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Abstract

We discuss the dynamics of batch learning of multilayer neural networks
in the asymptotic limit, where the number of trining data is much larger
than the number of parameters, emphasizing on the parameterization
redundancy in overrealizable cases. In addition to showing experimental
results on overtraining in multilayer perceptrons and three-layer linear
neural networks, we theoretically prove the existence of overtraining in
overrealizable cases of the latter model.

1 Introduction

This paper discusses the dynamics of batch gradient learning in multilayer

networks. One interesting aspect in learning is overtraining ([1]). Although a

network is trained to minimize the empirical error de�ned with �nite training

data, it does not ensure the decrease of the generalization error, the error

between the trained network and the true one. Overtraining is the attainment

of the minimum generalization error before the convergence of the parameter.

There is a controversy about the existence of overtraining. Many practi-

tioners assert its existence and advocate the use of an early stopping criterion.

Amari et al ([1]) theoretically show that its e�ect is much smaller than what is

believed by practitioners, under the condition that the parameter approaches

to the optimum one following the statistical asymptotic theory. However, in

the case of multilayer models, the usual asymptotic theory is not applicable

in overrealizable cases, where the true function is realized by a smaller-sized

network ([2],[3]). The dynamics of learning is still an open problem in such

cases.

In this paper, we investigate experimentally and theoretically the dynamics

of the steepest descent learning in multilayer perceptrons and three-layer lin-

ear neural networks. Especially, we focus on the existence of overtraining in

overrealizable cases, as a �rst step to understand learning in multilayer models.

2 Learning in three-layer networks

A three-layer network with L input, H hidden, and M output units is given by

f i(x;�) =
PH

j=1 wij s
�PL

k=1ujkxk + �j
�
+ �i; (1 � i �M); (1)
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where � = (wij ; �i; ujk; �j) is a parameter and s(t) is an activation function. In

multilayer perceptrons (MLP), the sigmoidal function s(t) = 1

1+e�t
is used.

In this paper, we discuss regression problems, assuming an output of the

target system is observed with a noise. A sample (x;y) from the target satis�es

y = f(x) + v; (2)

where f(x) is the true function, and v is a random vector whose distribu-

tion is N(0; �2IM ), a normal distribution with 0 as its mean and �2IM as its

variance-covariance matrix. An input vector x is generated randomly with its

probability density function q(x), which is unknown to a learner. Training data

f(x(�);y(�))gN�=1 are independent samples from the joint distribution of q(x)

and eq.(2).

We assume that f(x) is perfectly realized by the prepared model; that is,

there is a true parameter �0 such that f(x;�0) = f(x). If the true function

f(x) is realized by a network with a smaller number of hidden units than the

prepared model, we call it overrealizable. Otherwise, we call it regular. We

focus on the di�erence of learning behaviors between these two cases.

We use the following empirical error as an objective function of training;

Eemp =
PN

�=1ky(�) � f(x(�);�)k2: (3)

It is well known that the parameter that minimizes Eemp is equal to the maxi-

mum likelihood estimator (MLE), whose behavior for a large number of training

data is given by the statistical asymptotic theory.

Generally, the MLE cannot be obtained analytically for three-layer net-

works, and some numerical optimization method is needed. One widely-used

method is the steepest descent method, which leads the following learning rule:

�(t+ 1) = �(t)� �
@Eemp

@�
; (4)

where � is a learning rate. In this paper, we discuss only batch learning, in

which the gradient is calculated using all training data. There are many studies

on on-line learning, in which the parameter is updated each time for a newly

generated data.

The performance of a network is evaluated using the generalization error:

Egen =
R kf(x;�)� f(x)k2q(x)dx: (5)

The steepest descent learning tries to decrease Eemp, while the ideal goal is to

minimize Egen. The decrease of Eemp does not ensure the decrease of Egen.

Then, it is important to investigate the behavior of Egen during learning.

