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Abstract

Local minima and plateaus pose a serious problem in learning of

neural networks. We investigate the hierarchical geometric structure

of the parameter space of three-layer perceptrons in order to show the

existence of local minima and plateaus. It is proved that a critical

point of the model with H � 1 hidden units always gives many critical

points of the model with H hidden units. These critical points consist

of many lines in the parameter space, which can cause plateaus in

learning of neural networks. Based on this result, we prove that a

point in the critical lines corresponding to the global minimum of the

smaller model can be a local minimum or a saddle point of the larger

model. We give a necessary and su�cient condition for this, and show

that this kind of local minima exist as a line segment if any. The results

are universal in the sense that they do not require special properties

of the target, loss functions, and activation functions, but only use the

hierarchical structure of the model.

1 Introduction

It has been believed that the error surface of multilayer perceptrons (MLP)

has in general many local minima. This has been regarded as one of the

disadvantages of neural networks, and a great deal of e�ort has been paid

to �nd good methods of avoiding them and achieving the global minimum.

There have been no rigorous results, however, to prove the existence of

local minima. Even in the simple example of the XOR problem, existence

of local minima had been a controversial problem. Lisboa and Perantonis

1



([1]) elucidated all the critical points of the XOR problem and asserted with

a help of numerical simulations that some of them are local minima. Re-

cently, Hamney ([2]) and Sprinkhuizen-Kuyper and Boers ([3],[4]) rigorously

proved that what have been believed to be local minima in [1] correspond to

local minima with in�nite parameter values, and that there always exists a

strictly decreasing path from each �nite point to the global minimum. Thus,

there are no local minima in the �nite weight region for the XOR problem.

Existence of local minima in general cases has been an open problem in the

rigorous mathematical sense.

It is also di�cult to derive meaningful results on local minima from nu-

merical experiments. In practical applications, we often see extremely slow

dynamics around a point that di�ers from the global minimum. However,

it is not easy to tell rigorously whether it is a local minimum. It is known

that a typical learning curve shows a plateau in the middle of training, which

causes very slow decrease of the training error for a long time before a sud-

den exit from it (e.g. [5],[6]). A plateau can be easily misunderstood as a

local minimum in practical problems.

This paper discusses critical points of the MLP model, which are caused

by the hierarchical structure of the models having a smaller number of hid-

den units. For simplicity, we discuss only the MLP model with a one-

dimensional output in this paper. The input-output function space of net-

works with H � 1 hidden units is included in the function space of networks

with H hidden units. However, the relation between the parameter spaces of

these two models is not so simple (see [7],[8]). Sussmann ([9]) elucidated the

condition that a function described by a network with H hidden units can

be realized by a network with H� 1 hidden units in the case of tanh activa-

tion function. In this paper, we further investigate the geometric structure

of the parameters of networks which are realizable by a network with H � 1

hidden units. In particular, we elucidate how they can be embedded in the

parameter space of H hidden units. Based on the geometric structure, we

show that a critical point of the error surface for the MLP model with H�1

hidden units gives a set of critical points in the parametric space of the MLP

with H hidden units.

The main purpose of the present paper is to show that a subset of crit-

ical points corresponding to the global minimum of a smaller network can

be local minima or saddles of the larger network. More precisely, the subset

of critical points on which the input-output behavior is the same is divided

into two parts, one consisting of local minima and the other saddle points.

We give an explicit condition when this occurs. This gives a formal proof of

the existence of local minima for the �rst time. Moreover, the coexistence
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of local minima and saddles in one equivalent set of critical points explains

a serious mechanism of plateaus: when such is the case, the network param-

eters are attracted in the part of local minima, stay and walking randomly

for a long time in that at region on which the performance is the same,

but eventually go out from the part of saddles in the region. This is a new

type of critical points in nonlinear dynamics given rise to by the hierarchical

structure of a model.

This paper is organized as follows. In Section 2, after showing neces-

sary de�nitions and terminologies, we elucidate the geometric or topological

structure of the parameter space. Section 3 discusses critical points of the

error surface. In Section 4, we mathematically prove the coexistence of local

minima and saddles under one condition. This shows not only the existence

of local minima but also a possible mechanism of plateaus. We also show the

results of numerical simulations realizing local minima. Section 5 contains

conclusion and discussion.

