Kernel Bayes' Rule: Nonparametric Bayesian inference with kernels

Kenji Fukumizu

The Institute of Statistical Mathematics

NIPS 2012 Workshop Confluence between Kernel Methods and Graphical Models

December 8, 2012 @Lake Tahoe

Introduction

- A new kernel methodology for nonparametric inference.
 - Kernel means are used in representing and manipulating the probabilities of variables.
 - "Nonparametric" Bayesian inference is also possible!
 - Completely nonparametric
 - Computation is done by linear algebra with Gram matrices.
 - Different from "Bayesian nonparametrics"
 - → Today's main topic.

Outline

- 1. Kernel mean: a method for nonparametric inference
- 2. Representing conditional probability
- 3. Kernel Bayes' Rule and its applications
- 4. Conclusions

Kernel mean: representing probabilities

- Classical nonparametric methods for representing probabilities
 - Kernel density estimation: $\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n K((x X_i)/h_n)$
 - Characteristic function: Ch. $f_X(u) = E[e^{iuX}]$, $\widehat{Ch.f_X}(u) = \frac{1}{n} \sum_{i=1}^n e^{iuX_i}$
- New alternative: kernel mean

X: random variable taking values on Ω , with probability *P*.

k: positive definite kernel on Ω , H_k : RKHS associated with k.

<u>Def.</u> Kernel mean of X on H_k :

$$m_P \coloneqq E[\Phi(X)] = \int k(\cdot, x) dP(x) \in H_k$$

 $\Phi(x) = k(\cdot, x)$: feature vector

Empirical estimation: $\widehat{m}_P = \frac{1}{n} \sum_{i=1}^n \Phi(X_i)$ for $X_1, \dots, X_n \sim P$. i.i.d.

• Reproducing expectation:
$$\langle f, m_P \rangle = E[f(X)] \quad \forall f \in H_k$$
.

$$f, m_P \rangle = E[f(X)] \qquad \forall f \in H_k.$$

Kernel mean has information of higher order moments of X

e.g.
$$k(u,x) = c_0 + c_1 ux + c_2 (ux)^2 + \cdots$$
 $(c_i \ge 0)$, e.g., e^{ux}
$$m_P(u) = c_0 + c_1 E[X]u + c_2 E[X^2]u^2 + \cdots$$

Moment generating function

Characteristic kernel

(Fukumizu et al. JMLR 2004, AoS 2009; Sriperumbudur et al. JMLR2010)

<u>Def.</u> A bounded measurable kernel k is characteristic, if

$$m_P = m_Q \Leftrightarrow P = Q$$
.

- Kernel mean m_P with characteristic kernel k uniquely determines the probability.
- Examples: Gaussian, Laplace kernel (polynomial kernel is not)

- Analogous to the characteristic function $Ch.f_X(u) = E[e^{iuX}].$
 - Ch.f. uniquely determines the probability of X.
 - Positive definite kernel gives a better alternative:
 - efficient computation by kernel trick.
 - applicable to non-vectorial data.

Nonparametric inference with kernels

Principle: with characteristic kernels,

Inference on $P \implies$ Inference on m_P

- Two sample test $\rightarrow m_P = m_Q$? (Gretton et al. NIPS 2006, JMLR 2012, NIPS 2009, 2012)
- Independence test $\rightarrow m_{XY} = m_X \otimes m_Y$? (Gretton NIPS 2007)
- Bayesian inference
 - → Estimate kernel mean of the posterior given kernel representation of prior and conditional probability.

- Conventional approaches to nonparametric inference
 - Smoothing kernel (not necessarily positive definite) Kernel density estimation, local polynomial fitting $h^{-d}K(x/h)$
 - Characteristic function: $E[e^{i\omega X}]$

etc, etc, ...

- → "Curse of dimensionality"e.g. smoothing kernel: difficulty for high (or several) dimension.
- Kernel methods for nonparametric inference
 - What can we do?
 - How robust to high-dimensionality?

