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Summary

We give a cross-disciplinary survey on “population” Monte Carlo algorithms. In these algorithms, a
set of “walkers” or “particles” is used as a representation of a high-dimensional vector. The computation
is carried out by a random walk and split/deletion of these objects. The algorithms are developed in
various fields in physics and statistical sciences and called by lots of different terms – “quantum Monte
Carlo”, “transfer-matrix Monte Carlo”, “Monte Carlo filter (particle filter)”,“sequential Monte Carlo” and
“PERM” etc. Here we discuss them in a coherent framework. We also touch on related algorithms – genetic
algorithms and annealed importance sampling.

1. Introduction

In this paper, we give a cross-disciplinary survey
on “population” Monte Carlo algorithms. These al-
gorithms, which are developed in various fields, have a
common structure: A set of “walkers” or “particles” is
used for the representation of a high-dimensional vec-
tor and the computation is carried out by a random
walk in the state space and split/deletion of these ob-
jects. These algorithms do not belong to the class
of Markov chain Monte Carlo (MCMC, dynamical
Monte Carlo), although they share common features
and applications.

Monte Carlo filter [Kitagawa 96, Kitagawa 98] (or
sequential Monte Carlo [Liu 98, Doucet 01, Crisan
00]) algorithm is a topic of recent interest in the field
of statistical information processing and now being
popular in related fields, e.g., robot vision [Isard 98].
It is an example of population Monte Carlo algo-
rithms defined here. It is, however, not the only
example. Population Monte Carlo algorithms have
proved to be useful tools in a number of fields —
quantum physics, polymer science, statistical physics,
and statistical sciences. They are powerful rivals of
MCMC in these fields.

The aim of this paper is neither the design of a
novel algorithm nor the presentation of new applica-
tions. Our goal is to give a minimal set of references
and explanations for the cross-fertilization among the

researchers in different fields. It will be useful be-
cause few people realize essentially the same algo-
rithms are used in both in statistical information pro-
cessing [Kitagawa 96, Kitagawa 98, Liu 98, Doucet
01, Crisan 00] and physics [Hetherington 84, Cerf 95,
Kalos 62, Ceperley 79, Nightingale 88, Grassberger
00]. I also hope that this survey will be useful for the
development of applications in machine learning and
probabilistic artificial intelligence.

In Chapter 2, we give a common structure of the
population Monte Carlo algorithms. We also discuss a
relation to genetic algorithms and give remarks on the
origins of the methods. In Chapter 3, we give exam-
ples of the algorithms both in physics and statistics.

2. An Overview

2・1 Algorithm – General

Essentially, the algorithms discussed in this paper
are designed for the computation of the products of
non-negative, sparse, M ×M matrices G1,G2, . . . and
a non-negative vector X0. If we express the vector of
nth step as Xn then

Xn+1(i) =
∑

j

Gn(i, j)Xn(j) (1)

where 1 ≤ i, j ≤ M are indices of components of the
vector Xn and the matrix Gn. Here, the dimension
M of vector Xn is assumed to be very large and we
cannot explicitly store the elements of the vector in
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the memory. Saving the storage, we represent the
non-negative vector as a weighted superposition of the
“walker” or “particles” indexed by k (k = 1, . . . ,K),
each of which is placed at jn(k) with a weight wn

k :

X̃n(j) =
∑

k

wn
k · δjn(k),j (2)

Here, δ is the Kronecker delta defined by

δm′,m = 1 (m′ = m)

= 0 (m′ �= m) (3)

The algorithm is defined by the iteration of the fol-
lowing steps:

(1) STEP 1: Random walk in the state space.
Each walker k at the position jn(k) is moved in-
dependently to a new position i

jn+1(k) := i (4)

according to the probability

Pn(i, jn(k)) =
Gn(i, jn(k))∑
i′ G

n(i′, jn(k)) , (5)

(2) STEP 2: Update of the weights.
For each walker, calculate the factor

Wk =
∑
i′

Gn(i′, j(k)) (6)

and update the weight of the walker using

logwn+1
k := logWk + logwn

k . (7)

(3) STEP 3: Reconfiguration.
• Split walkers with a large weight. Each walker

splits into multiple walkers, whose total weight
is equal to that of the original walker.

