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Managing rail geometry variations
to keep trains running safely

his article describes a procedure for adjust-

ing sampling locations in one spatially dis-

cretized data set to those in another when

the value differences between these sets are
mainly caused by the sampling intervals that locally
lengthen and shorten. This adjustment is formulated
into an optimization form that can be solved by
dynamic programming. Unknown parameters involved
in the form can be identified using
the maximum likelihood procedure
that employs nonlinear filtering for a
generalized state-space model. This
procedure is based on the fact that
the optimal solution in dynamic pro-
gramming is equivalent to the “maximum a posteriori
estimate” in a Bayesian framework.

Introduction

To manage the rail geometry of a railway track, a spe-
cial rolling stock called the “track inspection car” peri-
odically measures the rail geometry because it varies
slightly under the load of passing trains. These geome-
try variations must be managed to keep trains running
safely. While running on the rails, the track inspection
car continuously measures various aspects of rail geom-
etry, for example, vertical irregularity and the distance
between the two rails (called “gauge”). These geome-
try measurements are simultaneously discretized at
fixed spatial intervals and are recorded in digital data
sets as illustrated in Figure 1.
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Although it is desirable that these locations can be
fixed to observe variations in the rail geometry, the set

- of the discretized locations on the rail changes slightly

with each measurement, as illustrated in Figure 2.
These changes are caused by the pulse used for select-
ing the sampling locations (called a “wheel-rotation
pulse”) being linked to the rotation of the car wheel as
illustrated in Figure 3. Thus, identical spatial discretiza-
tion cannot be reproduced.

Moreover, it is difficult to adjust
these location gaps after the dis-
cretization. If the spatial intervals
between the discretized locations
(called a “sampling interval”) keep
constant in two measuring runs, these gaps could be
easily adjusted by calculating the correlation coefficient
distance between the two data sets, even if the locations
themselves change. However, in reality, some sampling
intervals shorten or lengthen locally due
to slipping or sliding of the car wheel (illustrated in
Figure 4). Unfortunately, the length and location of
these locally irregular intervals cannot be detected. This
causes difficulty in adjusting the location gaps.

An example of these irregular sampling intervals is
shown in Figure 5. The upper two curves show the val-
ues of the track gauges measured in the same railway
section and demonstrate similar behavior since track
gauge does not usually vary under the load of passing
trains. The difference sequences between them are also
shown below. Note that a difference operation is
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two gauge waveforms appear similar. Hence,
the wheel appears to slip or slide during one
or the other of the measuring runs.

Until now, the variation in track geometry
could not be computed from the differences
between two data sets obtained with a track
inspection car because of this location prob-
lem. The variation has been evaluated only
by comparing representative statistics such as
maxima. If the variation can be computed
for every sampling location, it would be
helpful in understanding the various mecha-_
nisms that influence rail geometry.

We have developed a procedure for adjust-

A ]. Scheme for measured railway track geometry and its database.

A 2. Scheme for discretized-location gaps in a railway track with
two measurements.
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A 3. Scheme for spatially discretized geometry of a railway track
with wheel-rotation pulses.
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ing the difference between sampling loca-
tions in two data sets when these sets tend
toward similar values and nominally have the
same sampling intervals. Furthermore, our procedure is
applicable to noisy data sets. Figure 5 shows an example
of adjustment of the locations with our proposed proce-
dure. The abnormal amplitude, which is seen in the dif-
ference data sets mentioned above, is suppressed. Our
procedure reveals that the wheel slid about 1 m when
the training data set was measured.

Our procedure is based on the fact that the optimal
solution of dynamic programming is equivalent to a
maximum a posteriori (MAP) estimate in a Bayesian
framework [1].

The procedure is outlined as follows.

A 1) Select a supervised data set and a training data set
that satisfy the several criteria for adjustment purposes.
A 2) Model a mechanism to yield the nonuniform sam-
pling, i.e., the wheel rotation including slip and slide.

A 3) Formulate this model in an optimization problem
that can be solved by dynamic programming, which is a
general method for solving nonlinear discrete optimiza-
tion problems. However, this form contains unknown
parameters.

A 4) Represent this nonlinear optimization problem
with a generalized state-space representation and iden-
tify the unknown parameters (called hyperparameters in
a Bayesian framework) using a nonlinear filtering algo-
rithm based on the maximum likelihood method.

