Kernel Bayes’ Rule: Nonparametric Bayesian inference with kernels

Kenji Fukumizu
The Institute of Statistical Mathematics

NIPS 2012 Workshop
Confluence between Kernel Methods and Graphical Models
December 8, 2012 @Lake Tahoe
Introduction

• A new kernel methodology for nonparametric inference.

 • Kernel means are used in representing and manipulating the probabilities of variables.

 • “Nonparametric” Bayesian inference is also possible!
 • Completely nonparametric
 • Computation is done by linear algebra with Gram matrices.
 • Different from “Bayesian nonparametrics”

 ➔ Today’s main topic.
Outline

1. Kernel mean: a method for nonparametric inference
2. Representing conditional probability
3. Kernel Bayes’ Rule and its applications
4. Conclusions
Kernel mean: representing probabilities

- Classical nonparametric methods for representing probabilities
 - Kernel density estimation: \(\hat{\rho}_n(x) = \frac{1}{n} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h_n}\right) \)
 - Characteristic function: \(\text{Ch. } f_X(u) = E[e^{iuX}], \text{ Ch. } \hat{f}_X(u) = \frac{1}{n} \sum_{i=1}^{n} e^{iuX_i} \)

- New alternative: kernel mean
 \(X \): random variable taking values on \(\Omega \), with probability \(P \).
 \(k \): positive definite kernel on \(\Omega \), \(H_k \): RKHS associated with \(k \).

Def. Kernel mean of \(X \) on \(H_k \):

\[
 m_P := E[\Phi(X)] = \int k(\cdot, x) dP(x) \quad \in H_k
\]

\(\Phi(x) = k(\cdot, x) \): feature vector

Empirical estimation: \(\hat{m}_P = \frac{1}{n} \sum_{i=1}^{n} \Phi(X_i) \quad \text{for } X_1, \ldots, X_n \sim P \text{ i.i.d.} \)
• Reproducing expectation: \(\langle f, m_P \rangle = E[f(X)] \quad \forall f \in H_k. \)

• Kernel mean has information of higher order moments of \(X \)
 e.g. \(k(u, x) = c_0 + c_1ux + c_2(ux)^2 + \cdots \quad (c_i \geq 0), \quad \text{e.g., } e^{ux} \)
 \[m_P(u) = c_0 + c_1E[X]u + c_2E[X^2]u^2 + \cdots \]
 Moment generating function
Characteristic kernel
(Fukumizu et al. JMLR 2004, AoS 2009; Sriperumbudur et al. JMLR2010)

Def. A bounded measurable kernel k is characteristic, if

$$m_P = m_Q \iff P = Q.$$

• Kernel mean m_P with characteristic kernel k uniquely determines the probability.

• Examples: Gaussian, Laplace kernel (polynomial kernel is not)

• Analogous to the characteristic function $\text{Ch. f}_X(u) = E[e^{iux}]$.
 • Ch.f. uniquely determines the probability of X.
 • Positive definite kernel gives a better alternative:
 • efficient computation by kernel trick.
 • applicable to non-vectorial data.
Nonparametric inference with kernels

Principle: with characteristic kernels,
Inference on P \Rightarrow Inference on m_P

• Two sample test $\Rightarrow m_P = m_Q$?

• Independence test $\Rightarrow m_{XY} = m_X \otimes m_Y$?
 (Gretton NIPS 2007)

• Bayesian inference
 \Rightarrow Estimate kernel mean of the posterior given kernel representation of prior and conditional probability.
• Conventional approaches to nonparametric inference
 • Smoothing kernel (not necessarily positive definite)
 Kernel density estimation, local polynomial fitting \(h^{-d}K(x/h) \)
 • Characteristic function: \(E[e^{i\omega X}] \)
 etc, etc, ...

→ “Curse of dimensionality”
 e.g. smoothing kernel: difficulty for high (or several) dimension.

• Kernel methods for nonparametric inference
 • What can we do?
 • How robust to high-dimensionality?
Conditional probabilities
Conditional kernel mean

- Conditional probabilities are important to inference
 - Graphical modeling: conditional independence / dependence
 - Bayesian inference

- Kernel mean of conditional probability
 \[E[\Phi(Y) | X = x] = \int \Phi(y)p(y|x)dy \]

- Question:
 - How can we estimate it in the kernel framework?
 - Accurate estimation of \(p(y|x) \) is not easy.