3 Learning curves { Experimental Study {

We must be very careful in discussing experimental results on MLP, especially

in overrealizable cases. Since there exist almost at submanifolds around the

global minima ([3]), the convergence of learning is extremely slow. Another
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(a) Regular case
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(b) Overrealizable case
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Figure 1: Average learning curves of MLP. The model in use has 1 input, 2

hidden, and 1 output unit. N = 100 and � = 0:01. The dotted level is the

theoretical prediction of Egen of the MLE in regular cases. We use f(x) = 0

as the overrealizable target.

problem is local minima, which is common to all nonlinear models. We cannot

exclude their e�ects, and this often makes derived conclusions obscure.

Therefore, we introduce three-layer linear neural networks (LNN) as a model

on which theoretical analysis is possible. The LNN model is de�ned by

f(x;A;B) = BAx; (6)

where A is a H � L matrix and B is a M � H matrix. We assume H � L

and H �M throughout this paper. Although the function f(x;A;B) is linear,

the parameterization is quadratic, therefore, nonlinear. Note that the above

model is not the same as the usual linear model f(x;C) = Cx because of the

rank restriction; the function space is the set of linear maps whose rank is no

greater than H . Then, the MLE and the dynamics of learning in LNN model

are di�erent from those of the usual linear model.

We experimentally investigate the generalization error of MLP and LNN.

The batch learning rule of MLP leads the well-known error back-propagation.

To avoid the problems discussed above, for a �xed set of training samples, we

try 30 di�erent initializations and select the best one to give the least Eemp at

the end, after 500000 updates. Figure 1 shows the average of generalization

errors over 30 di�erent sets of training data. It shows clear overtraining in the

overrealizable case, while the regular case shows no overtraining.

Under the notations of X = (x(1) : : :x(N))T and Y = (y(1) : : :y(N))T , the

batch learning rule is given by�
A(t+ 1) = A(t) + �BTY TX � �BTBAXTX;

B(t+ 1) = B(t) + �Y TXAT � �BAXTXAT :
(7)

Since the MLE of LNN is known to be solvable ([4]), the above rule is not

practically used. However, our interest here is not on the MLE, but on the

3



10 100
The number of iterations

0.00001

0.0001

0.001

0.01

A
ve

ra
ge

 s
qu

ar
e 

er
ro

r 
(1

00
 t

ri
al

s)

(a) Regular 

Gen. error in training 
 Gen. error of MLE

10 100 1000 10000 100000
The number of iterations

0.00001

0.0001

0.001

A
ve

ra
ge

 s
qu

ar
e 

er
ro

r 
(1

00
 t

ri
al

s)

(b) Overrealizable

Gen. error in training
Gen. error of MLE (overrealizable)
Gen. error of MLE (regular)

Figure 2: Average learning curves of LNN. The model has 2 input, 1 hidden,

and 2 output units. N = 100. The constant zero function is used for the

overrealizable target.

dynamical behavior. Figure 2 shows the average of learning curves. The ap-

pearance of two curves are totally di�erent. Only the overrealizable case shows

sharp overtraining in the middle of learning.

From these results, we can conjecture that there is an essential di�erence in

dynamics of learning between regular and overrealizable cases, and overtraining

is a universal property of the latter cases. If we use a good stopping criterion,

this overtraining can be an advantage over conventional linear models in that

the degrade of generalization error by redundant parameters is not so critical

as linear models. In the next section, we give a theory to this experimental

result by obtaining the solution of a di�erential equation.

4 Solvable dynamics of learning in linear

neural networks

We derive the solution of the continuous-time dynamics of LNN, and show the

existence of overtraining in overrealizable case.

4.1 Solution of learning dynamics

In the rest of the paper, we put the following assumptions:

(a) H � L =M , (b) f(x) = B0A0x, and the rank of B0A0 is r,

(c) E[xxT ] = IL, (d) A(0)A(0)T = B(0)TB(0), and their rank is H .