• Remove walkers with a small weight.
This procedure is called by various different names
— reweighting, prune/enrichment, recon-
figuration, rejuvenation, resampling, branch-
ing, selection.

There are several different ways to resample the
population of the walkers. A simple way is to set

Qk =
wk∑
k′ wk′

(8)

and resample the walkers with probability Qk

(Note that walkers with large Qk can be sam-
pled several times.). Variants are found in the
references, for example, [Nightingale 88]. In some
variants, the number of walkers K is not strictly
constant, but fluctuates within a range.

To complete the algorithm, the initial positions {j0(k)}
and weights {w0

k} of the walkers should be given. In
most cases, w0

k is a constant independent of k and

{j0(k)} are independent samples from the initial den-
sity defined by X0. The choice of X0 depends on a
specific problem and usually the same as the choice
of X0 in the corresponding deterministic algorithm
based on the direct iteration of (1). For example,
we can use an arbitrary density as an initial vector
X0 in quantum Monte Carlo (Section 3・1), although
systematic choice will improve the speed of the con-
vergence. In Monte Carlo filtering (Section 3・3), X0

represents a prior distribution for initial states of se-
ries.

Let us define [· · ·] as an average over random num-
bers used in the past steps of the algorithm. Then, if
we assume

Xn(j) = [X̃n(j)], (9)

it is not difficult to show that the relation

Xn+1(j) = [X̃n+1(j)] (10)

holds with STEP 1 ∼ STEP3. This property is es-
sential for the adequacy of population Monte Carlo
algorithm. When we modify the STEP 3, we should
be careful to conserve this property. With the condi-
tion (10), we expect the convergence of the algorithm
in the limit of the number of the walkers K →∞
with a fixed number n of the iteration ∗1. We refer
to [Crisan 00] for a recent result on the convergence
of population Monte Carlo algorithms ∗2. Practically,
the rate of the convergence severely depends on the
problem treated by the method.

Finally, we note that it is easy to generalize the
algorithm to the cases with continuous state space,
where the matrix G is replaced by an operator and
the summations become integrals. Such continuous
versions of the algorithm are successfully used in some
of the examples discussed below, e.g., applications to
quantum many-body problems.

2・2 The Role of STEP 3

The STEP 3 of the algorithm is not necessary for
the validity of the algorithm, i.e., the condition that
we discussed in the previous section is satisfied only
with STEP 1 and STEP 2. The role of STEP 3 is to
suppress the variation of weights {wk} and improve
the efficiency of the algorithm.

∗1 Note that the convergence is not assured in the limit n →
∞ with a fixed number K of walkers. It is an important
remark for the problems where the limit n → ∞ is required
(for example, see Section 3・1).

∗2 Some remarks by physicists on the property of the algo-
rithm are found in [Hetherington 84, Cerf 95].
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For some problems, the algorithm without STEP 3

is sufficient. Hereafter, we call the algorithm without
STEP 3 as “simple” population Monte Carlo. Note
that without STEP 3, there is no interaction between
walkers. Then, parallel evolution of the walkers can
be replaced by sequential runs each of which corre-
sponds to the simulation of a walker.

In some references, a part of STEP 3 is separately
discussed as a “population control” procedure (e.g.,
[Kalos 62, Grassberger 98]) and/or a part of STEP 3 is
merged into STEP 1 (e.g., [Kalos 62]). In such cases,
we should be careful to judge whether the algorithm
effectively contains STEP 3 or not.

2・3 Relation to Genetic Algorithm

There is an obvious analogy between population
Monte Carlo and genetic algorithms (GA) [Higuchi
97]. However, there is an essential difference in the
goal of the algorithm. Population Monte Carlo is
a tool for the computation of the product of matri-
ces, multiple summations (integrals) and calculation
of marginals. On the other hand, GA is a tool spe-
cialized in optimization. Usually, we can modify pop-
ulation Monte Carlo for the optimization. However,
the converse is often not true. Specifically, we should
be careful to the introduction of crossover operators
and other tricks popular in GA to population Monte
Carlo, because they can easily spoil the convergence
to the exact result in the limit of infinite number of
walkers, K →∞.