Conditional probabilities

Conditional kernel mean

- Conditional probabilities are important to inference
 - Graphical modeling: conditional independence / dependence
 - Bayesian inference
- Kernel mean of conditional probability

$$E[\Phi(Y)|X=x] = \int \Phi(y)p(y|x)dy$$

- Question:
 - How can we estimate it in the kernel framework?
 - Accurate estimation of p(y|x) is not easy.
 - → Regression approach.

Covariance

(X, Y): random vector taking values on $\Omega_X \times \Omega_Y$. (H_X, k_X) , (H_Y, k_Y) : RKHS on Ω_X and Ω_Y , resp.

<u>Def.</u> (uncentered) covariance operators $C_{YX}: H_X \to H_Y$, $C_{XX}: H_X \to H_X$

$$C_{YX} = E[\Phi_Y(X)\Phi_X(Y)^T], \qquad C_{XX} = E[\Phi_X(X)\Phi_X(X)^T]$$

- Simply, extension of covariance matrix (linear map) $V_{YX} = E[XY^T]$
- Reproducing property:

$$\langle g, C_{YX} f \rangle = E[f(X)g(Y)]$$
 for all $f \in H_X, g \in H_Y$.

• C_{YX} can be identified with the kernel mean $E[k_Y(\cdot, Y) \otimes k_X(\cdot, X)]$ on the product space $H_Y \otimes H_X$:

Conditional kernel mean

• Review: X, Y, Gaussian random variables ($\in \mathbb{R}^m$, \mathbb{R}^ℓ , resp.)

$$\underset{A \in R^{\ell \times m}}{\operatorname{argmin}} \int ||Y - AX||^2 dP(X, Y) = V_{YX} V_{XX}^{-1}$$

$$E[Y|X = x] = V_{YX} V_{XX}^{-1} x$$

For general X and Y

$$\underset{F \in H_X \otimes H_Y}{\operatorname{argmin}} \int \|\Phi_Y(Y) - \underline{F(X)}\|_{H_Y}^2 dP(X,Y) = C_{YX} C_{XX}^{-1}$$
$$\langle F, \Phi_X(X) \rangle_{H_X}$$

With characteristic kernel k_X ,

$$E[\Phi(Y)|X=x] = C_{YX}C_{XX}^{-1}\Phi_X(x)$$

Conditional kernel mean given X = x

Empirical estimation

$$\begin{split} \widehat{E}\left[\Phi_{Y}(Y)|X=x\right] &= \mathbf{k}_{Y}^{T}(\cdot)(G_{X}+n\varepsilon_{n}I_{n})^{-1}\mathbf{k}_{X}(x) \\ \mathbf{k}_{X}(x) &= (k_{X}(x,X_{1}),...,k_{X}(x,X_{n}))^{T} \in \mathbf{R}^{n}, \\ \mathbf{k}_{Y}(\cdot) &= (k_{Y}(\cdot,Y_{1}),...,k_{Y}(\cdot,Y_{n}))^{T} \in H_{Y}^{n}, \\ \varepsilon_{n} &: \text{regularization coefficient} \end{split}$$

Note: joint sample $(X_1, Y_1), ..., (X_n, Y_n) \sim P_{XY}$ is used to give the conditional kernel mean with $P_{Y|X}$.

c.f. kernel ridge regression

$$\hat{E}[Y|X=x] = Y^T (G_X + n\varepsilon_n I_n)^{-1} \mathbf{k}_X(x)$$

Kernel Bayes' Rule

Inference with conditional kernel mean

• Sum rule:
$$q(y) = \int p(y|x)\pi(x)dx$$

• Chain rule:
$$q(x,y) = p(y|x)\pi(x)$$

• Bayes' rule:
$$q(x|y) = \frac{p(y|x)\pi(x)}{\int p(y|x)\pi(x)dx}$$

Kernelization

- Express the probabilities by kernel means.
- Express the statistical relations among variables with covariance operators.
- Realize the above inference rules with Gram matrix computation.