Note that AT and B are L�H matrixes. The assumption (d) is not restrictive,

since the parameterization of eq.(6) has H2 dimensional redundancy about the

multiplication of a H �H nonsingular matrix from the left of A and from the

right of B, and (d) removes the part of it.
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We discuss the continuous-time di�erential equation instead of the discrete

time update rule. If we divide the output matrix as Y = XAT
0
BT
0
+ V , the

di�erential equation of the steepest descent learning is given by�
_A = �(BTBT

0
A0X

TX +BTV TX �BTBAXTX);
_B = �(B0A0X

tXAT + V TXAT �BAXTXAT ):
(8)

The behavior of eq.(8) does not coincide with that of the discrete time update

rule. However, if we decide the learning coe�cient � in eq.(7) su�ciently small,

the solution of eq.(7) is approximately equal to that of eq.(8).

Let ZO := V TX(XTX)�1=2, and decompose XTX as XTX = NIL +p
NZI . The components of ZI and ZO are of constant order when N is very

large. Then, taking the leading terms of each order, we approximate eq.(8) as�
_A = �NBTF � �NBTBA;
_B = �NFAT � �NBAAT ;

(9)

where F = B0A0+
1p
N
(B0A0ZI +�ZO). We have AAT = BTB because of the

fact d
dt
(AAT ) = d

dt
(BTB) and the assumption (d). If we introduce

R =

�
AT

B

�
; (10)

then, R satis�es the di�erential equation

dR

dt
= �NSR� �

N

2
RRTR; where S =

�
O FT

F O

�
: (11)

This has the nonlinearity of the third order, and is very similar to Oja's learning

equation ([5]), which is known to be solvable. The key to solve eq.(11) is

d

dt
(RRT ) = �NSRRT + �NRRTS � �N(RRT )2: (12)

This is a matrix Riccati equation, and we have the following;

Theorem 1. Assume that the rank of R(0) is full. Then, the Riccati di�eren-

tial equation (12) has a unique solution for all t � 0, and the solution is

R(t)RT (t) = e�NStR(0)
h
IH+

1

2
R(0)T

�
S�1e2�NSt�S�1

	
R(0)

i�1
R(0)T e�NSt:

(13)

4.2 Dynamics of the generalization error

We can mathematically show the existence of overtraining in overrealizable

cases of LNN. From the assumption (c), we have Egen = Tr[(BA�B0A0)(BA�
B0A0)

T ]; which is the matrix norm of BA�B0A0.

We assume that the positive singular values of B0A0 are of constant order

which is much larger than " = 1p
N
. From the de�nition of F , the singular

values of F have the perturbation of O(") from those of B0A0. We write

"~�r+1 > � � � > "~�L for the L� r smallest singular values of F , where ~�j 's are

of constant order. We give the following theorem without a proof.
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Theorem 2 (Existence of overtraining). Let r < H (overrealizable). Un-

der the assumptions (a)-(d) and further technical conditions, the inequality

Egen(t) < Egen(1) (14)

holds for a time t that satis�es "� expf��
p
N(~�H � ~�H+1)tg � 1.

The key of the proof is that BA is approximately the orthogonal projection

of the eigen matrix of F to a H dimensional subspace, which converges to the

eigenspace of the largest H singular values of F . In this convergence, the slow

dynamics of O(e�a
p
Nt) induced by the eigen values of order O(") dominates

in the above time interval, and this causes the shrinkage of the redundant

parameters. For more detailed explanations, see Fukumizu ([6]).

It is easy to see that Egen is decreasing for a small t > 0 if R(0) is larger

than the order of N�
1

2 . The generalization error, therefore, once decreases, and

after some point, converges to the MLE as an increasing function. This means

the overtraining in overrealizable cases.

5 Conclusion

We investigated the dynamical behavior of batch learning of multilayer net-

works in asymptotic limit. We showed experimentally that overtraining can

be observed in overrealizable cases of MLP and LNN. We analyzed it theo-

retically, and proved the existence of overtraining in LNN. This overtraining

is one of the properties caused by the redundancy of the multilayer structure

([3]). Although this paper mainly discusses only LNN, the result is suggestive

to general properties of multilayer models.
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