There are some theoretical studies on GA that as-
sume the absence of the crossover operation. It might
be interesting to apply them to the study of popula-
tion Monte Carlo.

2・4 Origins

It is difficult to fix the origin of the population
Monte Carlo. An origin seems the algorithms for
the calculation of the elements of an inverse Matrix
developed by von Neumann and others [Hammersley
64, Dreitlein 85], which lacks the STEP 3. Another
reference is Metropolis and Ulam [Metropolis 49] ∗3,
which discuss a solver of the Schrödinger equation by
simulation. The algorithm is attributed to Fermi (It
is an origin of quantum Monte Carlo algorithms with
random walkers discussed in Section 3・1). The algo-

∗3 It is interesting to point out that this paper by famous
physicists appeared in the Journal of American Statistical
Association, which is one of the well-known journals of
statistics.

rithm for eigenvalue problems are also discussed in the
classic book [Hammersley 64] on Monte Carlo. Sim-
ple algorithm for self-avoiding walks is introduced by
Rosenbluth and Rosenbluth [Rosenbluth 55]. Accord-
ing to [Crisan 00], one of the earliest studies of simple
algorithm in statistical science is found in [Handschin
69].

It is also not easy to determine who introduced
STEP 3. For example, STEP 3 is included in the
algorithm in Metropolis and Ulam [Metropolis 49]
and Kalos [Kalos 62] in a somewhat implicit man-
ner. The “enrichment” algorithm [Wall 59] for self-
avoiding walks contains a very special case of STEP

3. Anyway, many authors have used the algorithms
with STEP 3 by the end of 1980s as a version of “quan-
tum Monte Carlo” or “transfer-matrix Monte Carlo”,
while the algorithms without STEP 3 have also been
used up to now.

We left a comprehensive treatment on the history
of the population Monte Carlo methods to future sur-
veys.

3. Examples

3・1 Quantum Many-Body Problems

First, we discuss “quantum Monte Carlo”
algorithms ∗4 [Ceperley 79, Schmidt 84, Schmidt 92,
De Raedt 92, Hetherington 84, Cerf 95, Negele 86, An-
derson 75, Blankenbecler 83, John 87]. In spite of
their name, they are not algorithms specialized to
quantum mechanics. They are most naturally un-
derstood as methods for the approximation of the
smallest (or largest) eigenvalue and the correspond-
ing eigenvector of a large sparse matrix. Essentially,
they are stochastic versions of the power method for
eigenvalue problems.

Consider a symmetric, non-negative matrix A. To
formulate the eigenvalue problem into population Monte
Carlo, we introduce the exponential exp(−βA) of A.
For sufficiently large β, the expression

exp(−βA)X0 (11)

approximately gives an eigenvector with the smallest
eigenvalue for an arbitrary vector X0 that has non-
zero projection to the eigenvector. In general, the
calculation of exp(−βA) is difficult. In most of in-
teresting problems, however, A is decomposed into

∗4 There is a different type of “quantum Monte Carlo” al-
gorithms which are based on MCMC (dynamical Monte
Carlo). They simulate a “world-line” instead of a collec-
tion of random walkers.
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several simple components, e.g., A = B +C where B

and C is symmetric, non-negative matrices whose ex-
ponential is easily calculated. Thus, the exponential
of A is expressed as

exp(−βA) = lim
N→∞

(
exp(− β

N
B)exp(− β

N
C)

)N

.

(12)

It is straightforward to fit the problem into the form
of the equation (1) with

Gn = exp(− β

N
B)exp(− β

N
C) (13)

where N is a sufficiently large number and
n = 0, . . . ,N − 1.

Another approach to the eigenvalue problem is a
method based on an iterative solver of the eigenvalue
equation. Consider the product of matrices

Gn = B−1(λI −D) (14)

where A = B +D and D are a diagonal matrix (I
denotes an identity matrix.). Under the suitable con-
dition on the “Green’s function” B−1 and a properly
chosen value of λ ∗5, the vector Xn converges to an
eigenvector of A.

In the treatment on quantum mechanical problems,
the matrix A is usually Hamiltonian of the given sys-
tem. It is easy to construct continuous version of the
algorithm, where the matrices and summation is re-
placed by operators and integrals, respectively. In
such cases, the operator B is often represented by the
summation of Laplace operators and a constant.

