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Introduction



Maximal Exponential Manifold

Maximal exponential manifold (pistone &Sempi 95)

o |dea: a Banach manifold is defined so that the cumulant generating
function is well-defined on a neighborhood of each probability density.

(QQ,B, 1) : probability space
f, =exp(u—-"¥,;(u))f, W, (u)=logE,[e"] <x

o Orlicz space Ly, (f)

Lo a(F)=1U|3a >0s.t. E, [cosh(au)] < oo
= {u |3a >0s.t.E.[e“]<w and E.[e™™] <oo}

This space is (perhaps) the most general to guarantee the finiteness
of the cumulant generating functions around a point.



Estimation with Data

Estimation with a finite sample

o A finite dimensional exponential family is suitable for the maximum
likelihood estimation (MLE) with a finite sample.

Xppoon X, oiid, ~ fou X, =(Xg,..., X,)

MLE: @ that maximizes

RSEE ) WRESELIO)

o Is MLE extendable to the maximal exponential manifold?

n

LX) =23 j(X) - ¥, W)

i=1
=> But, the function value u(X;) is not a continuous functional on u
In the exponential manifold.

A small change of u may cause a very different likelihood.



Reproducing Kernel Hilbert Space and
Positive Definite Kernel



Reproducing kernel Hilbert space

Reproducing kernel Hilbert space (RKHS)

o Q: set. A Hilbert space # consisting of functions on Q is called a
(real-valued) reproducing kernel Hilbert space (RKHS)
If the evaluation functional

e, . H >R, fi f(x)

is continuous for each x € Q.

o A Hilbert space # consisting of functions on Q is a RKHS if and only
if there exists k(-,x) e # (reproducing kernel) for each xeQ  s.t.

k(. x), f), =f(x) Vvfen, xeQ.  [reproducing property]
(by Riesz’s lemma)



Positive definite kernel and RKHS

Positive definite kernel

A symmetric function k: Q x QQ - R Is said to be positive definite, If for
anyn € Nand X.....X, €Q, the matrix (k(X;,X;)) (Gram matrix) is
positive semidefinite, i.e.

>ria6ck(x,x;) =0, (foranyc,...,c, eR).

o A reproducing kernel is positive definite.

Positive definite kernel and RKHS

Theorem (Moore-Aronszajn)
If k: Q x Q - R is positive definite, there uniquely exists a RKHS #,
consisting of functions on Q such that
(1) The linear hull of {k(-,X):Q—> R|xeQ} is dense in #,.
(2) k(-,x) is a reproducing kernel of #,.




Example of positive definite kernel

o Euclidean inner product on R™
k(x,y)=x"y
o Polynomial kernel on R™
k(x,y)=(x"y+c)* (c>0,deN)
#, = {polyn. deg =d}

o Gaussian kernel on R™
k(X, y):exp(—Hx—yHZ/JZJ dim 7 = o

o Laplacian kernel on [0 1]
k(x,y) =exp(~| x—y|)
g, =H*(01) = ju e L2[01]| 3u'e L?[0]}  (Sobolev space)

HuH;k = %{U(O)Z + U(l)z}-i-%'.‘ol{U(X)z + u'(x)z}dx



Some properties of RKHS

o For f :Zinzlaik(°lxi)’ g :ern:lbjk('lyj)’
(f.9), =2abk(x.y)).

In particular,
P k(- x)],, = K(x.%).

o If a pos. def. kernel k is of class Cd, so are all the functions in 7.
) for CO,
00— F(y) =[(KCx) =Ky, <K )=KC W], [ L,
KCX) =K, =K X) = 2K (X, y) +K(Y, Y)
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Reproducing Kernel Exponential
Manifold
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Exponential Manifold by RKHS

Definitions

Q. topological space. . Borel measure on Q s.t. support of 1= Q.
k : continuous pos. def. kernel on Q such that #, contains 1 (constants).

M , (k) ={f:Q— R| f :continuous, f(x)>0(VxeQ), j fdu =1,
35>0, [eK0 £ (x)dp(x) < o|

M (k) is provided with a Hilbert manifold structure.

