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Introduction

* A new kernel methodology for nonparametric inference.

 Kernel means are used in representing and manipulating the
probabilities of variables.

 “Nonparametric” Bayesian inference is also possible!
e Completely nonparametric
 Computation is done by linear algebra with Gram matrices.
 Different from “Bayesian nonparametrics”

- Today’s main topic.
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Kernel mean: representing probabilities

e C(Classical nonparametric methods for representing probabilities

* Kernel density estimation: p,(x) = % 1 K((x — X-)/hn)

» Characteristic function: Ch. fy(u) = E[e™*¥], Ch.fx(u) = =Y, e
* New alternative: kernel mean

X: random variable taking values on (), with probability P.

k: positive definite kernel on ),  Hj: RKHS associated with k.
Def. Kernel mean of X on Hy:

mp = E[®(X)] = [ k(- x)dP(x) € H,
®(x) = k(-, x): feature vector

Empirical estimation: mp = % LN 10.6) for X4, ..., X,,~P. i.i.d.



* Reproducing expectation: (f,mp) =E|f(X)] YV f € Hy.

 Kernel mean has information of higher order moments of X
e.g. k(u,x)=co+ciux +c,(ux)>+-- (¢; =0), eg., e*

mp(w) =cy + cE[X]u + cE[X%]u? + -

Moment generating function



Characteristic kernel
(Fukumizu et al. JMLR 2004, AoS 2009; Sriperumbudur et al. JMLR2010)

Def. A bounded measurable kernel k is characteristic, if

e Kernel mean mp with characteristic kernel k uniquely determines
the probability.

 Examples: Gaussian, Laplace kernel  (polynomial kernel is not)

» Analogous to the characteristic function Ch.fy(u) = E[e®X].
e Ch.f. uniquely determines the probability of X.
* Positive definite kernel gives a better alternative:
 efficient computation by kernel trick.
e applicable to non-vectorial data.



Nonparametric inference with kernels

Principle: with characteristic kernels,

Inferenceon P = Inference on mp

* Two sample test > mp =mg ?
(Gretton et al. NIPS 2006, JMLR 2012, NIPS 2009, 2012)

* Independence test 2 myy = my @ my ? (Gretton NIPS 2007)

* Bayesian inference

- Estimate kernel mean of the posterior
given kernel representation of prior and conditional
probability.



* Conventional approaches to nonparametric inference
 Smoothing kernel (not necessarily positive definite)
Kernel density estimation, local polynomial fitting h~¢K(x/h)

e (Characteristic function: E[ein]

etc, etg, ...

- “Curse of dimensionality”
e.g. smoothing kernel: difficulty for high (or several) dimension.

 Kernel methods for nonparametric inference
 What can we do?
 How robust to high-dimensionality?



Conditional probabilities




Conditional kernel mean

e Conditional probabilities are important to inference
* Graphical modeling: conditional independence / dependence

* Bayesian inference

 Kernel mean of conditional probability

E[oMMIX =x] = [ 2Opix)dy

* (Question:
 How can we estimate it in the kernel framework?
e Accurate estimation of p(y|x) is not easy.

—> Regression approach.
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Covariance

(X, Y) : random vector taking values on Q,XQ,.
(Hy, k), (Hy, ky): RKHS on Qy and Q,, resp.
Def. (uncentered) covariance operators Cyy: Hy = Hy, Cxx: Hy = Hy

Cyx = E[®Py(X)Dx (V)] Cxx = E[Px(X)Dx(X)']

 Simply, extension of covariance matrix (linear map) V,, = E[XYT]

« Reproducing property:
(g, Cyxf)=E[f(X)g(¥)] forall f € Hy, g € Hy.

* Cyy can be identified with the kernel mean E[ky(:,Y) ® kyx (-, X)]
on the product space Hy @ Hy:
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Conditional kernel mean

* Review: X, Y Gaussian random variables (€ R™, R?, resp.)

argmin j 1Y = AXIZAP(X,Y) = Vg Vg™

Aefom

E[YIX = x] = VyxVxx 'x

 Forgeneral XandY

argmin j 1Dy (¥) = FOONZ, dP(X, Y) = CyxCyx ™"
FEHxQ@Hy
(F, Dy (X)),

With characteristic kernel ky, A
E[®(V)|X = x] = CyxCxy  Px(x)
\_ A y,

Conditional kernel mean given X = x
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Empirical estimation
E[®y(Y)IX = x] = ky()(Gx + ney L) T ky (%)
kX(x) — (kx(x, Xl); Ly kx(x, Xn))T € Rnl

ky (") = (ky(, Y1), -, Ky () Yn))T € Hy,
&, regularization coefficient

Note: joint sample (X1,Y;), ..., (X;,, ¥,) ~ Pxy is used to give the
conditional kernel mean with Py .

c.f. kernel ridge regression
E[YIX =x] =YT(Gx + ne, L) 'Ky (x)
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Kernel Bayes’ Rule
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Inference with conditional kernel mean

e Sum rule: qgv) = [p(y|x)m(x)dx
e Chainrule: q(x,y) = p(y|x)m(x)
* Bayes’ rule: q(x|y) = ply)n(x)

J plx)m(x)dx

e Kernelization

Express the probabilities by kernel means.

Express the statistical relations among variables with covariance
operators.