These algorithms are successfully applied to various
problems in quantum physics, e.g., the computation
of the properties of nuclei [Kalos 62, Negele 86], super-
fluids [Ceperley 79, Schmidt 92], quantum spin sys-
tems [Blankenbecler 83, De Raedt 92], and quantum
dynamics [John 87]. They are called by the terms
“projector Monte Carlo”, “Green’s function Monte
Carlo”, and “diffusion Monte Carlo” ∗6.

In some cases, we should deal with matrices or
eigenvectors that are not non-negative. Formally, these
cases can be dealt with the introduction of negative
weight wn

k of walkers. It, however, seriously spoils the
efficiency and convergence of the algorithm. It is an
example of “negative sign crisis” in stochastic com-
putation of quantum mechanical problems. Although

∗5 When we implement it in a form of population Monte
Carlo, the choice of the constant λ is absorbed in STEP 2
and STEP 3. Then we can obtain the eigenvalue λ and the
corresponding eigenvector simultaneously.

∗6 Here we avoid the details of the terminology, because the
classification and naming of these algorithms may depend
on the authors.

there are some interesting ideas to improve the al-
gorithm [Kalos 84, Carlson 85, Negele 89, Anderson
91, Liu 94], it seems difficult to remove the difficulty
entirely with a smart trick, because it originates from
radical difference between classical stochastic systems
and quantum systems.

3・2 Lattice Spin Systems

Using the transfer matrix (transfer integral) formal-
ism, we can translate a calculation for classical sta-
tistical mechanics (and combinatorics) to the compu-
tation of a product of matrices. Then, it is a natu-
ral idea to apply population Monte Carlo algorithms
to these problems. For example, consider a classi-
cal spin model (Markov field model) defined on a
L1×L2 (L2 >> L1) strip ∗7. We define a set of sub-
systems each of which consists of the 1, . . . ,n rows
of the original strip (n = 1,2, . . . ,L2). Hereafter we
assume nearest neighbor interaction on the lattice,
although extensions to cases with next-nearest inter-
action etc. are formally easy. The partition function
Zn(Sn) of the subsystem n conditioned with the val-
ues of the variables in the nth row Sn = {Sln}l=1...L1

is ∑
S1

∑
S2

· · ·
∑
Sn−1

exp(−βEn(S1,S2, . . . ,Sn)) (15)

where β is inverse temperature and En(S1,S2, . . . ,Sn)
is the energy of the nth subsystem. When each vari-
able Sln is a binary variable, the number of the pos-
sible values of Sn is 2L1. Then, a recursion relation

Zn+1(Sn+1) =∑
Sn

Zn(Sn)exp(−β�En(Sn,Sn+1)) (16)

where

�En(Sn,Sn+1) =

En+1(S1, . . . ,Sn,Sn+1)−En(S1, . . . ,Sn) (17)

holds. Obviously, it is essentially the same as the
filtering formula for general state space models and
the recursive formula of the Baum-Welch algorithm
for hidden Markov models. We define Z0 = 1 and
�E0(S1) = E1(S1) for the free boundary condition at
the top of the strip (Here and hereafter, the symbol
S0 in the formulae should be neglected.).

A population Monte Carlo algorithm is constructed
by setting G and X as

Gn(Sn+1,Sn) = exp(−β�En(Sn,Sn+1)) (18)

∗7 For a three-dimensional problem, a L1 ×L1 ×L2 column
substitutes for the strip.
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Xn(Sn) = Zn(Sn). (19)

The algorithm is called “transfer-matrix Monte Carlo”
and applied to classical Heisenberg and XY models
[Nightingale 88, Thijssen 90] and enumeration of the
number of Penrose tiling [Shaw 91] on a lattice.