A 5) Adjust the sampling location differences by
dynamic programming with the identified parameters.

Data Set Properties

Properties of a Gauge Data Set

Since the inspection car simultaneously measures sever-
al aspects of rail geometry, it is possible to select the
most suitable measurement from the various measure-
ments to adjust the sampling locations. For conven-
ience in this adjustment, the selected measurement
should have the smallest variation over time. If these
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values vary radically with time, the supervised data set
values are completely different from those of the train-
ing set. In the case of rail geometry, the “gauge”
(shown in Figure 6) data set is best since it has the
smallest variation under trainloads.

Examples of the measured gauge sets are shown as the
top two curves in Figure 5. These sets are already dis-
cretized at about 30 cm and have the following proper-
ties: steady-state random signals that contain noise arising
from the measuring device. The average of the data set is
about 0 mm (zero means the gauge has the regular
value) with a standard deviation of about 0.7 mm. The
noise is thought to be Gaussian white noise with a 0 mm
nominal mean value and independent of the gauge value.
Moreover, an analog low-pass filter smooths the meas-
ured signal before the spatial discretization.

Selection of a Data Interval for Analysis

Since inspection cars run hundreds of kilometers in one
measuring run and produce large data sets, adjusting all
sampling locations simultaneously is impractical. Thus, it
Is necessary to extract two partial
data sets from the two original long
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A 4. Scheme for variations in spatial-sampling intervals with
wheel-rotation states.

sets obtained on different measuring

runs. To accomplish this, these
extracted sets must be measured over
approximately the same track section.

Incidentally, some data points in
the measured data sets can roughly
match the fix points in the railway
track. These points are identified by
peaks in the pulse signals generated
by the ground transmitters embed-
ded in the railway track and detect-
ed by the detector in the car as
illustrated in Figure 7. We call this a
“positioning pulse.” Note that this
pulse is different from a “wheel-
rotation pulse.” This positioning
pulse is recorded and discretized at
the same time as the other measured
signals. After the discretization, the
peaks in the discrete positioning
pulse indicate that these data points
are equivalent to the positions above
the ground transmitters.

However, these peaks do not
indicate the positions right above

the transmitters since the peaks of

Supervised Dataset (A) 2
Rail Guage, 0
3,201 Points Total

[mm] -2
Training Dataset (B) 2
Rail Guage, 0
3,197 Points Total

[mm] =2

Difference Between 1
(A) for the Interval
1st -3,197th and (B)

[mm] -1
Difference Between 1
(A) for the Interval

5th ~3,201st and (B)
[mm] —1
Residuals Between (A) 1
and Adjusted (B) o
3,201 Points Total [mm] -1 [ 1 , ]
- C * 1 t e + | —
Estimated Intervals 5 Slide 3
of (B) ] Z Lengthened 4 of 3,200 Intervals ]
x 1 1 1 " 1
0 1,000 2,000 3,000
Spatial index

4 5. Example of measured data sets from two measurements in the same raifway sec-
tion, their differences, and residuals after location adjustment.

the signal are held before the spatial discretization, as
illustrated in Figure 7. This is done so as not to lose
these peaks in the discretization. Hence, the peak cor-
responds to the first location at which the wheel-rota-
tion pulse was generated after the detector in the car
passed the transmitter. Figure 8 demonstrates the possi-
ble-existence range of pulse-generated location P esti-
mated from discretized positioning pulse S. After the
spatial discretization, the position of P is estimated to
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Gauge

A 6. lllustration of rail gauge.
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be somewhere between S and position A/ back from §;
here, A/ represents the sampling interval. Thus, when
S and §' are obtained near the same transmitter as the
supervised set and the training set, the relative position
of § (seen from §’) is possible only in the range illus-
trated in Figure 9.

The remainder of this article considers the adjust-
ment issue as adjusting the sampling locations between

f Detect T
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Transmitterj
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A 7. Scheme for a positioning-pulse signal generated in a railway
track and discretized with wheel-rotation pulses.

A 8. Possible-existence range of pulse-generated location P esti-
mated from discretized positioning-pulse S.