2 Geometric structure of the parameter space

2.1 Basic de�nitions

In this paper, we consider a three-layer perceptron with one linear output

unit and L input unit. The input-output relation of a network with H

hidden units is described by the function

f (H)(x;�(H)) =

HX
j=1

vj '
�
w

T
j x+ wj0

�
+ v0; (1)

where T denotes transposition, x = (x1; : : : ; xL)
T
2 R

L is an input vec-

tor, wj = (wj1; : : : ; wjL)
T
2 R

L (1 � j � H) is the weight vector of the

jth hidden unit, and �
(H) = (v0; v1; : : : ; vH ; w10;w

T
1 ; : : : ; wH0;w

T
H)

T sum-

marizes all the parameters in one large vector. The function '(t) is called

an activation function. In this paper, we use tanh for '. Introducing the

notations

~x =

�
1

x

�
2 R

L+1 ; ~wj =

�
wj0

wj

�
2 R

L+1 ; (1 � j � H); (2)

for simplicity, we can write

f (H)(x;�(H)) =

HX
j=1

vj '
�
~wT
j ~x
�
+ v0: (3)
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Using the result of K�urkova & Kainen ([10]), all the theorems obtained

in this paper are applicable for other sigmoid- or bell-shaped activation

functions with necessary modi�cations. We will show this later. We use

the linear activation in the output layer. However, all the results are easily

extended to a model with a monotone nonlinear output unit, because this

causes only a nonlinear rescaling of the output data.

Given N input-output training data f(x(�); y(�))j� = 1; : : : ; Ng, we use

a MLP model to realize the relation expressed by the data. The objective of

training is to �nd the parameter that minimizes the error function de�ned

by

EH(�
(H)) =

NX
�=1

`(y(�); f(x(�);�(H))); (4)

where `(y; z) is a loss function such that l(y; z) � 0 and the equality holds

if and only if y = z. When l(y; z) = 1
2ky � zk2, the objective function is

the mean square error. We can use other loss functions such as Lp norm

l(y; z) = 1
p
ky � zkp and the cross entropy l(y; z) = ��(y) log �(z) � (1 �

�(y)) log(1 � �(z)), where �(t) is a sigmoidal function for the nonlinearity

of the output unit. The results in this paper are independent of the choice

of a loss function.

2.2 Hierarchical structure of MLP

The parameter vector �(H) consists of a LH+2H+1 dimensional Euclidean

space �H . Each �
(H) gives a nonlinear function eq.(1) of x, so that the set

of all the functions realized by �H is a function space described by

SH = ff (H)(x;�(H)) : RL ! R j �
(H)

2 �Hg: (5)

We denote the mapping from �H onto SH by

�H : �H �! SH ; �
(H)

7! f(x;�(H)): (6)

We sometimes write f
(H)
� for �H(�).

It is important to note that �H is not one-to-one, that is, di�erent

�
(H) may give the same input-output function. The interchange between

(vj1 ;wj1) and (vj2 ;wj2) does not alter the image of �H . In the case of

tanh activation function, Chen et al. ([7]) showed that any analytic map

T : �H ! �H such that f (H)(x;T (�(H))) = f (H)(x;�(H)) is a composition

of hidden unit weight interchanges and hidden unit weight sign ips, which
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latter are de�ned by (vj; ~wj) 7! (�vj ;� ~wj). These transforms consist of an

algebraic group GH , which is isomorphic to a direct product of Weyl groups.

We write Tg for the transform given by g 2 GH

The function spaces SH (H = 0; 1; 2; : : : ) have a trivial hierarchical struc-

ture:

S0 � S1 � � � � � SH�1 � SH � � � � : (7)

The inclusion is denoted by �H�1 : SH�1 ,! SH . On the other hand, the

parameter space of the smaller networks is not canonically included in �H .

Given a function f
(H�1)
� realized by a network with H � 1 hidden units,

there are a family of networks with H hidden units and parameters �(H)

that realizes the same function f
(H�1)
� . In other words, a map from �H�1

to �H that commutes the following diagram is not unique.

�H�1 ���! �H

�H�1

??y
??y�H

SH�1 ���!