3・3 Bayesian Computation: MCF and Sequen-

tial Monte Carlo

Algorithms that are similar to the “transfer-matrix
Monte Carlo” are developed by statisticians for the
models of time-series analysis and models with se-
quential structures (e.g., models for gene-propagation
analysis). In these algorithms, we consider marginal
likelihood conditioned with the state xn of the latest
step (time-step) n

Zn(xn) =
∑
x0

∑
x1

· · ·
∑
xn−1

P̂ (x0)P̃ (x0|x1)

P (y1|x1) · · · P̃ (xn−1|xn)P (yn|xn)

(20)

instead of partition function ∗8. Here P (y|x) is like-
lihood associated with data y (representation of ob-
servational noise). P̃ (x|x′) and P̂ (x) are prior prob-
ability for the state transition x→ x′ (representation
of system noise) and prior probability of initial state
x, respectively. The application of population Monte
Carlo algorithms is straightforward.

Kitagawa [Kitagawa 96, Kitagawa 98] introduced
“Monte Carlo filter” (MCF, “particle filter”) for non-
Gaussian/non-linear state space models. Gordon and
coworkers independently developed an idea similar to
the one by Kitagawa, which they call “bootstrap fil-
ter” [Gordon 93, Gordon 95]. Another contribution
is “sequential imputation” that first used in gene-
propagation analysis [Irwin 94] and later used for blind
deconvolution [Liu 95] and other problems. The orig-
inal form of sequential imputation is a simple algo-
rithm that lacks STEP 3, but STEP 3 is introduced
later (“rejuvenated sequential imputation”). The term
“sequential Monte Carlo” is also used to indicate a
family of algorithms that include the above-mentioned
methods as special cases [Liu 98, Crisan 00]. In [Liu
98, Crisan 00], more references in statistical sciences,
some of which are earlier than above-mentioned stud-
ies, are discussed. Applications in robot vision are
described in [Isard 98]. A forthcoming book [Doucet

∗8 We can also use formulation based on posterior distri-
butions of subsystems, which is similar to the one used
in Section 3・4. It is useful in some problems, e.g., smooth-
ing of time-series.

01] on sequential Monte Carlo by statisticians will be
a good guide to the applications in statistical sciences.

3・4 Polymer Science

“Polymer” means a flexible chain consists of small
molecules (“monomers”) connected in a fixed order.
It is called a heteropolymer (↔ homopolymer) when
it is made by monomers of more than two species.
Well-known examples of heteropolymer is protein, RNA
and DNA. A good model of polymer is a flexible chain
where each unit is mutually repulsed by short range
force (van der Waals core) and repulsed/attracted by
longer range force. In lattice models, the former in-
teraction is modeled by “self-avoiding condition”, i.e.,
the condition that a lattice point should not be occu-
pied by more than two monomers.

Population Monte Carlo algorithms for the study
of polymer models are designed in a manner similar
to those for lattice spin models. Subchains of length
n = 1,2, . . . ,N that consists of the first n monomers
of the original polymer of length N is used as subsys-
tems for the definition of the algorithm. An important
difference is that the index of a vector Xn is not the
coordinates rn of the monomer located at the end of
a subchain, but coordinates {r′n}, (n′ = 1, . . . ,n) of all
monomers in the subchains. This is because a pair of
monomers with a large distance along the chain can
interact each other, even with short range interaction.
Thus, the recursion is better described by the Gibbs
distribution Pn of subchains, rather than partition
functions Zn.

If we express the Gibbs distribution of a subchain
n as Pn(r1, r2, . . . , rn), the recursion relation

Pn+1(r1, r2, . . . , rn+1) ∝
Pn(r1, r2, . . . , rn) · exp(−β�E({r1, . . . , rn}, rn+1))

(21)

holds, where �E({r1, . . . , rn}, rn+1) is the interac-
tion energy between a new monomer and the monomers
in the subchain n. For lattice models, we set �E =
+∞ if the conformation of the subchain specified by
{r1, . . . , rn+1} is non-physical, i.e., self-avoiding condi-
tion or connectivity condition of the chain is violated.