(Interpolated)

Possible Existence Range of $

A 9. Possible-existence range of discretized location S in a super-
vised data set as seen from S' in a training data set when Al is
the sampling interval.
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the extracted data sets. We select the supervised data set
so that both ends of the set (y; and yr, where y;.7 is
the selected supervised set) are equivalent to S. The
training set is correspondingly selected. The gauge sets
in Figure 5 are selected according to this procedure.

Selection of a Supervised Data Set

Selecting a suitable supervised data set for a certain train-
ing data set is important. We decided that the supervised
set should satisfy the following two conditions.

A The first condition is that track maintenance work
should not be conducted between the two measure-
ment dates for the supervised and the training data
sets. Track maintenance work noticeably changes rail
geometry, including the gauge, whereas trainloads pro-
duce only slight changes.

A The second condition is that the sampling interval of
the supervised set should be uniform because we aim to
estimate the frequency characteristics of the geometrical
variation after this adjustment. Hence, uniformity of the
spatial sampling intervals is desirable for our supervised
set; however, strict uniform sampling is impossible.

For these reasons, a specific criterion is required for
estimating the uniformity of the sampling intervals,
and we decided to estimate the uniformity from T:
the number of data included. This number varies
slightly with the measuring run even though the car
measures between the same two ground transmitters.
A series of measurements yields a distribution of these
numbers. An example is shown in Figure 10. Thus,
we decided that the supervised data set should be with
3,201, the most frequently arising number in this dis-
tribution. In other words, this mode number is a rep-
resentation of a measuring run in which the
inspection car did not slip or slide.

If several data sets satisfy these conditions, we select
the supervised data set that was measured closest in
time to the training set since daily trainloads also
change the geometry of the rails.

Modeling Adjustment of Nonuniform
Sampling Locations

Transformation of an Adjustment Problem

We adjust the nonuniform sampling locations accord-
ing to the following procedure:

A 1) Select a supervised data set suitable for a training
data set.

A 2) Divide the original sampling interval of the train-
ing set by positive integer a, and approximate the val-
ues for the newly interpolated data (interpolation).

A 3) Select data points corresponding to each super-
vised data from the interpolated training set.

Steps 2 and 3 are illustrated in Figure 11.

In this procedure, the adjustment is transformed into
the selection of data points from the interpolated data
set. Let », be the data point index of the training set,
and select it corresponding to the tth supervised data.
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This article expresses {n;, ny, -+, ny_, nrt} as nj.r.
The other variables are similarly expressed. Thus, the
adjustment is transformed into construction of optimal
sequence ny.7, where T is the number of the supervised
data. Consequently, the number of the data contained in
the interpolated training data set is approximately o T.

Hence, if #, — n,_; is larger than «, the wheel is
regarded as having slipped since the sampling interval
of the training set lengthens with adjustment.
Similarly, if #, — #,_; is smaller than a, the wheel is
regarded as having slid. Note that the uniformity of
the intervals of the supervised data set cannot be
assured. Hence, “slip” means #, — n,_; > «, and
“slide” means n, — n,_| < a, although the occurrence
of slip or slide is not assured.

Step 2 in the described procedure approximates
the values of the data newly generated by the interpo-
lation, so as not to change the frequency characteris-
tic of the original data set [2]. This is because a
low-pass filter has already smoothed the data sets
before sampling. That is to say, this filter assures that
the data set before sampling does not contain higher
frequency components.

The interpolated training data set is called the
“training data set” in the rest of this article.

Selection of a Training Data Set

Before computation for the adjustment, consider the
choice of training data set from the large set after
interpolation. This selected training set must include
all data that can be measured right above the locations
of all supervised data points. In the discussion about
the interval of the supervised data set, both ends of
supervised set y; and y7 are equivalent to § in Figure
8. Hence, the training set is sufficient to include all
data that are in the two possible-existence ranges of §
in Figure 9 for y1 and yr and that are sandwiched by
these two ranges. Note that it is not right above the
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A 11. Scheme for the basic idea for adjusting the discretized-loca-
tion gaps.
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A 10. Distribution of the number of data sandwiched between
two positioning pulses generated by two specific transmitters
(including both boundary pulses).
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A 12. Modeled probability distribution of spatial sampling inter-
vals: (a) continuous and (b) discretized when « =5 and Al is the
spatial interval for a supervised data set.
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interpolation) are thought to be
individually contaminated by

Supervised Data Set (A) 2
Guage, 0
3,201 Points Total

Gaussian white noise sequences
when the track inspection car
obtains these data sets.