→ Regression approach.
Covariance

\((X, Y)\) : random vector taking values on \(\Omega_X \times \Omega_Y\).

\((H_X, k_X), (H_Y, k_Y)\): RKHS on \(\Omega_X\) and \(\Omega_Y\), resp.

Def. (uncentered) covariance operators \(C_{YX}: H_X \to H_Y, C_{XX}: H_X \to H_X\)

\[
C_{YX} = E[\Phi_Y(X)\Phi_X(Y)^T], \quad C_{XX} = E[\Phi_X(X)\Phi_X(X)^T]
\]

- Simply, extension of covariance matrix (linear map) \(V_{YX} = E[XY^T]\)
- Reproducing property:

\[
\langle g, C_{YX}f \rangle = E[f(X)g(Y)] \quad \text{for all } f \in H_X, g \in H_Y.
\]

- \(C_{YX}\) can be identified with the kernel mean \(E[k_Y(\cdot, Y) \otimes k_X(\cdot, X)]\) on the product space \(H_Y \otimes H_X\):
Conditional kernel mean

• Review: X, Y, Gaussian random variables ($\in \mathbb{R}^m, \mathbb{R}^\ell$, resp.)

$$\arg\min_{A \in \mathbb{R}^{\ell \times m}} \int \|Y - AX\|^2 dP(X, Y) = V_{YX} V_{XX}^{-1}$$

$$E[Y|X = x] = V_{YX} V_{XX}^{-1} x$$

• For general X and Y

$$\arg\min_{F \in \mathcal{H}_X \otimes \mathcal{H}_Y} \int \|\Phi_Y(Y) - F(X)\|_{\mathcal{H}_Y}^2 dP(X, Y) = C_{YX} C_{XX}^{-1}$$

$$\langle F, \Phi_X(X) \rangle_{\mathcal{H}_X}$$

With characteristic kernel k_X,

$$E[\Phi(Y)|X = x] = C_{YX} C_{XX}^{-1} \Phi_X(x)$$

Conditional kernel mean given $X = x$
• Empirical estimation

\[\hat{E}[\Phi_Y(Y) | X = x] = k_Y^T(\cdot)(G_X + n\varepsilon_nI_n)^{-1}k_X(x) \]

\[k_X(x) = (k_X(x, X_1), ..., k_X(x, X_n))^T \in \mathbb{R}^n, \]

\[k_Y(\cdot) = (k_Y(\cdot, Y_1), ..., k_Y(\cdot, Y_n))^T \in H_Y^n, \]

\[\varepsilon_n: \text{regularization coefficient} \]

Note: joint sample \((X_1, Y_1), ..., (X_n, Y_n) \sim P_{XY}\) is used to give the conditional kernel mean with \(P_{Y|X}\).

\textit{c.f.} kernel ridge regression

\[\hat{E}[Y | X = x] = Y^T(G_X + n\varepsilon_nI_n)^{-1}k_X(x) \]
Kernel Bayes’ Rule
Inference with conditional kernel mean

- **Sum rule:**
 \[q(y) = \int p(y|x) \pi(x) dx \]

- **Chain rule:**
 \[q(x, y) = p(y|x) \pi(x) \]

- **Bayes’ rule:**
 \[q(x|y) = \frac{p(y|x) \pi(x)}{\int p(y|x) \pi(x) dx} \]

- **Kernelization**
 - Express the probabilities by kernel means.
 - Express the statistical relations among variables with covariance operators.
 - Realize the above inference rules with Gram matrix computation.
Kernel Sum Rule

- **Sum rule:** \(q(y) = \int p(y|x)\pi(x)dx \)

- **Kernelization:** \(m_Y = C_{YX}C_{XX}^{-1}m_\pi \)