�H�1

SH

(8)

The set of all the parameters �(H) that realize the input-output functions

of networks with H � 1 hidden units is denoted by


H = ��1H (�H�1(SH�1)): (9)

From Sussmann's result ([9], Theorem 1 and its corollary), the parameter

set 
H is the union of the following submanifolds of �H (see Figure 1);

Aj = f�
(H)

2 �H j vj = 0g (1 � j � H); (10)

Bj = f�
(H)

2 �H j wj = 0g (1 � j � H); (11)

C
�

j1j2
= f�

(H)
2 �H j ~wj1 = � ~wj2g (1 � j1 < j2 � H): (12)

Here, Aj is the set of parameters where vj = 0 so that the jth hidden units

plays no role. Similarly, the jth hidden unit has 0 weight in Bj so that it

outputs only a constant bias term. In C�j1j2 , the j1th hidden unit and j2th

hidden unit have the same (or opposite) wight vector and bias, so that their

behaviors are the same (opposite). They may be integrated into one unit,

where v1 � v2 is the weight of the new unit to the output unit. From the

viewpoint of mathematical statistics, it is also proved by Fukumizu ([11])

that 
 is the set of all the points at which the Fisher information matrix is

singular.
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Figure 1: A network given by a parameter in Aj, Bj and C
�

j1j2
.

We further investigate how each function in SH�1 is. Let f
(H�1)

�(H�1) be a

function in SH�1 � SH�2. To distinguish �H�1 from �H , we use di�erent

parameter variables and indexing:

f (H�1)(x;�(H�1)) =

HX
j=2

�j'(~u
T
j ~x) + �0: (13)

Let 
H(�
(H�1)) be the set of parameters �(H) that realizes a given f

(H�1)

�(H�1) ;


H(�
(H�1)) = ��1H (�H�1(f

(H�1)

�(H�1)): (14)

Then, 
H(�
(H�1)) is the union of the submanifolds in each of Aj, Bj and

C
�

j1j2
. For simplicity, we show only an example of the submanifolds of A1,

B1 and C
+
12;

� = f�
(H)

2 �H j v1 = 0; v0 = �0; vj = �j ; ~wj = ~uj; (2 � j � H)g

� = f�
(H)

2 �H j w1 = 0; v1'(w10) + v0 = �0; vj = �j; ~wj = ~uj ; (2 � j � H)g

� = f�
(H)

2 �H j ~w1 = ~w2 = ~u2; v0 = �0; v1 + v2 = �2;

vj = �j; ~wj = ~uj ; (3 � j � H)g: (15)

The submanifold � is an L + 1 dimensional a�ne space parallel to the

~w1-plane, because ~w1 may take arbitrary values in it, but all the other

components of �(H) are determined by prescribed �(H�1). The set � is a 2

dimensional submanifold de�ned by a nonlinear equation

v1'(w10) + v0 = �0; (16)
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where v0, v1, and w10 can take arbitrary values provided they satisfy the

above. The set � is a line in the v1v2-plane, de�ned by v1 + v2 = �2. It

is known that all the other components in 
(�(H�1)) are obtained as the

transforms of �, �, and � by g 2 GH ([9],[10]). For example, the image of

� by the sign ip about the second hidden unit is given by

�(�1) = f�
(H)

2 �H j ~w1 = � ~w2 = ~u2; v0 = �0; v1 � v2 = �2;

vj = �j ; ~wj = ~uj; (3 � j � H)g: (17)

The image of �, �, and � by a hidden-unit interchange is trivial. Thus,

each function of a smaller network is realized not by discrete points but by

high-dimensional submanifolds in �H .

In order to make analysis more concrete, we give a de�nite correspon-

dence between �H�1 and �H that realize the same function. We de�ne

the following canonical embeddings of �H�1 into �H , which commute the

diagram (8), using ~w 2 R
L+1 , (v; w) 2 R2 , and � 2 R as their parameters;

� ~w :�H�1 �! �H ; �
(H�1)

7! (�0; 0; �2; : : : ; �H ; ~w
T ; ~uT2 ; : : : ; ~u

T
H)

T ;

�(v;w) :�H�1 �! �H ; �
(H�1)

7! (�0 � v'(w); v; �2; : : : ; �H ; (w;0
T ); ~uT2 ; : : : ; ~u

T
H)

T ;