S%c?nd, consider the properties of
An, = n,— n,_1, which represents
the sampling interval. If the sam-

pling intervals in the training set are
the same as those in the supervised
set, An, = a. On the other hand, if
the training intervals are locally dif-

ferent from the supervised intervals,
An, is a different integer from c«.
The training data interval is estimat-

ed at (@/An,)Alwhere Al is length
3 | of the supervised data interval.

Obviously, the true sampling

f intervals have continuous values.
The precise distribution of these is
unknown. However, the probability
of the slipping and sliding is

assumed to be very low. The total

running-distance with slipping and

(114=0.42, 11,=0.43)
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sliding is empirically assumed to be
less than 0.1% of all.

For the range of values of A#,, this
article employs 1 < An, <2a — 1.

An, 9E Lengthened 4 of 3,200 Intervals 3 When Az, =1, the wheel has slid,
(14=0.42, §=0.43) ?E 4 Consecutive Jatervals 3| and the interval has locally length-
0— 1,0'00 ' 2000 3,(;00— ened to aA/. Similarly, when

Spatial Index, ¢ An, = 2a — 1, the wheel has slipped,

and the interval has locally shortened

A 13. Typical results of adjusting sampling locations against three sets of 11, and u, when

a=2>5,

ground transmitter. As illustrated in Figure 9, the pos-
sible-existence range of S (seen from §’) is from
—Al to Al. Thus, all data that can be obtained above
point S are the following: S’ itself and forward and
backward o — 1 data from S'. These are 2« — 1 in all.
Here, z1.x is the selected training-data set and N is
the number of the included data (N ~ «T), z; is con-
figured at (a— 1)th forward data from S’and zy at
(¢— 1)-th backward data from S’.

Properties of the Optimal Data-Point Sequence
Let »; be a data-point index of the training set, select-
ed to match the #th supervised data point y;, and let
n: be the optimal index. n;.7 is the sequence con-
structed by all the optimal data-points. Hence, this
location adjustment is equivalent to searching for opti-
mal solution n;.7 from all feasible solutions n;.r. This
section considers the desirable properties of ny.7 for
the optimization.

Firstly, n}.; can be evaluated by Y (y, — z,,) 5
where z,; is the value of the #,th training data. This is
because the supervised set and the training set (before
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to (a/2a — 1)AL.

In addition, we assume that the
probability distribution of A#, is the
same except for An, = a. The modeled distribution is
illustrated in Figure 12. The assumed interval that is con-
tinuously distributed around A/ is modeled as the dis-
crete probability.

Flnally, consider  the properties of
An, —efn, —2nm,_1 + n,_2. We assume A2xn, =0 for
almost all # (3 < ¢ < T)). This is because A?#, is natural-
ly zero when the wheel rotates regularly. Similarly, even
when the wheel slips or slides, A2#, is also assumed to
be zero. In other words, the wheel in the course of slip-
ping (A#n, > a) seems to recover normal rotation
(An;41 = a) or to continue slipping at the same rate
(An;11 = An,). This also occurs when the wheel
slides. Thus, —2«a + 2 < A%x, < 2a — 2 is obtained.

Formulating Adjustment into an
Optimization Problem and Its
Interpretation

Formulation into an Optimization Problem

Sequence ny. is the optimal solution that minimizes
the following constrained nonlinear target function:
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T
n).7 =arg min Z F(n))

t=1

T
: 2
=arg min (: — 24)
. =1

T
+m) EAn —aa—1)

t=2
T
+ w2 ZE(AZW,,ZO!—Z)], @
=3
subject to
l<n <2a-1,
N-Qa-1)+1<n} <N,
where

A y; is the value of the #th supervised data set

A T is the number of the supervised data

A 2, is the value of the #,th training data

A1 > 0and pu; > 0 are the weighting coefficients
A § is the function defined by

0, n=0,
E(n,y)={ 1, O<|nl <y,
00, Yy <|nl.

