − 1.

The multilinear form (4.1) can be regarded as a Gaussian random field 〈ξ, h〉,
h ∈ M , with

M = {h1 ⊗ · · · ⊗ hk | hi ∈ S
qi−1, i = 1, . . . , k}

the index set, and ξ an n =
∏k

i=1 qi dimensional standard normal random vector.
M is the direct product of the unit spheres S

q1−1 ⊗ · · · ⊗ S
qk−1, and is regarded as

a subset of S
n−1. Hence, the tube method can be applied to our problem. Note

that the dimension of M is m =
∑k

i=1 qi − k. Noting that the degree of the map
(h1, . . . , hk) �→ h1 ⊗ · · · ⊗ hk is 2k−1, we have

(4.4) Vol(M) = 2−(k−1)
k∏

i=1

Ωqi
, Ωq = Vol(Sq−1) =

2πq/2

Γ(q/2)
.

Divide the indices {1, . . . , m} into k partitions as follows:

A1 = {1, . . . , q1−1}, A2 = {q1, . . . , q2−2}, . . . , Ak = {q1+· · ·+qk−1−k+2, . . . , m}.

When i and j belong to the same partition (i.e., there exists h such that i, j ∈ Ah),
write i ∼ j. When i ∼ j does not hold, write i � j. The curvature tensor of M in
terms of a normal coordinate system is written as follows:

Rij;kl =

{
−(δikδjl − δilδjk) (i ∼ j),
0 (otherwise).

Recall that this is the double form of type (2, 2).
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Theorem 4.1 ([29]). Suppose that a1, a2, . . . , a2e are distinct elements of {1, 2,
. . . , m}. We denote the number of their pairings into e pairs such that two elements
of a pair do not belong to the same partition, that is, the number of

{(a1, a2), . . . , (a2e−1, a2e) | a1 < a3 < · · · < a2e−1,

a2l−1 < a2l, a2l−1 � a2l, ∀l = 1, . . . , e}
by nk(q1 − 1, . . . , qk − 1; e).

(i) The tube method approximation formula for the distribution of the maximum
of the multilinear form is given by ( 2.9) with the coefficients

wm+1−2e =
π(k−1)/2∏k
i=1 Γ(qi/2)

(
−1

2

)e

Γ
(1

2
(m + 1) − e

)
nk(q1 − 1, . . . , qk − 1; e),

e = 0, 1, . . . , [m/2].
(ii) The critical radius of M is given by

θc = cos−1

√
2k − 2
3k − 2

.

Proof. Here, we will give a proof for (i) different from [29]. Put I = (δi;j) ∈
D1,1, R̃ = R + I2/2. We evaluate TrR̃e in the sense of the double form. Noting
that (I2/2)ij;kl = δikδjl − δilδjk, we have

R̃ij;kl =

{
δikδjl − δilδjk (i � j),
0 (otherwise).

Also, since

(R̃e)i1···i2e;j1···j2e
=

1
(2e)2

∑
π,σ∈S2e

sgn(π) sgn(σ)

× R̃iπ(1)iπ(2);jσ(1)jσ(2) · · · R̃iπ(2e−1)iπ(2e);jσ(2e−1)jσ(2e) ,

we have

TrR̃e =
1

(2e)!

∑
i1,...,i2e

1
(2e)2

∑
π∈S2e

∑
σ∈S2e

sgn(π) sgn(σ)

× R̃iπ(1)iπ(2);iσ(1)iσ(2) · · · R̃iπ(2e−1)iπ(2e);iσ(2e−1)iσ(2e)

=
∑

i1<···<i2e

∑
π∈S∗

2e

∑
σ∈S∗

2e

sgn(π) sgn(σ)

× R̃iπ(1)iπ(2);iσ(1)iσ(2) · · · R̃iπ(2e−1)iπ(2e);iσ(2e−1)iσ(2e)

(S∗
2e = {π ∈ S2e | π(2l − 1) < π(2l), l = 1, . . . , e})

=
∑

i1<···<i2e

∑
π∈S∗

2e

∑
σ∈S∗

2e

sgn(π) sgn(σ)δπ(1)σ(1)δπ(2)σ(2)1{π(1)�π(2)}

· · · δπ(2e−1)σ(2e−1)δπ(2e)σ(2e)1{π(2e−1)�π(2e)}

=
∑

i1<···<i2e

∑
π∈S∗

2e

1{π(1)�π(2)} · · · 1{π(2e−1)�π(2e)}

= e! nk(q1 − 1, . . . , qk − 1; e).

The proof is completed by substituting this and (4.4) into (2.10). �
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Remark 4.2. When k = 2,

n2(q1 − 1, q2 − 1; e) =
(q1 − 1)! (q2 − 1)!

(q1 − 1 − e)! (q2 − 1 − e)!
.

nk(d1, . . . , dk; e) for k ≥ 3 can be evaluated by recurrence relations ([29], Lemma
A.2).

4.2. Significance in the projection pursuit. Suppose that for N individu-
als, p-dimensional vector data Xi ∈ R

p (i = 1, . . . , N) are observed as independent
samples. In such multidimensional data analysis (multivariate analysis), the pro-
jections of the data into lower-dimensional subspaces are often used in order to
focus on the features that interest the data analyst.

In the principal component analysis or the canonical correlation analysis, sub-
spaces are selected so that the variance of the projected data is large. In the
projection pursuit, the subspaces that comprise large nonnormality (that is, the
cumulants with degrees 3 or higher are large) are selected ([15]). Fast ICA, one of
the independent component analysis techniques, is a similar method ([16]). The
procedure is described as follows. Here, we restrict our attention to projection to a
one-dimensional subspace.