Realize the above inference rules with Gram matrix computation.
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Kernel Sum Rule

Sum rule: q(y) = [ p(y|x)m(x)dx

Kernelization: My = CyxCxyMy

Gram matrix expression :
p Joint sample

Input: fr\ln- = 2?:1 aiq)()?i) ) (le Yl)) L (XTU Yn) ~ PXY'
- my = 7iﬂL=1 ,BiCI)(Y-) ,B = (GX + néey n)_lGX)?a

x= (kX X)) o Gxx = (kX0 K)),

Proof: JeWpWIx)dy = CyxCxz®(x)
1 [+ m(x)dx

| [ el (x)dxdy = CyxCximy
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Kernel Chain Rule

Chainrule: q(x,y) = p(y|x)m(x)
Kernelization: mg = C(YX)XC)?)}mn
Gram matrix expression:
Input: M, =Y, a;®(X;), (X1, Y1), ., Xn, ¥p) ~ Pxy

- _
Mg = =1 BiP(Y) @ ®(X;), f = (Gx + neyly) YGxza.

Intuition: Note Cyxyx: Hy = Hy ® Hy, E[(®(Y) ® ®(X)) @ ©(X)]

From Sum Rule, Py, x|x) ’
CoronCisme = [ [ () ® d@lp ()8 — 2 fn(x")dydxdx

=] [ 2®) ® e(p)n(x)dydx = my
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Kernel Bayes’ Rule (KBR)

e Bayes’ ruleis regression y — x with probability g(x,y) = p(y|x)m(x)

* Kernel Bayes’ Rule (KBR, Fukumizu et al NIPS2011)
-1
Mo, ly = CxyCyy @)

where C¥x = CoyxyxCxxMe,  Cfy = C(YY)XC)?)}mn

Recall: Mean on the product space = Covariance
e (Gram matrix expression:
Input: M, = Y, a;®(X;), Xy, 1), .., Xn, Y) ~ Pxy,
= Mg,y = L wi(P(Xy),

w(y) = RX|YkY(y);

-1
Ryiy = AGYY((AGYY)Z + 5n1n) AK(y),
A = Diag[(Gxx + ngnln)_lGX)?a] 18



Inference with KBR

* KBR estimates the kernel mean of the posterior g(x|y), not itself.
 How can we use it for Bayesian inference?

* Expectation: forany f € Hy,
fYRxyvky(¥) = | f()q(x|y)dx. (consistent)

where fy = (F(X1), ... (X)) -

e Point estimation:
£ = argminx||ﬁ1X|Y=y — CDX(x)”HX

(pre-image problem) solved numerically
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* Completely nonparametric way of computing Bayes rule.

No parametric models are needed, but data or samples are used to
express the probabilistic relations nonparametrically.

Examples:
1. Nonparametric HMM Xo X1 Xy Xg X1

See next. : : : : t

Yo Y, Y, Y, Y,

2. Kernel Approximate Bayesian Computation (Nakagome, F.,, Mano
2012)

Explicit form of likelihood p(y|x) is unavailable,
but sampling is possible. /
c.f. Approximate Bayesian Computation (ABC) /\ />\

3. Kernelization of Bellman equation in POMDP (Nishiyama et al
UAI2012)
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Example : KBR for nonparametric HMM

 Assume: Xo X; X, X X+
P(X,Y) = p(Xo, Yo) [Ty P(YIX)q (XelX _1) m ’I
p(y¢|x:) and/or q(x;|xs—1) is not known. Y, Y, Y, Y, Y,

But, data (X, Y;)!_, is available
in training phase.

Examples:
 Measurement of hidden states is expensive,
* Hidden states are measured with time delay.

* Testing phase (e.g., filtering, e.g.):
given y,, ..., J;, estimate hidden state x.
—~>KBR point estimator: argminxs||ﬁ\1x5|3~,0,___,3~,t — CID(x)”H
X
* General sequential inference uses Bayes’ rule =» KBR applied.
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* Smoothing: noisy oscillation

Uy _ . cos(6;) _ v,
(Vt) = (1 + 0.4sin(86,)) (Sin(et)) +Z;,  0;41 = arctan o + 0.4,

Yt — (ut, vt)T + Wt, Zt, Wt it N(O, 004‘12) (l L. d)

Note: KBR does not know the dynamics, while the EKF and UKF use it.
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* Rotation angle of camera
* Hidden X;: angles of a video camera located at a corner of a room.
* Observed Y;: movie frame of a room + additive Gaussian noise.
* X;:3600 downsampled frames of 20 x 20 RGB pixels (1200 dim. ).
e The first 1800 frames for training, and the second half for testing.

noise KBR (Trace) Kalman

filter(Q)
oc=10% 0.15+<0.01 0.56+0.02
o2 =103 0.211+0.01 0.54 £+ 0.02

Average MSE for camera angles (10 runs)

L
r * For the rotation matrices, Tr[AB-1] kernel
: JJ. for KBR, and quaternion expression for

Kalman filter are used .
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Concluding remarks

 “Kernel methods”: useful, general tool for nonparametric
inference.

 Efficient linear algebraic computation with Gram matrices.

* Kernel Baeys' rule.
e Inference with kernel mean of conditional probablity.
* “Completely nonparametric” way for general Bayesian inference.
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* Ongoing / future works

Combination of parametric model and kernel nonparametric
method:

e Exactintegration + kernel nonparametrics (Nishiyama et al
IBIS2012)

* Particle filter + kernel nonparametrics (Kanagawa et al IBIS 2012)

Theoretical analysis in high-dimensional situation.
Relation to other recent nonparametric approaches?

e (Gaussian process
e Bayesian nonparametrics
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