� :�H�1 �! �H ;

�
(H�1)

7! (�0; ��2; (1� �)�2; �3; : : : ; �H ; ~u
T
2 ; ~u

T
2 ; ~u

T
3 ; : : : ; ~u

T
H)

T :

(18)

These maps are illustrated in Figures 2, 3, and 4. If we change the parameter

of each embedding, the images of �(H�1) span the components, �, �, and

�, of 
H(�
(H�1)); that is

� = f� ~w(�
(H�1)) j ~w 2 R

L+1
g;

� = f�(v;w)(�
(H�1)) j (v; w) 2 R2g;

� = f�(�
(H�1)) j � 2 Rg: (19)

3 Critical points of the MLP model

3.1 Learning and critical points

Generally, the optimum parameter cannot be calculated analytically when

the model is nonlinear. Some numerical optimization method is needed to
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obtain its approximation. One widely-used method is the steepest descent

method, which leads to a learning rule given by

�(t+ 1) = �(t)� �
@EH(�(t))

@�
; (20)

where � is a learning rate. If �
�
is the global minimum, @EH

@�
(�

�
) = 0

holds and the above learning rule stops there. However, we cannot always

obtain the global minimum, since all the points that satisfy @EH
@�

(�) = 0 are

stationary points of eq.(20). Such a point is called a critical point of EH .

There are three types of critical point: a local minimum, a local max-

imum, and a saddle point. A critical point �0 is called a local minimum

(maximum) if there exists a neighborhood around �0 such that for any

point � in the neighborhood EH(�) � EH(�0) (EH(�) � EH(�0)) holds,

and called a saddle if it is neither a local minimum nor a local maximum,

that is, if in an arbitrary neighborhood of �0 there exist a point at which EH

is smaller than EH(�0) and a point at which EH is larger than EH(�0). It is

well known that if the Hessian matrix at a critical point is strictly positive

(negative) de�nite, the critical point is a local minimum (maximum), and if

the Hessian has both positive and negative eigenvalues, it is a saddle.

3.2 Existence of critical points

It is very natural to look for a critical point of EH in the set 
H =

��1H (�H�1(SH�1)), because a critical point of EH�1 already satis�es some

of the conditions of a critical point of EH .

Let �
(H�1)
�

= (�0�; �2�; : : : ; �H�
; ~uT2�; : : : ; ~u

T
H�

)T 2 �H�1 � �H�2 be a

critical point of EH�1. It really exists if we assume that the global min-

imum of EH�1 is isolated, which means it is not included in �H�2. This

assumption is practically plausible, because, for a set of data which is �tted

well with H hidden units, the optimum network with H � 1 hidden units

has no redundant hidden units in general.

At the critical point, the following equations hold for 2 � j � H;

@EH�1

@�0
(�

(H�1)
�

) =
PN

�=1
@`
@z

�
y(�); f (H�1)(x(�);�

(H�1)
�

)
�
= 0;

@EH�1

@�j
(�

(H�1)
�

) =
PN

�=1
@`
@z

�
y(�); f (H�1)(x(�);�

(H�1)
�

)
�
'(~uTj�~x

(�)) = 0;

@EH�1

@~uj
(�

(H�1)
�

) = �j�
PN

�=1
@`
@z

�
y(�); f (H�1)(x(�);�

(H�1)
�

)
�
'0(~uTj�~x

(�))~x(�)T = 0
T ;

(21)
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We have two kinds of critical points.

Theorem 1. Let � be as in eq.(18). Then, for any � 2 R, the point

�(�
(H�1)
�

) is a critical point of EH .

Theorem 2. Let �(v;w) be as in eq.(18). Then, for any w 2 R, the point

�(0;w)(�
(H�1)
�

) is a critical point of EH .

These theorems are easily obtained if we consider the partial derivatives of

EH , which are given by

@EH

@v0
(�) =

PN
�=1

@`
@z

�
y(�); f (H)(x(�);�)

�
;

@EH

@vj
(�) =

PN
�=1

@`
@z

�
y(�); f (H)(x(�);�)

�
'( ~wT

j ~x
(�)); (1 � j � H);

@EH

@ ~wj

(�) = vj
PN

�=1
@`
@z

�
y(�); f (H)(x(�);�)

�
'0( ~wT

j ~x
(�))~x(�)T ; (1 � j � H):

(22)

Note that f (H)(x;�) = f (H�1)(x;�
(H�1)
�

) for � = �(�
(H�1)
�

) or � = �(0;w)(�
(H�1)
�

).