To simplify this notation, we replace n, and #n,_,
with vector x; = [#,n]_,]7 (where a “T” represents
transpose) with x, €S, &f {[mn, 1"\, € S;, n,_,
€ S;_1}, where S, is the search area given for »,. By
substidtlflting these equations for F(#,), function
I, = min Z;=1 F (n;.) can be obtained as the follow-
ing recursive formulation:

Jx) =min[g(x;_)) + £}, x,_)Ix,_, €8,.1],

for 3<tr<T,
where
fOax 1) =0~ 2)° + mEAR, —a,a — 1)
+ 126(A%m;, 20 — 2),
and “min[-]” represents the minimum element among “{-1.”

The value of g(x;) depends on g(x,_,), x,, and > Y
alone, if the values of u;, M2, and a are all given.
Therefore, this problem observes the principle of opti-
mality, which underlies the following “dynamic pro-
gramming” technique.

Optimization by Dynamic Programming

The following “dynamic programming” technique is
effective for optimizing this type of problem.
1) Initialization

Foreach nj €8 ={1,2,...,2a — 1},
5 1 — 2,)%

Foreach x; € S; ={[myn|1|n, € S5, 7 € S},
80%) Emin[5() + (2 — 2,,)?

+méEmy —n) —a,a—D|n] € 8]
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2) Recursion

Foreach 3<t<T andeach x| €8,
J(x;) =min[g(x,_) + f(X,,x,_))Ix,_, € S:1],
Ax,) = arg min [6&_D + £, x,_DIX,_; € 8,1]
-1

where x,_,(2) = #,_,.

3) Termination

minF () = min [ g (X)X} € S7|

=1

T
(thc minimized value of Z F (n;)) ,

nr . )
[”T—l] = argxx/:nn [J(XITIXT € ST)].

4) Backtrace
For t=T7,T-1,...,4,3,
ne—2 = A(X,I1x,(2) = n,_1).
Figure 13 shows examples of the optimal solution,
which depends on the value of weighting coefficients
#1 and uz. We should carefully select these parameters.

For this selection, consider an interpretation of solu-
tions n;.7 and parameters u; and .

Dynamic Programming and MAP Estimation
Assume that (y, — Z,,) is a normal random variable with
a zero mean and variance o2. By multiplying Y F (n,)
in (1) by —1/(202) and exponentiating it, we obtain

T
. 1

ny.r =argmin [ I I exp [— 352 (: — Zn’,)z]}
”, =1 g

1 L ,
X exp {—m[u,l ZE(An, —a,a—1)

t=2

T
+u2) 68, 2a —2)]}. @

t=3

Next, by normalizing the first term on the right side of
(2), we find that

L1 1
I

This function can be interpreted as the conditional
density p(y1.r|ny.7) assuming normality. Similarly, by
using normalization factor C, the second term of (2) is
represented by

1 L ,
Cexp {—m[p,l Z;S(An, —a,a—1)
=

T
+u2) 58, 2 —2)]]. 4)

t=3
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This function can be interpreted as probability distri-
bution p(n).7). In this way, (2) yields the following
interpretation within a Bayesian framework:
pnyrlyrr) « p(yr.7inr)p(ni7), where pnyrlyr.r)
is the posterior distribution of ny.7, p(y1.7|n1.7) is the
data distribution conditional on n;.7, and p(n;.7) is
the prior distribution.

Hence, minimizing Y F(»}) by dynamic program-
ming is equivalent to constructing a sequence that
maximizes the posterior distribution of mj.r with a
given yi.1; np.7 is then called the MAP estimate.

1 I I
E”H‘"r—fﬂﬁ)
I I
-2 —1 2

If Ny 4 —n'_z—u;—s

—

q0)

O p—

"t-1“"t—2‘0l

Lol I
—32101 3

q0)

_4

A 14 Typical distribution q(-Yfor system noise v; when o = 5,
m=lLu=2ando?=1.

Log Likelihood

Identifying the Hyperparameters Included
in an Optimization Form

Method of Computing Log-Likelihood
According to the above interpretation, the likelihood of
a model specified by u;, 42, and o is obtained by

def
L1, u2,0) = p(yr.7lir, 2, 0)

T
= nP(J’:IYLt-L M1, 12, 0).
=1
Hence, the values of the hyperparameters (u), u2, o)
can be evaluated using the value of L [3]. Note that the
concept of “hyperparameter” in a Bayesian framework is
the same as that of “parameter” in a state-space model
[4]. The most suitable hyperparameters (i, fi>, ) are
idendfied by maximizing L and L L where LL «© log L.
Log-likelihood L L is given by

L d=d10gL(lL1, U2, o)

T
=210gp(ytly1;t_1, K1, 42,0), (5)
=1
and obtained as the by-product of the computation
for p(ny.7ly1.7).