Kernel Sum Rule

- Sum rule: $q(y) = \int p(y|x)\pi(x)dx$
- Kernelization: $m_Y = C_{YX}C_{XX}^{-1}m_{\pi}$
- Gram matrix expression

Joint sample

Input:
$$\widehat{m}_{\pi} = \sum_{i=1}^{\ell} \alpha_i \Phi(\widetilde{X}_i), \quad (X_1, Y_1), \dots, (X_n, Y_n) \sim P_{XY},$$

$$\widehat{m}_{Y} = \sum_{i=1}^{n} \beta_{i} \Phi(Y_{i}), \quad \beta = (G_{X} + n\varepsilon_{n} I_{n})^{-1} G_{X\tilde{X}} \alpha.$$

$$G_{X} = \left(k(X_{i}, X_{j})\right)_{ij}, \quad G_{X\tilde{X}} = \left(k(X_{i}, \tilde{X}_{j})\right)_{ij}$$

• Proof:
$$\int \Phi(y)p(y|x)dy = C_{YX}C_{XX}^{-1}\Phi(x)$$

$$\int \cdot \ \pi(x) dx$$

$$\int \int \Phi(y)p(y|x)\pi(x)dxdy = C_{YX}C_{XX}^{-1}m_{\Pi}$$

Kernel Chain Rule

- Chain rule: $q(x, y) = p(y|x)\pi(x)$
- Kernelization: $m_Q = C_{(YX)X}C_{XX}^{-1}m_\pi$
- Gram matrix expression:

Input:
$$\widehat{m}_{\pi} = \sum_{i=1}^{\ell} \alpha_i \Phi(\widetilde{X}_i)$$
, (X_1, Y_1) , ..., $(X_n, Y_n) \sim P_{XY}$

$$\widehat{m}_Q = \sum_{i=1}^n \beta_i \Phi(Y_i) \otimes \Phi(X_i)$$
, $\beta = (G_X + n\varepsilon_n I_n)^{-1} G_{X\tilde{X}} \alpha$.

Intuition: Note $C_{(YX)X}: H_X \to H_Y \otimes H_X$, $E\left[\left(\Phi(Y) \otimes \Phi(X)\right) \otimes \Phi(X)\right]$ From Sum Rule, p(y,x|x') $C_{(YX)X}C_{XX}^{-1}m_{\pi} = \int \int \int \Phi(y) \otimes \Phi(x) p(y|x) \delta(x-x') \pi(x') dy dx dx'$ $= \int \int \Phi(y) \otimes \Phi(x) p(y|x) \pi(x) dy dx = m_0$

Kernel Bayes' Rule (KBR)

- Bayes' rule is regression $y \to x$ with probability $q(x, y) = p(y|x)\pi(x)$
- Kernel Bayes' Rule (KBR, Fukumizu et al NIPS2011)

$$m_{Q_X|y} = C_{XY}^{\pi} C_{YY}^{\pi^{-1}} \Phi(y)$$

where $C_{YX}^{\pi} = C_{(YX)X}C_{XX}^{-1}m_{\pi}$, $C_{YY}^{\pi} = C_{(YY)X}C_{XX}^{-1}m_{\pi}$

Recall: Mean on the product space = Covariance

Gram matrix expression:

Input:
$$\widehat{m}_{\pi} = \sum_{i=1}^{\ell} \alpha_i \Phi(\widetilde{X}_i)$$
, (X_1, Y_1) , ..., $(X_n, Y_n) \sim P_{XY}$,

$$\widehat{m}_{Q_X|y} = \sum_{i=1}^n w_i(y) \Phi(X_i),$$

$$w(y) = R_{X|Y} \mathbf{k}_Y(y),$$

$$R_{X|Y} = \Lambda G_{YY} ((\Lambda G_{YY})^2 + \delta_n I_n)^{-1} \Lambda \mathbf{k}(y),$$

$$\Lambda = \text{Diag}[(G_{XX} + n\varepsilon_n I_n)^{-1} G_{X\tilde{X}} \alpha]$$

Inference with KBR

- KBR estimates the kernel mean of the posterior q(x|y), not itself.
- How can we use it for Bayesian inference?
 - Expectation: for any $f \in H_X$,

$$\mathbf{f}_X^T R_{X|Y} k_Y(y) \to \int f(x) q(x|y) dx$$
. (consistent) where $\mathbf{f}_X = \left(f(X_1), \dots, f(X_n) \right)^T$.