It is easy to check that the conditions eq.(21) make all the above derivatives

zero.

The critical points in Theorems 1 and 2 consist of a line in �H if we move

� 2 R and w 2 R, respectively. Note that � ~w = �(0;w) if ~w = (w;0T )T .

Thus, these two embeddings give the same critical point set. If � is a critical

point of EH , so is Tg(�) for any g 2 GH . We have many critical lines in �H .

The critical points in Theorems 1 and 2 do not cover all of the critical

points of EH . We consider the special subset of the critical points, which

appears because of the hierarchical structure of the model.

4 Local minima of the MLP model

4.1 A condition for the existence of local minima

In this section, we show a condition that a critical point in Theorem 1 is a

local minimum or a saddle point. The usual su�cient condition of a local

minimum using the Hessian matrix cannot be applied for a critical point in

Theorem 1 and 2. The Hessian is singular, because a one-dimensional set

including the point shares the same value of EH in common.
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Let �
(H�1)
�

be a point in �H�1. We de�ne the following (L+1)� (L+1)

symmetric matrix:

A2 = �2�

NX
�=1

@`

@z
(y(�); f (H�1)(x(�);�

(H�1)
�

))'00(~uT2�~x
(�))~x(�)~x(�)T : (23)

Theorem 3. Let �
(H�1)
�

be a local minimum of EH�1 such that the Hessian

matrix at �
(H�1)
�

is positive de�nite. Let � be de�ned by eq.(18), and � :=

f�� 2 �H j�� = �(�
(H�1)
�

); � 2 Rg. A matrix A2 is de�ned by eq.(23).

If A2 is positive (negative) de�nite, any point in the set �0 = f�� 2 � j

�(1� �) > 0 (< 0)g is a local minimum of EH , and any point in �� �0 is

a saddle. If A2 has both positive and negative eigenvalues, all the points in

� are saddle points.

For the proof, see Appendix. Local minima given by Theorem 3, if any,

appear as one or two segments in a line. It is interesting that such a local

minimum can be changed into a saddle point without altering the function

f
(H)
� , when the point moves in the segment. Figure 5 illustrates the error

surface around this critical set. We show only two coordinate axes for vari-

ables: one is the direction along � and the other is the direction that attains

the minimum and maximum values at the points on �. Each point that

looks like a maximum in the �gure is a saddle point in reality.

Note that, if � is a local minimum given by Theorem 3, the image of the

point by any transform in GH is also a local minimum. This can be easily

proved because the local property of EH around the point does not change

by the transform. Therefore, the error function has many line segments of

local minima, if the condition of Theorem 3 holds.

The critical points in Theorem 2 do not give local minima.

Theorem 4. Any critical point given by Theorem 2 is a saddle.

For the proof, see Appendix.

The statements of Theorems 3 and 4 are also valid even if we consider the

transform of the embedded point by any g 2 GH . This can be proved easily

because the local property around the point is not changed any transform

in GH . There are many saddle line segments, and line segments of local

minima if any.

4.2 Plateaus

We have proved that, when A2 is positive or negative de�nite, there exists

a one-dimensional submanifold � of critical points. The output function is
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4.3 Remarks

The only property of tanh used in this paper is that it is odd. K�urkova &

Kainen ([10], Theorem 8) introduced the notion of a�nely recursive func-

tions, and proved that if the activation function is odd or even and is not

a�nely recursive, the functionally equivalent parameters are given by in-

terchanges and sign ips, neglecting compensation of constant. A func-

tion ' : R ! R is not a�nely recursive if and only if it has a non-trivial

a�ne relation '(t) = a'(wt + u) + b for a;w 6= 0 and an a�ne relationPm
j=1 aj'(wjt+ uj) + b = 0 of more than three components can be decom-

posed into a�ne relations of two components (For the precise de�nition,

see [10]). Using this result, we can deduce that 
H is the same as for MLP

models with an odd or even activation function that is not a�nely recursive,

and can determine the transform group for such MLP models. The group

is still the same as GH , while we must replace the de�nition of a sign ip

by (vj ;wj) 7! (vj ;�wj) for an even activation function. Similar arguments

in Section 2.2 are valid, and Theorems 1{4 also hold with necessary mod-

i�cations of the statements. A typical activation function like the logistic

function and Gaussian function can be converted by an a�ne transform to

an odd or even function that is not a�nely recursive. Therefore, the results

obtained in the above are applicable to a wide class of three-layer models.