Note: If [ u ]| < & E, [eu(X)] = E, [e<u,k(.,X)>] <E, [eIIUII«/k(X,X)] < o0
If k is bounded, the condition E, [e***¥]<w is not needed.

o Tangent space
T, =ued, | E[u(X)]=0j closed subspace of

12



Exponential Manifold by RKHS (cont’d)

Local coordinate
For feM,(k), W, ={ueT,|36>0, E,[e*® X0} T,

Then, forany ueW,
fy=expu-¥;(u)f eM (k).
[+ B, [e7 00N = B, [ X0g 00 W] o )

Define
& Wy > M, (k), um— f, (one-to-one) E; =<&; (W;)

o E, ->W,, @, =& > works as a local coordinate

Lemma
(1) W;is an open subset of T..
(2) 9eE; ©E; =E,.

13



Exponential Manifold by RKHS (cont’d)

Reproducing Kernel Exponential Manifold (RKEM)

Theorem.
The system (0, )}feMﬂ(k) isa C”-atlas of M (k), i.e.,

(1) ENE;#4 = ¢(E;E) isopenin T,

(2) E:NE, #¢
= @ o o, (£ NEg)" Pt (£¢ NEy) = 0y (E; NE,) isa C*-map.

______________ -
N LI e —. W,
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Exponential Manifold by RKHS (cont’d)

o Sketch of the proof

(2). Let he &, NE, andu= ¢(h), i.e., h=exp(u—"P, (u))f.
Then,

0 o0, (1) = g, () = log TP T {,Og exp(u—F, (u))f }

g g

=U +Iogi— E{uﬂogi}
g g

u E [u] is affine on W;, thus, of C~.

o A structure of C” Hilbert manifold is defined on M (k).

15



Properties of RKEM

Properties of RKEM as a Hilbert manifold

o The Hilbert manifold M (k) depends on the choice of a kernel k.

o The tangent space at f e M (k) Is identified with T, which is
codimension one in #,.

0 E is a connected component in M (k), and
£, ={geM,(K)|IueT,, g=expu-",(u)f}

o Log-likelihood u(X)-'¥;(u)+log f(X) is continuous on Mﬂ(k).

o Sufficient statistics = k(x,y)
exp(u(x) =¥ (u)) =exp((u,k(-, x)) =¥ (u))

c.f. finite dimensional case: exp(@-s(x)—¥(9)) y



Examples of RKEM

o RKEM includes any finite dimensional exponential family.

0 Q=R, £=N(0,1)
k(x,y) = (xy+1)2. >  # ={polyn. deg = 2}

M (k)= {N(m, o) |m € R, o>0} : exponential family of normal
distributions.

0 Q=[01], x=Unif[0,1]
k(x,y)=exp(=|x=yl) >  #=HY0,]1).
M, (k) = {f :[0,1] — R |  :continuous, >0, [* f (x)dx =1
) k(xx)=1 = E,[e?V"* M <om.
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Moments in RKEM

o Mean parameter: forany f e M  (k), there uniquely exists m; € 7/,
such that

Eu(X)]=(um,)  forall ue .

m; (y) = E;[k(y,X)] : mean of the sufficient statistics k(-, x)

o Covariance operator: forany f e M LK), there uniquely exists an
operator Z; on #, such that

<V’zfu>y{k = Cov ¢ [v(X),u(X)] forall u,vew,.

o Derivatives of cumulant generating function
For g=¢""" Wt (ueT;) and v,,v, eT,,
the derivatives of W, at u in the direction of v, (and v,) are given by
D,y () = Egu(X)] = (vi,my )

D, (vy,V,) = Cov,[v;(X),v,(X)] = <V2’29V1>}[k 8



Pseudo-Maximum Likelihood
Estimation with RKEM
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MLE with RKEM

Likelihood equation

: connected component of M (k). f, € £:fixed.
E={f eM (k)[JueT,, f =1, =exp(u-"¥; (u))f,}

f. = f, :true p.d.f. to give i.i.d. samle X,,..., X, ~ ..

MLE in &: rpaExzi”:llog f(X:) = mevxzleu(xi)—nqlo(u)
€ ueWp

= m\z/;lvx<rﬁ(”),u>—‘llo(u) where M"Y =13" k(- X,)

ueWp
—> <mu,v>%k:<rﬁ(”),v>(}[k forall ve#,. --Moment matching
—> m, =m"

The ML mean parameter should be m™ .
What is the corresponding p.d.f. element (or natural parameter u)

In the RKEM?
20



MLE is impossible with RKEM

Rigorous MLE is impossible for RKEM in general.

o The mean parameter m, uniquely determines the probability for a
certain class of kernels (characteristic kernel, Fukumizu et al. 08).