Point estimation:

$$\hat{x} = \operatorname{argmin}_{x} \| \widehat{m}_{X|Y=y} - \Phi_{X}(x) \|_{H_{X}}$$
 (pre-image problem) solved numerically

Completely nonparametric way of computing Bayes rule.
 No parametric models are needed, but data or samples are used to express the probabilistic relations nonparametrically.

Examples:

1. Nonparametric HMM

See next.

 Kernel Approximate Bayesian Computation (Nakagome, F., Mano 2012)

Explicit form of likelihood p(y|x) is unavailable, but sampling is possible.

c.f. Approximate Bayesian Computation (ABC)

3. Kernelization of Bellman equation in POMDP (Nishiyama et al UAI2012)

Example: KBR for nonparametric HMM

Assume:

$$p(X,Y) = p(X_0,Y_0) \prod_{t=1}^T p(Y_t|X_t) q(X_t|X_{t-1})$$

 $p(y_t|x_t)$ and/or $q(x_t|x_{t-1})$ is not known.
But, data $(X_t,Y_t)_{t=0}^T$ is available
in training phase.

Examples:

- Measurement of hidden states is expensive,
- Hidden states are measured with time delay.
- Testing phase (e.g., filtering, e.g.):
 given ỹ₀, ..., ỹ_t, estimate hidden state x_s.
 →KBR point estimator: argmin_{x_s} || m̂_{x_s|ỹ₀,...,ỹ_t} Φ(x)||_{H_x}
- General sequential inference uses Bayes' rule → KBR applied.

Smoothing: noisy oscillation

Note: KBR does not know the dynamics, while the EKF and UKF use it.

Rotation angle of camera

- Hidden X_t : angles of a video camera located at a corner of a room.
- Observed Y_t : movie frame of a room + additive Gaussian noise.
- X_t : 3600 downsampled frames of 20 x 20 RGB pixels (1200 dim.).
- The first 1800 frames for training, and the second half for testing.

noise	KBR (Trace)	Kalman filter(Q)
$\sigma^2 = 10^{-4}$	$0.15 \pm < 0.01$	0.56 ± 0.02
$\sigma^2 = 10^{-3}$	0.21 ± 0.01	0.54 ± 0.02

Average MSE for camera angles (10 runs)

^{*} For the rotation matrices, Tr[AB⁻¹] kernel for KBR, and quaternion expression for Kalman filter are used .

Concluding remarks

- "Kernel methods": useful, general tool for nonparametric inference.
 - Efficient linear algebraic computation with Gram matrices.
- Kernel Baeys' rule.
 - Inference with kernel mean of conditional probablity.
 - "Completely nonparametric" way for general Bayesian inference.

- Ongoing / future works
 - Combination of parametric model and kernel nonparametric method:
 - Exact integration + kernel nonparametrics (Nishiyama et al IBIS2012)
 - Particle filter + kernel nonparametrics (Kanagawa et al IBIS 2012)
 - Theoretical analysis in high-dimensional situation.
 - Relation to other recent nonparametric approaches?
 - Gaussian process
 - Bayesian nonparametrics

Collaborators

Bernhard Schölkopf (MPI)

Le Song (Georgia Tech)

Arthur Gretton (UCL/MPI)

Bharath Sriperumbudur (Cambridge)

Shigeki Nakagome (ISM)

Shuhei Mano (ISM)

Yu Nishiyama (ISM)

Motonobu Kanagawa (NAIST)