4.4 Numerical simulations

We have tried numerical simulation to exemplify local minima given by

Theorem 3 and plateaus described in 4.2.

In the �rst simulation, We use a network with 1 input unit, 1 output

unit, and 2 hidden units. We do not use bias terms for simplicity. Note that

there always exist local minima in this case, since A2 is a scalar. We use

the logistic function '(t) = 1
1+e�t

as the activation function, and the mean

square error l(y; z) = 1
2ky � zk2 for the loss function. To obtain training

data, 100 input data are generated using a normal distribution with 0 as its

mean and 4.0 as its variance, and corresponding output data are obtained

as y = f(x) + Z, where f(x) = 2'(x) � '(4x) and Z is a random variable

subject to the normal variable with 0 as its mean and 10�4 as its variance.

For a �xed set of training data, we numerically calculate the global minimum

of MLP with 1 hidden unit using the steepest descent method. We update

the parameter 20000 times, and use the �nal state as the global minimum.

Even if we try several di�erent initial conditions, obtained results are almost

the same. Therefore, we can consider it as an approximation of the global
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Figure 6: A local minimum in MLP (L=1, H=2).

minimum �
(1)
�

with high accuracy. The parameter is given by �2� = 0:984

and u2� = 0:475. In this case, we have A2 = 1:910 > 0. Then, any point

in the set �0 = f(v1; v2; w1; w2) j v1 + v2 = �2�; v1v2 > 0; w1 = w2 = u2�g

is a local minimum. We set v1 = v2 = �2�=2 as �� (� = 1=2), and evaluate

the values of E2 at 1 million points around ��, which are generated using

a 4 dimensional normal distribution with �� as its mean and 10�6I4 as its

variance-covariance matrix. As a result, all these values are larger than

E(��). This experimentally veri�es that �� is a local minimum. The graphs

of the target function f(x) and the function given by the local minimum

f(x;�
(1)
�
) are shown in Figure 6.

In the second simulation, we use a network with 2 input units, 1 output

unit, and 3 hidden units. We do not use bias terms also in this simulation.

The 2 � 2 matrix A2 can have both of a negative and a positive eigenvalue

at the same time. The activation function is tanh, and the set of input

data is 100 independent samples from the normal distribution with 0 as its

mean and 25 � I2 as its covariance matrix. The target function is given by

a function in the model, which is de�ned by v1 = v2 = v3 = 1, w1 = (2; 1)T ,

w2 = (1;�1)T , and w3 = (0:5; 0)T . We numerically obtain the global

minimum of the model with two hidden units, �
(2)
�
, in the similar method

to the �rst simulation. There are many cases in which the matrix A2 has

a negative and a positive eigenvalue, but for some sets of training data and

initial parameters we can �nd the matrix positive or negative de�nite. Figure

7 shows the graph of a function given by one of such local minima and the

graph of the target function. The parameter of this local minimum is �1� =

14



1:864, �2� = �1:158, u1� = (�0:680; 0:247)T , and u2� = (�0:905;�1:158)T .

We numerically con�rmed in the same way as the �rst simulation that this

is really a local minimum.

Next, we have tried to verify that this local minimum causes a plateau.

In this simulation, we use online learning, in which the parameter is updated

with respect to only one training data that is selected at that time. All of

the training data are used by turns, and training is repeated cyclically. We

observe the behavior of the parameter after setting it close to the one that

gives the local minimum. Figure 8 is the graph of the value of error function

E3(�) during learning, which shows a typical plateau until about 50000

iterations. One sequence of presenting all data is counted as one iteration in

this �gure. We can see a very long time interval, in which the error function

decreases very slowly, and a sudden steep decrease of the training error.

Figure 9 shows the behavior of the parameter w1 and w2. They move close

to the parameter u1�, which gives the local minimum, and suddenly go away

from it. This simulation veri�es that local minima given by Theorem 3 can

give rise to plateaus as we discussed in 4.2.