(i) Let h ∈ S
p−1 (= {h ∈ R

p | ‖h‖ = 1}), be a directional vector. Make an
orthogonal projection of the data onto the one-dimensional space with respect to
the direction h as Yi = 〈h, Xi〉 (i = 1, . . . , N). Moreover, standardize the data as
Zi = (Yi − Ȳ )/sY (i = 1, . . . , N) with the sample mean Ȳ and the sample standard
deviation sY .

(ii) Based on the standardized data, calculate the measure of nonnormality
IN (h) (projection pursuit index). Here, as an example, we let

IN (h) =
1√
N

N∑
i=1

(
eθZi−θ2/2 − 1

)/√
eθ2 − 1 − θ2 − θ4

2
,

where θ �= 0 is a constant. Note that if Zi follows the standard normal distribution,
then IN (h) ∼ N(0, 1) follows asymptotically for each h ∈ S

p−1.
(iii) Find the direction h∗ = arg maxh∈Sp−1IN (h) that attains the maximum of

the projection pursuit index numerically.
If the distribution of Xi is a multivariate Gaussian, then the joint distribution

of Zi (i = 1, . . . , N) is free from h, and hence the marginal distribution of IN (h)
is irrelevant to h. However, because of stochastic fluctuations, a random contin-
uous function IN (h) has the point h∗ that attains its maximum. Therefore, it is
important to assess whether the numerically searched direction h∗ is caused by sto-
chastic fluctuations and is not really meaningful. For the assessment, we can use
the framework of the statistical testing hypotheses. Assuming the null hypothesis
H0 : “the distribution of Xi is the multivariate normal,” write the upper probability
of the maximum of IN (h) under H0 as

F̄N (c) = P
(

max
h∈Sp−1

IN (h) ≥ c | H0

)
.

We can assess the significance of the maximum by checking that the maximum
value IN (h∗) is located in the upper tail of the distribution, that is, by ensuring
that

F̄N (IN (h∗)) ≤ α,

where α (= 0.05, for example) is the significance level of the test.
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However, the distribution of maxh∈Sp−1 IN (h) is too complicated to handle
analytically. Thus, we adopt the asymptotic approximation as the sample size N
goes to infinity. The following theorem follows from the standard central limit
theorem for Banach-valued random variables ([6], [17]).

Theorem 4.3. The Banach space on S
p−1 is denoted by C(Sp−1). Let Xi,

i = 1, 2, . . ., be i.i.d. samples taken from the p-dimensional multivariate normal
distribution Np(µ, Σ) (detΣ > 0). As N → ∞, IN (·) converges to a Gaussian
random field I(·) in distribution on C(Sp−1). Here, E[I(h)] = 0, Var[I(h)] = 1,
and

Cov(I(g), I(h)) = r(g, h) =
eθ2〈g,h〉 − 1 − θ2〈g, h〉 − θ4〈g, h〉2/2

eθ2 − 1 − θ2 − θ4/2
.

From the continuous mapping theorem,

F̄N (c) → F̄ (c) = P
(

max
h∈Sp−1

I(h) ≥ c | H0

)
(N → ∞)

holds. Thus, we have an approximation F̄N (c) ≈ F̄ (c) when N is large. F̄ (c) is
evaluated by the tube method and the Euler characteristic heuristic.

The idea stated here that the significance of the projection pursuit is measured
by the tube method is due to Sun [38]. In [38], an approximation using the first
two terms of (2.9) is proposed. In the case of the example treated here, we can
derive all terms of (2.9) explicitly.

The random field I(·) is a spherically isotropic field with the covariance function
depending only on the inner product 〈g, h〉 of two points g, h ∈ S

p−1. Therefore,
we only have to derive the metric and the curvature at an arbitrary point. Taking
local coordinates around (0, . . . , 0, 1), g = (s1, . . . , sp−1,

√
1 −
∑

(si)2) and h =
(t1, . . . , tp−1,

√
1 −
∑

(ti)2), we have gij = ∂2r(g, h)/∂si∂tj |s=t=0 = ρ(θ) δij and
Rij;kl = −ρ(θ)(δikδjl − δilδjk), where

ρ(θ) =
(eθ2 − 1 − θ2) θ2

eθ2 − 1 − θ2 − θ4/2
.

Noting that the dimension of the index set is m = p − 1, the volume of the index
set is calculated as Vol(M) = ρ(θ)(p−1)/2Ωp. In addition, the curvature tensor is
represented in terms of a normal coordinate system as Rij;kl = −ρ(θ)−1(δikδjl −
δilδjk), that is, R = (−1/2ρ(θ))I2 as a double form. Substituting Vol(M) and

TrRl =
(−1)l

2lρ(θ)l

(p − 1)!
(p − 1 − 2l)!

into (2.11), we have the Euler characteristic approximation for F̄ (c).

Theorem 4.4.

P̂
(

max
h∈Sp−1

I(h) ≥ c
)

=
ρ(θ)(p−1)/2

2p/2−1 Γ(p/2)

[(p−1)/2]∑
l=0

(p − 1)!
ρ(θ)l 2l l! (p − 1 − 2l)!

(4.5)

× e−c2/2 Hp−2l−2(c).

In [44], Section 6.3, an equivalent expression to (4.5) is given in another setting
as the spherically isotropic random field explained here.
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