Transformation into a Generalized

State-Space Representation

Bayesian interpretations (3) and (4) can be transformed
into the following gencralized state-space representation:

(System model)
X = f(xt—l)
_ [”t—l +a+v(n._1, ”t—Z)]
B Be—1 '
(Observation model)

Y = h(x,)+ w, = Zy, + Wy,

where = x; Yl mal”, v~ qCIxir, 1, 2, 9),
bh(x;) =°z,,,, and w, ~ N (0, 2). Distribution q(-) is
defined as follows:

Alfn,_y —n,_» =a,then

q(”t|xt—l, Ml? /‘L21 0)

def { 1/p1.
- exp ( #1+Mz)/ﬂl,

where B1 =1+ 2(e — D)exp(—(u1 + u2/20%)) for
>q0) =1
Alfn,_y —n,_3 #a,then

vt=0’
Il<ipl<ea-—-1,

q(v:1Xe_1, m, 12, 0)

exp(—£%)/B2. v =0,
o def | exp (— 7;;)/,82, V=M — By — 0,
= it
A 15. Log-likelihood LL values change with ., u,, and o com- exp (—#5752)/B2, other than the abover;, and
puted from data sets (A) and (B) in Figure 13. l=inlse—1,
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where Bz = exp(—(11/202)) + exp(—(u2/202))
+[2(a — 1) — 1exp(—(u1 + p2/202))for ¥ 4(-) = 1.
These distributions are illustrated in Figure 14.

This generalized state-space model is characterized
as follows:
A Former state vector x,_; controls the distribution of
current system noise v,
A y, and w, are real continuous variables, whereas x,
takes on integer values.

Identification of Hyperparameters with a
Maximum Likelihood Function

The generalized state-space representation has the
advantage of computation of aforementioned likeli-
hood p(y1.7|u1, 12, ) since the following recursive
relations between state distributions are available [4].

(Prediction)
Pely1amt) = f P 1) Pt ly1s 1) ATt (6)

(Filtering)

Py Ix) p(Xey1:0-1)
fP(J’rIXr)P(X:I}’l:t—l)dX:
_ P(¥:1x) p(Xely1:4-1)

B Pelyre-1)

P(X:lyr) =

)

Note that p(y:ly1.,—1) appears as the denominator in
(7). Thus, log-likelihood LL in (5) is obtained after
these recursive computations. In addition, p(x;|y1., 1)
and p(x;|y1:;) can be computed arithmetically without
complicated numerical integration such as [4]. This is
because the values of x, are discrete.
We maximize LL using a grid

[LLyax in Table 1 means the maximum
LL(u3, n2,0)]. These results indicate that the most
likely adjustment is shown in the lowest case in Figure
13 (the same as the adjustment results in Figure 5). In
addition, these results also predict that the wheel has
slid over a distance equivalent to four sampling inter-
vals on measuring run (B).

LLyax i i 4 opp
608 0.42 043 0.176 0.216
r T r
300 - .
®
E -
b
g 200 :
fa]
k]
&
L9
E 100 =
2
0 " n " 1 i 2 h
—1 0 1
Residual [mm]

A 16. The value distribution of residuals between (A) and most
likely adjusted (B) in Figure 5.

search over a hyperparameter space

since the number of hyperparame-
ters is only three.
Incidentally, the recursive compu-

Vertical Geometry
Data Set (A")
3,201 Points Total

[mm] —2

tation for L L requires initial state dis-
tribution p(x1|yo0). A uniform
distribution is assumed here. The rea-
sons for this treatment are given in

Vertical Geometry
Data Set (B
3,197 Points Total

Measured 8 Days Later [mm] -2

2

“Selection of a Data Interval for

Difference Between

1

Analysis.” (A") for the Interval 0
1st -3,197th and (821 _
. . [rmm] -1
Discussion 1L
Difference Between (A') L
PP and Adjusted (B') 0
Application ’ _ 3,201 Points Total .L E
We adjusted the sampling locations m] ; | ; | , |

of (B) to those of (A) in Figure 5 . 140 |-

where @ = 5. Data sets (A) and (B) ::/I:ra\g::;%hh ®) b 1
are actually measured by a track k) 130 [ : , _ . U]
inspection car in the same railway 0 1,000 2,000 3,000
section. Figure 15 displays the val- Spatial Index

ues of log-likelihood LL(u1, pa, o)

computed to estimate the optimal
parameters (i1, i1z, ). Table 1 is a
summary of the estimation results