5 Conclusion

We investigated the geometric structure of the parameter space of multilayer

perceptrons with H � 1 hidden units embedded in the parameter space of

H hidden units. Based on the structure, we found a �nite family of critical

point sets of the error surface. We showed that a critical point of a smaller

network can be embedded into the parameter space as a critical point set of a

one-dimensional a�ne space in two ways. We further elucidated a condition

that a point in the image of one embedding is a local minimum, and showed

that the image of the other embedding is a saddle. From this result, we

see that under one condition there exist local minima as line segments in

the parameter space, which cause serious plateaus because all points around

the set of local minima once converge to it and have to escape from it by

random uctuation. These results are not dependent on the speci�c form of

activation functions nor the loss functions.

We consider only networks with one output unit. The extension of the

result on existence of local minima is not straightforward. The image of the

embedding � form a critical line even in the M dimensional output case.

However, the critical line is contained in the M dimensional a�ne space

de�ned by v1 + v2 = �2�, in which a point does not give a critical point

in general, but de�nes the same input-output function as the critical line.
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Figure 7: A local minimum and the target in MLP (L=2, H=3).

16



10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

Number of iterations (log)

T
ra

in
in

g 
er

ro
r 

(l
og

)

Figure 8: Value of the error function during learning

10
0

10
2

10
4 0

1

2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 w
11

,   w
21

Number of iterations (log)

 w
12

,  
 w

22

 w
1
 w

2
 

Paramater of the local minimum

Figure 9: Behavior of parameters

17



From Lemma 1 in Appendix, we see that any point in the critical line is a

saddle. We have not yet known about existence of local minima in the case

of multiple output units.

Theorems 3 and 4 mean that the critical points are saddles in many

cases. It is very important to know a condition on the positive or negative

de�niteness of A2. This is a di�cult problem, because it deeply depends

on the relation between the global minimum in �H�1 and the target, and

the randomness of training data. From the practical point of view, it is

meaningful to see whether the saddle points in Theorem 3 and 4 are the

only reason of plateaus. If this is true, we can e�ectively avoid them by the

method of natural gradient ([6],[12],[13],[14]), because it enlarges the gradi-

ent of the repulsive direction from � by multiplying the inverse of the almost

singular Fisher information matrix. However, all of the above problems are

left open.
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Appendix

A Proof of Theorem 3

Proof. For simplicity, we change the order of the components of �(H) and

�
(H�1) as (v1; v2; ~w

T
1 ; ~w

T
2 ; v0; v3; : : : ; vH ; ~w

T
3 ; : : : ; ~w

T
H)

T and (�2; ~u
T
2 ; �0; �3; : : : ; �H ; ~u

T
3 ; : : : ; ~u

T
H)

T

respectively. We introduce a new coordinate system of �H to see the em-

bedding � more explicitly. Let (�1;�
T ; �2; b

T ; v0; v3; : : : ; vH ; ~w
T
3 ; : : : ; ~w

T
H)

T

be a coordinate system of �H � f�
(H)

j v1 + v2 = 0g, where

�1 = v1 � v2;

� =
1

v1 + v2

�
~w1 � ~w2

�
;

�2 = v1 + v2;

b =
v1

v1 + v2
~w1 +

v2

v1 + v2
~w2: (24)

This is well-de�ned as a coordinate system, since the inverse is given by

v1 =
1

2
�1 +

1

2
�2;

v2 = �

1

2
�1 +

1

2
�2;

~w1 = b+
��1 + �2

2
�;

~w2 = b�
�1 + �2

2
�: (25)

Using this coordinate system, the embedding � is expressed as

� : (�2; ~u
T
2 ; �0; �3; : : : ; �H ; ~u

T
3 ; : : : ; ~u

T
H)

T

7! ((2�� 1)�2;0
T ; �2; ~u

T
2 ; �0; �3; : : : ; �H ; ~u

T
3 ; : : : ; ~u

T
H)

T : (26)

Note that in this de�nition we use the order of the components introduced

at the beginning of the proof.

Let (�2�; ~u
T
2�; �0�; �3�; : : : ; �H�

; ~uT3�; : : : ; ~u
T
H�

)T be the component of �
(H�1)
�

.