- **Gram matrix expression**

 Input:
 \[
 \hat{m}_\pi = \sum_{i=1}^{\ell} \alpha_i \Phi(\tilde{X}_i), \quad (X_1, Y_1), \ldots, (X_n, Y_n) \sim P_{XY},
 \]

 \[
 \hat{m}_Y = \sum_{i=1}^{n} \beta_i \Phi(Y_i), \quad \beta = (G_X + n\varepsilon_n I_n)^{-1}G_{X\tilde{X}}\alpha.
 \]

 \[
 G_X = \begin{pmatrix} k(X_i, X_j) \end{pmatrix}_{ij}, \quad G_{X\tilde{X}} = \begin{pmatrix} k(X_i, \tilde{X}_j) \end{pmatrix}_{ij}
 \]

- **Proof:**

 \[
 \int \Phi(y)p(y|x)dy = C_{YX}C_{XX}^{-1}\Phi(x)
 \]

 \[
 \int \cdot \pi(x)dx
 \]

 \[
 \int \int \Phi(y)p(y|x)\pi(x)dxdy = C_{YX}C_{XX}^{-1}m_\pi
 \]
Kernel Chain Rule

• Chain rule: \(q(x, y) = p(y|x)\pi(x) \)

• Kernelization: \(m_Q = C_{(YX)X}C_{XX}^{-1}m_\pi \)

• Gram matrix expression:

Input: \(\hat{m}_\pi = \sum_{i=1}^{\ell} \alpha_i \Phi(\tilde{X}_i), \quad (X_1, Y_1), ..., (X_n, Y_n) \sim P_{XY} \)

\[\Rightarrow \hat{m}_Q = \sum_{i=1}^{n} \beta_i \Phi(Y_i) \otimes \Phi(X_i), \quad \beta = (G_X + n\epsilon_n I_n)^{-1}G_{XX}\alpha. \]

• Intuition: Note \(C_{(YX)X} : H_X \rightarrow H_Y \otimes H_X, \quad E[(\Phi(Y) \otimes \Phi(X)) \otimes \Phi(X)] \)

From Sum Rule,
\[C_{(YX)X}C_{XX}^{-1}m_\pi = \int \int \int \Phi(y) \otimes \Phi(x)p(y|x)\delta(x - x')\pi(x')dydxdx' \]
\[= \int \int \Phi(y) \otimes \Phi(x)p(y|x)\pi(x)dydx = m_Q \]
Kernel Bayes’ Rule (KBR)

- Bayes’ rule is regression $y \rightarrow x$ with probability $q(x, y) = p(y|x)\pi(x)$

- Kernel Bayes’ Rule (KBR, Fukumizu et al NIPS2011)

$$m_{Qx|y} = C^\pi_{XY} C^{-1}_{YY} \Phi(y)$$

where

$$C^\pi_{YX} = C_{(YX)X} C_{XX}^{-1} m_{\pi}, \quad C^\pi_{YY} = C_{(YY)X} C_{XX}^{-1} m_{\pi}$$

Recall: Mean on the product space = Covariance

- Gram matrix expression:

Input: $\hat{m}_{\pi} = \sum_{i=1}^{\ell} \alpha_i \Phi(\tilde{X}_i), \quad (X_1, Y_1), \ldots, (X_n, Y_n) \sim P_{XY}$,

$$\hat{m}_{Qx|y} = \sum_{i=1}^{n} w_i(y) \Phi(X_i),$$

$$w(y) = R_{X|Y} k_Y(y),$$

$$R_{X|Y} = \Lambda G_{YY} \left((\Lambda G_{YY})^2 + \delta_n I_n\right)^{-1} \Lambda k(y),$$

$$\Lambda = \text{Diag}[(G_{XX} + n\varepsilon_n I_n)^{-1} G_{XX} \alpha]$$
Inference with KBR

• KBR estimates the kernel mean of the posterior $q(x|y)$, not itself.

• How can we use it for Bayesian inference?

 • Expectation: for any $f \in H_X$,
 \[
 f_X^T R_{X|Y} k_Y (y) \to \int f(x) q(x|y) dx. \quad \text{(consistent)}
 \]
 where $f_X = (f(X_1), \ldots, f(X_n))^T$.

 • Point estimation:
 \[
 \hat{x} = \arg\min_x ||\hat{m}_{X|Y=y} - \Phi_X(x)||_{H_X}
 \]
 (pre-image problem) solved numerically.
Completely nonparametric way of computing Bayes rule. No parametric models are needed, but data or samples are used to express the probabilistic relations nonparametrically.