To define a population Monte Carlo algorithm, we
must specify the index i of Xn(i) in the equation (1).
The index i should determine the conformation
{ri

1, . . . , r
i
n} of the nth subchain and should have the

dimension N independent of n. Here we define i as a
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vector with components is = ri
s(s ≤ n) and is = 1(s >

n), i.e.,

i = (ri
1, r

i
2, . . . , r

i
n,1,1, . . . ,1) (22)

where 1 is the coordinates of an arbitrary point, for
example, the origin. Next we define Xn(i) as

Xn(i) ∝ Pn(ri
1, r

i
2, . . . , r

i
n) (23)

for i of the form (22) and set Xn(i) = 0 for other
indices i. Finally, we define the matrix Gn as

Gn
ij = exp(−β�E({ri

1, . . . , r
i
n}, ri

n+1))

×∏n
s=1 δ(is − js)

∏N
s=n+2 δ(is − 1). (24)

With these expressions, we can write the recursion (21)
in the form of the equation (1), which gives popula-
tion Monte Carlo algorithms based on a simulation of
growth/selection of polymer subchains (here we start
from X1 instead of X0, with which the index n equals
to the length of the subchain).

Population Monte Carlo algorithms for polymer mod-
els are developed by two or more groups ([Garel 90,
Orland 98] and [Grassberger 97, Grassberger 98, Bas-
tolla 98, Grassberger 00]) ∗9. Grassberger pointed out
that his algorithm, PERM (pruned-enriched Rosen-
bluth method) is understood as an unification of “en-
richment algorithm” [Wall 59] (STEP 1 and 3) and
“Rosenbluth algorithm” [Rosenbluth 55, Seno 96]
(STEP 1 and 2). PERM has proved to be an use-
ful tool to study statistical mechanics of long ho-
mopolymers [Grassberger 97] and other lattice sta-
tistical models [Grassberger 98, Grassberger 00]. It
is also the most efficient algorithm to compute finite
temperature properties of lattice protein models [Bas-
tolla 98, Grassberger 00], although it is recently chal-
lenged by a MCMC algorithm developed by the au-
thor and coworkers [Chikenji 99].

3・5 Bayesian Computation: Annealed Impor-

tance Sampling

In the example of Section 3・1, an intermediate state
indexed by n is a fictitious one and we are only inter-
ested in the limit of large n. In Section 3・2–Section 3・4,
we dealt with examples where the index n corresponds
to an index in the real world, e.g., the index of row
of a lattice, time-step of series, and the length of the
subchain. Here we consider cases where the index n

indicates a system with a parameter γn, e.g., tem-
perature in statistical physics and hyperparameters

∗9 A related problem (counting of “meanders”) is treated
in [Golinelli 00] by population Monte Carlo.

in Bayesian models. Such an example is discussed
by Neal and called by “annealed importance sam-
pling” [Neal 98].

Consider a parametric family of distributions
{Pγn(x),n = 1, . . . ,N}. An example is

Pγn(x) = {P (y|x)}γnP̃ (x) (25)

where P (y|x) is likelihood with data y and P̃ (x) is a
prior. We can formally define a “recursion relation”
by

Pγn+1(x) =
Pγn+1(x)
Pγn(x)

·Pγn(x). (26)

Unfortunately, population Monte Carlo algorithm de-
rived from (26) is trivial and inefficient, because the
matrix Gn(x,x′) defined by the recursion is diagonal.

An idea by Neal is to introduce MCMC steps into
the algorithm. The insertion of probabilistic state-
changes that makes Pγn(x) invariant corresponds to
the insertion of a non-diagonal matrix Ĝn to the right-
hand-side of the equation (1), which satisfies

Xn(i) =
∑

j

Ĝn(i, j)Xn(j). (27)

Obviously, the introduction of such Ĝn does not have
an effect on the validity of the results. The adequacy
of the procedure is also ensured by the relation

Xn(j) = [X̃n(j)] (28)

is not changed by the addition of MCMC steps. The
resultant algorithm consists of finite MCMC sweeps
at each n and STEP 2 with

Wk =
Pγn+1(x)
Pγn(x)

(29)

where x = j(k) is the position of the kth walker.
As far as I know, Neal does not discuss algorithms

with STEP 3, but there seems no reason against the
use of STEP 3 in the algorithm. On the other hand, as
Neal himself pointed out, the algorithm without STEP

3 can be regarded as a version of non-adiabatic ther-
modynamic integration discussed by Jarzynski [Jarzyn-
ski 97, Hendrix 01].

It is interesting to remark that the introduction of
MCMC steps [Crisan 00] is possible for some of the
other population Monte Carlo algorithms.
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