The critical point set � is a one-dimensional a�ne space parallel to �1-axis

with � = 0, �2 = �2�, b = ~u2�, v0 = �0�, vj = �j� (3 � j � H), and ~wj = ~uj�
(3 � j � H).

Let �1� be the �1 component of ��, and V�1� be a complement of � de�ned

by

V�1� := f(�1;�
T ; �2; b

T ; v0; v3; : : : ; vH ; ~w
T
3 ; : : : ; ~w

T
H)

T
2 �H j �1 = �1�g:

(27)

20



We have � \ V�1� = ��. If �� is a local minimum in V�1� for an arbitrary

�� 2 �0, it is a local minimum also in �H , since EH has the same value

on each point of �. It is trivial that if �� is a saddle point in V�1� , it is a

saddle also in �H . Thus, we can reduce the problem to the Hessian of EH

restricted on V�1� . We write it by G�1� .

From the de�nition of � and �1, we have

Lemma 1. For any � 2 f�
(H)

2 �H j � = 0g,

@f

@�
(x;�) = 0 and

@f

@�1
(x;�) = 0 (28)

hold.

From eq.(26), we have also @f
@b
(��) = 0 and @f

@�2
(��) = 0 (this is another

proof of Theorem 2). Therefore, the second derivative of EH at �� can be

written as

rrEH(��) =

NX
�=1

@`

@z
(y(�); f(x(�);��))rrf(x

(�);��): (29)

Let ! represent one of the coordinate components in (�1;�
T ; �2; b

T ; v0; v3; : : : ; vH ; ~w
T
3 ; : : : ; ~w

T
H).

From Lemma 1, at any point � 2 f� = 0g, the second derivative @2f
@�1@!

(�) =

0 and @2f
@�@!

(�) = 0 unless ! = �j (1 � j � L+1). Combining this fact with

the expression of eq.(26), we have

G�1� =

0
@

@2EH
@�@�

(��) O

O
@2EH�1

@�(H�1)@�(H�1)
(�

(H�1)
�

)

1
A : (30)

By simple calculation, we can derive the following

Lemma 2. For any � 2 f�
(H)

2 �H j � = 0g,

@2f

@�@�
(x;�) = v1v2

@2f

@b@b
(x;�) = v1v2�2'

00(bT ~x)~x~xT (31)

holds.

From this lemma, we have @2EH
@�@�

(��) = �(1��)�22�A2. From the assump-

tion, all the eigenvalues of
@2EH�1

@�(H�1)@�(H�1) (�
(H�1)
�

) are positive, and �2� 6= 0.

Thus, if A2 is positive or negative de�nite, all the eigenvalues of G�1� at a

point in �0 are positive, which means �� is a local minimum in �H . If A2
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has positive and negative eigenvalues, so does G�1� except for two points

given by � = 0; 1. Then, all the points in �� ��0 are saddle points. As for

the two boundary points of �0, any neighborhood of them contains a point

of �� ��0. Thus, the neighborhood includes a point attaining larger EH than

EH(��) and a point attaining smaller EH than EH(��). Thus, they are also

saddle points, and this completes the proof.

B Proof of Theorem 4

Proof. First, we show the following lemma.

Lemma 3. Let E(�) be a function of class C1
, and �

�
be a critical point of

E(�). If in any neighborhood of �
�
there exists a point � such that E(�) =

E(�
�
) and @E

@�
(�) 6= 0, then �

�
is a saddle point.

Proof. Let U be a neighborhood of �
�
. From the assumption, we have a

point �1 2 U such that E(�1) < E(�
�
) and a point �2 2 U such that

E(�2) > E(�
�
). This means �

�
is a saddle point.

Back to the proof of Theorem 4, note that �(0;w)(�
(H�1)
�

) 2 f� ~w(�
(H�1)
�

) j

~w 2 R
L+1

g. In other words, the critical line in Theorem 2 is embedded in

an L+1 dimensional plane that gives the same function as the critical line.

However, the point � ~w(�
(H�1)
�

) is not a critical point for w 6= 0, because
@EH
@v1

6= 0 in general. Thus, �(0;w)(�
(H�1)
�

) satis�es the assumption of Lemma

3.

22