{probability measure on Q} — #,, P m, isinjective.
e.g.) Gaussian kernel k(x,y)= exp(—Hx — yHZ/az)

Moment matching with the empirical distribution is impossible.

c.f. For a finite dimensional exponential family, the moments
are given by only the finite number of sufficient statistics.

o Mean parameter is not a coordinate in general (Pistone & Rogatin 99)

u— m, = D¥,(u) does not have a continuous inverse, because
D*¥,(u,v) = <v,2fu> and X, can have arbitrary small eigenvalues.

21



Asymptotics of mean parameter

o Theorem (i/n -consistency of the ML mean parameter)
(QQ, 8, P) : probability space.
k: positive definite kernel on Q s.t. Ej[k(X,X)] <.
Xy X i ~P. M =13" k(- X,)

—> A" —my| =0,Wn)  (n— )

Proof) E|m® mPHj[k = L{E[K(X, X)]- E[K(X, X)}

where X is an independent copy of X.

o Theorem implies the uniform law of large numbers;

sup 13 (X)) —Ep[f(X)] =0,/vn)

feati, il <L

g.e.d.

o Convergence in law to a Gaussian process G on #'is also known.

22



Pseudo-MLE with RKEM

Pseudo-MLE by regularization
{7}, sequence of finite dim. subspaces in %, such that /) < 37

and the inclusions #") — %", #") — 31, are continuous.
Tf(f) =Tf ﬂj_[(f)’ Wf(f) =Wf ny{(ﬁ)

Pseudo-MLE: G =arg max[<rﬁ(”) ) -, )]

UEWf(/‘)

o Assumptions
(A-1) For ueW,, let u:”:= min KL(f, | f,). Then,

Wve
Hu —u”

w 0 (/ > ). (approximation)

(A-2) 36>0,3(¢,),., =N s.t.
A= inf Inf <v,2fuv> satisfies  lim~+/n A" = 4o,

UEH | |lu—Ux|[<d VETf(f),HV”Sl n—o

(stability) 5



Consistency of Pseudo-MLE

Theorem (Fukumizu, IGAIA2005)
f,=exp(d® ¥ (@) .
Under the assumptions (A-1) and (A-2),

KL(f. || f)—>0 (n— o) in probability.

Sketch of the Proof)
KL(f.|| f.)=KL(f. ||f(fn))+qf(u<”>) Y (ui")—E [6™ —ui"]

() KL(f.[T.,) >0 by (A-L).

(i) For the rest terms, it suffices to show Pr(|| 0™ —ul |> g)—) 0
for an arbitrary > 0.

Pr([a¢™ —ul'™ |I> &)

<Pr sup (U, )W (u) 2 (Ul ™) - (ui) | =P,
uew n) lu—ul'm|j2¢
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Consistency of Pseudo-MLE (cont’d)

Forany uew !,

(U A7) = (U 1R )= () + o (u)

— _aUn) (n) >_ ) _
<u u ™ —m YV —(u—-uf" m, muffn>>§:o

_ ) _ (“n)
+<u Us ,mugn,> Y, (u)+ ¥, (u. ")

= <U —ud, ™ - mf*>_ {LPO(U) — W, (u™) _<u —uy“),muwn) >} (*)

By convexity of ¥,, the supremum can be considered in a neighborhood.
By (A-2),
(%) <[lu=ul™ IR —m || =34 [[u—ul |

= P, <Pr(®-m,|2127¢) —o0.

g.e.d.
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Remarks on pseudo-MLE

Remarks
a If #H_ is finite dimensional, the Pseudo-MLE is equal to the ordinary
MLE.

o How to construct {#"}7, ?
H' = spar{k (-, X,),....k(:, Xf)}

When does this satisfy the assumptions? -> future work.

o Another way of regularization — Tikhonov regularization.
(Canu&Smola06)

26



Statistical Asymptotic Theory of
Singular Models
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Singular Submodel of exponential family

Standard asymptotic theory
Statistical model {f (x;0) |6 € ®} on a measure space (2,3, u).
O®: (finite dimensional) manifold.
“True” density: f,(x) =f(x;6,) (6, <0) X X0 hide ~ fou
Maximum likelihood estimator (MLE)
6. =arg maxilog f(X,:0)

(S0 i=1 ]
Asymptotically normal

Under some regularity conditions,
Vn(@,-6,) = N(©,1(6,)™") inlaw (n— )

Likelihood ratio R
L f (XI 19n) 2

20 (6.)=2%"lo
n( n) IZ:; gf(Xl,eo) :>Zd

d-dim

inlaw (n— o)



Singular Submodel of exponential family (cont’d)