Examples:

1. Nonparametric HMM

 See next.

2. Kernel Approximate Bayesian Computation (Nakagome, F., Mano 2012)

 Explicit form of likelihood $p(y|x)$ is unavailable, but sampling is possible.

 c.f. Approximate Bayesian Computation (ABC)

3. Kernelization of Bellman equation in POMDP (Nishiyama et al UAI2012)
Example: KBR for nonparametric HMM

- Assume:
 \[p(X, Y) = p(X_0, Y_0) \prod_{t=1}^{T} p(Y_t | X_t) q(X_t | X_{t-1}) \]

 \[p(y_t | x_t) \text{ and/or } q(x_t | x_{t-1}) \text{ is not known.} \]

 But, data \((X_t, Y_t)_{t=0}^{T}\) is available in training phase.

 Examples:
 - Measurement of hidden states is expensive,
 - Hidden states are measured with time delay.

- Testing phase (e.g., filtering, e.g.):
 given \(\tilde{y}_0, ..., \tilde{y}_t\), estimate hidden state \(x_s\).

 \[\rightarrow \text{KBR point estimator: } \arg \min_{x_s} \left\| m_{x_s} | \tilde{y}_0, ..., \tilde{y}_t - \Phi(x) \right\|_{H_X} \]

 - General sequential inference uses Bayes’ rule \(\rightarrow\) KBR applied.
- Smoothing: noisy oscillation

\[
\begin{pmatrix}
u_t \\ v_t
\end{pmatrix} = (1 + 0.4 \sin(8\theta_t)) \begin{pmatrix}
\cos(\theta_t) \\ \sin(\theta_t)
\end{pmatrix} + Z_t, \quad \theta_{t+1} = \arctan \left(\frac{v_t}{u_t} \right) + 0.4,
\]

\[Y_t = (u_t, v_t)^T + W_t, \quad Z_t, W_t \sim N(0, 0.04I_2) \text{ (i. i. d.)}\]

Note: KBR does not know the dynamics, while the EKF and UKF use it.
• **Rotation angle of camera**
 • Hidden X_t: angles of a video camera located at a corner of a room.
 • Observed Y_t: movie frame of a room + additive Gaussian noise.
 • X_t: 3600 downsampling frames of 20 x 20 RGB pixels (1200 dim.).
 • The first 1800 frames for training, and the second half for testing.

<table>
<thead>
<tr>
<th>noise</th>
<th>KBR (Trace)</th>
<th>Kalman filter(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^2 = 10^{-4}$</td>
<td>0.15 ± < 0.01</td>
<td>0.56 ± 0.02</td>
</tr>
<tr>
<td>$\sigma^2 = 10^{-3}$</td>
<td>0.21±0.01</td>
<td>0.54 ± 0.02</td>
</tr>
</tbody>
</table>

Average MSE for camera angles (10 runs)

* For the rotation matrices, Tr[AB⁻¹] kernel for KBR, and quaternion expression for Kalman filter are used.
Concluding remarks

• “Kernel methods”: useful, general tool for nonparametric inference.
 • Efficient linear algebraic computation with Gram matrices.

• Kernel Bayes’ rule.
 • Inference with kernel mean of conditional probability.
 • “Completely nonparametric” way for general Bayesian inference.
• **Ongoing / future works**

 • Combination of parametric model and kernel nonparametric method:
 • Exact integration + kernel nonparametrics (Nishiyama et al. IBIS2012)
 • Particle filter + kernel nonparametrics (Kanagawa et al. IBIS 2012)

 • Theoretical analysis in high-dimensional situation.

 • Relation to other recent nonparametric approaches?
 • Gaussian process
 • Bayesian nonparametrics
Collaborators

Bernhard Schölkopf (MPI)

Arthur Gretton (UCL/MPI)

Bharath Sriperumbudur (Cambridge)

Yu Nishiyama (ISM) Shuhei Mano (ISM)

Shigeki Nakagome (ISM) Yu Nishiyama (ISM)

Motonobu Kanagawa (NAIST)