MAY 2004

A 17. Vertical geometry data sets (A’) and (B') obtained at the same time as (A) and (B) in
Figure 5, respectively, adjusted (B'), and the velocity of the inspection car: the sampling
locations of (B') are adjusted according to those of the most likely adjusted (B) in Figure 5.
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Next, Figure 16 displays the distribution of the esti-
mated residuals shown in Figure 5. Let opp be the stan-
dard deviation of this distribution to distinguish it from
0. As summarized in Table 1, opp is 0.216 and is larger
than 6 = 0.176. This difference is probably based on
the properties of the residuals. In other words, the
residual sequence differs from the ideal Gaussian white
noise in the following respect; nonstationary behaviors
are seen approximately ¢ = 900 and z = 2, 300.

In addition, we also moved the sampling locations of
the vertical-irregularity data set (B’), simultaneously
measured with (B), according to the above adjustment.
The comparison between adjusted (B’) and the vertical-
irregularity data set (A’), simultaneously measured with
(A), is shown in Figure 17. Although the data-point
sequence for adjusting (B’) was constructed independent-
ly of the values of (A’) and (B'), the difference sequence
between (A’) and adjusted (B’) seems reasonable.

Figure 17 also displays the train speed obtained with
(B) and (B’); this speed data usually cannot be referred
to. The fact that the speed decreased with no other
apparent reason to around ¢ = 1, 900 indicates that the
wheel probably slid.

Applicability of the Present Procedure from a
Methodological Viewpoint
Our procedure is based on the fact that a maximum a
posteriori (MAP) estimate (in a Bayesian framework) is
equivalent to the optimal solution obtained by dynamic
programming. Dynamic programming is a general
method for solving nonlinear discrete optimization
problems that observe the “principle of optimality.”
Here, the equivalence mentioned above is summa-
rized. Consider a generalized state-space model for
observed time series yy.7,

System distribution:  x, ~ p,(x:|x,_1, 8,),

Y ™~ Po(ytlxt,oo)v (8)
where x, is an unknown state vector, @ and @, are
hyper-parameter vectors in a Bayesian framework, and
¥: is the supervised data. Joint distribution p(x;.7(y1.7)
has the following form:

Observation distribution:

T
pxurlyir) =[] 2o elxeo1, 0.0 (92 1x:, 0,).
=1

MAP estimation maximizes this joint distribution
under the given yi.r and can be obtained by maximiz-
ing the logarithm of this distribution
T
D llog p,(x,|x;-1.6,) +1og po(3:1%:,0,)].  (9)
t=1
Fortunately, (9) can be maximized by dynamic pro-
gramming [1].
The most important contribution of this article is
that when a certain optimization problem can be trans-
formed into form (9), it is possible to derive general-
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ized state-space model (8). In this case, x, consists of
n; and #,_1, and @ £[070717 = [y s 0.

When the most suitable values of @ are necessary,
they can be obtained by maximizing log-likelihood
L L(@) defined as follows [3]:

T
LL®) = log p(y1.1,0) = ) _log p(y:lyr+-1,0),
=1

since interpretation using the maximum likelihood prin-
ciple allows us to determine unknown parameter vector
0 objectively. Conditional distribution p(y;[y1.;—1,80) can
be obtained as the by-product of nonlinear filtering.

Conclusion
Gaps in sampling locations for rail geometry data sets
obtained with a track inspection car can be adjusted by
optimization with dynamic programming after model-
ing the wheel rotation and detection of the ground
transmitter. The unknown parameters introduced by
modeling can be identified using the maximum likeli-
hood procedure that employs nonlinear filtering for a
generalized state-space model. This is because this opti-
mization function can be interpreted within a frame-
work of generalized state-space representation. This
procedure is based on the fact that the optimal solution
of dynamic programming is equivalent to the maximum
a posteriori estimate in a Bayesian framework.

This adjustment procedure will be useful in observ-
ing variations in rail geometry.
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