Singular submodel in ordinary exponential family
Finite dimensional exponential family M : f (x;8) = exp(€'u(x) — ¥ (8))
Submodel S={f(x;0)eM |0 cO.} (0 €0O)

Tangent cone:
Ci,S ={&"u(x) eT M |HO,} = 04,34, >0st.4,(6,-6) >S (n—>0)}

C,.S

Under some regularity conditions,
f(X;:6,)
F(Xi:6)
1 , 2
= sup {fT (%Zizlu(xi))} +0,(1)

T T2 - - P
S U<Ch® Enle =L hrojection of empirical (N — o)
mean parameter

£,(6,)=>log
i=1

More explicit formula can be derived in some cases. 29



Singular submodel in RKEM

Submodel of an infinite dimensional exponential
family
o The tangent cone of a model defined by a finite number of
parameters may not be in a finite dimensional space.
o Interesting parametric models are
not embeddable into a finite dimensional exponential family,

but can be embedded into an infinite dimensional RKEM.

30



Mixture of Beta distributions

o Mixture of Beta distributions (on [0,1])
S: f(xa,B)=aB(x 1D +(0-a)B(x11)

B 8.7) =rghron X A-%)"

: Beta distribution

o Singularity at  f,(x) = f(x;0, 8) = B(x;1.1)

If «=0, Fis notidentifiable.
-> singularity in the space of probability densities.

IBA
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Mixture of Beta distributions (cont’d)

o H, = Sobolev space H'(0,1) defined by k(x,y)=exp(—|x-Yy]|).
Fact: log f(x;a,f)eH'(0]) for 0<a<l B>3/2

o RKEM with the Sobolev space
Connected component including f, = Unif[0,1]:

£, ={geM,(K)[ueT,, g=explu—¥, u)f}

o Submodel of £,
u, ;(x):=log f (x;, B) - E¢ [log f (X, B)] e Ty,
S={f(a p)=expu,,;—¥;(U, ;) f|0<a <l p>3/2}
=) f,Iis a singularity of S.

o Tangent cone at f; is not finite dimensional.

log f(5a.5) w, = "1 («d0) in H'(0))
- 32



Asymptotics on singular submodel

General theory of singular submodel
M,(K): RKEM. feM,(k),

Submodel ScE; defined by ¢:Kx[01]—>T,
S={exp(u-¥;(u))f €E, Juep(Kx[01])}

such that

(1) K:compact set
(2) ¢(@t1)=0 < t=0
(3) o¢(a,t): Frechet differentiable w.r.t. t and

Singularity F

33

%_f(a,t) is continuous on K x[0,1]

@ mip

2@ |>0




Asymptotics on singular submodel (cont’d)

aeK}

g(X;) 1 o \2
sup>_lo =— Su W, m, +0,(1 o0
QEE,Z; Y (X)) F(Xi)  2wec,s, Ep|W| _1< ) o) (")

Lemma (tangent cone)

op
C;S= R>{E(a1t) -0

Theorem

projection of empirical mean parameter

1 2 .
= — sup G, G,,: Gaussian process
in law 2 weC;S,E [w*=1

* Analogue to the asymptotic theory on a submodel in a finite
dimensional exponential family.
 The same assertion holds without assuming exponential family,
but the sufficient conditions and the proof are much more involved.
34



Conclusion

o Reproducing kernel exponential manifold are defined as a Hilbert
manifold.

It is an extension of ordinary finite dimensional exponential family.

The model depends on the choice of kernel; the dimension is
either finite or infinite.

It allows estimation for finite sample, since the likelihood is a
continuous functional.

o The pseudo-MLE based on a series of finite dimensional subspaces
IS proposed, and proved to be consistent.

o It can be used for the asymptotic theory of singular models. The
theoretical discussion is easier than general cases.

o Future works:
Application to expectation propagation.

Dual geometry on reproducing kernel exponential manifolds.
35
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Appendix: Relation with maximal exponential
manifold

Proposition
Let feM (k), and

A, =infia > 0| E[exp(yk(X, X)/a)]< 2 |
Then,

}[k = Lcosh—l( f ) and HU

Leosh-1( ) < Af Htu{k for any ue }[k'

Proof. E. [cosh(u(X)/a)-1]=1E [e"")* +e1)*]-1

<E [0 ]1-1 < E, lexp(Me k(X X) )|-1.
Thus, llull, /a<1/A, = E[cosh(u(X)/a)-1]<1. qged.

o M (k) is a subset of the exponential manifold proposed by Pistone
and Sempi (1995)
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