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Abstract

We present a family of positive definite kernels on measures, characterized by the fact
that the value of the kernel between two measures is a function of their sum. These
kernels can be used to derive kernels on structured objects, such as images and texts, by
representing these objects as sets of components, such as pixels or words, or more generally
as measures on the space of components. Several kernels studied in this work make use of
common quantities defined on measures such as entropy or generalized variance to detect
similarities. Given an a priori kernel on the space of components itself, the approach is
further extended by restating the previous results in a more efficient and flexible framework
using the “kernel trick”. Finally, a constructive approach to such p.d. kernels through
an integral representation theorem is proved, before presenting experimental results on a
benchmark experiment of handwritten digits classification to illustrate the validity of the
approach.
Keywords: Kernels on measures, Semigroup theory, Jensen Divergence, Generalized
Variance, Reproducing Kernel Hilbert Space.

1. Introduction

The challenge of performing classification or regression tasks over complex and non vectorial
objects is an increasingly important problem in machine learning, motivated by diverse
applications such as bioinformatics or multimedia document processing. The kernel method
approach to such problems (Schölkopf and Smola, 2002) is grounded on the choice of a
proper similarity measure, namely a positive definite (p.d) kernel defined between pairs
of objects of interest, to be used alongside with kernel methods such as support vector
machines (Boser et al., 1992). While natural similarities defined through dot-products and
related distances are available when the objects lie in a Hilbert space, there is no standard
dot-product to compare strings, texts, videos, graphs or other structured objects. This
situation motivates the proposal of various kernels, either tuned and trained to be efficient
on specific applications or useful in more general cases.
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One possible approach to kernel design for such complex objects consists in representing
them by sets of basic components easier to manipulate, and designing kernels on such sets.
Such basic components can typically be subparts of the original complex objects, obtained
by exhaustive enumeration or random sampling. For example, a very common way to
represent a text for applications such as text classification and information retrieval is to
break it into words and consider it as a bag of words, that is, a finite set of weighted terms.
Another possibility is to extract all fixed-length blocks of consecutive letters and represent
the text by the vector of counts of all blocks (Leslie et al., 2002), or even to add to this
representation additional blocks obtained by slight modifications of the blocks present in the
text with different weighting schemes (Leslie et al., 2003). Similarly, a grey-level digitalized
image can be considered as a finite set of points of R

3 where each point (x, y, I) stands for
the intensity I displayed on the pixel (x, y) in that image (Kondor and Jebara, 2003).

Once such a representation is obtained, different strategies have been adopted for kernel
design. When the set of basic components is finite, this representation amounts to en-
code a complex object as a finite-dimensional vector of counters, and any kernel for vectors
can be then translated to a kernel for complex object through this feature representation
(Joachims, 2002, Leslie et al., 2002, 2003). For more general situations, several authors have
proposed to handle such weighted lists of points by first fitting a probability distribution to
each list, and defining a kernel between the resulting distributions (Lafferty and Lebanon,
2002, Jebara et al., 2004, Kondor and Jebara, 2003). Alternatively, Cuturi and Vert (2004)
use a parametric family of densities and a Bayesian framework to define a kernel for strings
based on the mutual information between their sets of variable-length blocks, using the
concept of mutual information kernels (Seeger, 2002). Finally, Wolf and Shashua (2003)
recently proposed a formulation rooted in kernel canonical correlation analysis (Bach and
Jordan, 2002) which makes use of the principal angles between the subspaces generated by
the two sets of points to be compared when considered in a feature space.

We explore in this contribution a different direction to kernel design for weighted lists of
basic components. Observing that such a list can be conveniently represented by a molecular
measure on the set of basic components, that is a weighted sum of Dirac measures, or that
the distribution of points might be fitted by a statistical model and result in a density on
the same set, we formally focus our attention on the problem of defining a kernel between
finite measures on the space of basic components. More precisely, we explore the set of
kernels between measures that can be expressed as a function of their sum, that is:

k(µ, µ′) = ϕ(µ + µ′). (1)

The rationale behind this formulation is that if two measures or sets of points µ and µ′

overlap, then it is expected that the sum µ+µ′ is more concentrated and less scattered than
if they do not. As a result, we typically expect ϕ to quantify the dispersion of its argument,
increasing when it is more concentrated. This setting is therefore a broad generalization of
the observation by Cuturi and Vert (2004) that a valid kernel for strings, seen as bags of
variable-length blocks, is obtained from the compression rate of the concatenation of the
two strings by a particular compression algorithm.

The set of measures endowed with the addition is an Abelian semigroup, and the kernel
(1) is exactly what Berg et al. (1984) call a semigroup kernel. The main contribution of
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this paper is to present several valid positive definite (p.d.) semigroup kernels for molecular
measures or densities. As expected, we prove that several functions ϕ that quantify the
dispersion of measures through their entropy or through their variance matrix result in
valid p.d. kernels. We further show how the resulting kernels can be applied to molecular
measures through regularization operations. In the case of the kernel based on the spectrum
of the variance matrix, we show how it can be applied implicitly for molecular measures
mapped to a reproducing kernel Hilbert space when a p.d. kernel on the space of basic
components is provided, thanks to an application of the “kernel trick”.

Besides these examples of practical relevance, we also consider the question of charac-
terizing all functions ϕ that lead to a p.d. kernel through (1). Using the general theory
of semigroup kernels we state an integral representation of such kernels and study the
semicharacters involved in this representation. This result provides a constructive char-
acterization of such kernels, which we briefly explore by showing that Bayesian mixtures
over exponential models can be seen as natural functions ϕ that lead to p.d. kernels, thus
making the link with the particular case treated by Cuturi and Vert (2004).

This paper is organized as follows. We first introduce elements of measure represen-
tations of weighted lists and define the semigroup formalism and the notion of semigroup
p.d. kernel in Section 2. Section 3 contains two examples of semigroup p.d. kernels, which
are however usually not defined for molecular measures: the entropy kernel and the inverse
generalized variance (IGV) kernel. Through regularization procedures, practical applica-
tions of such kernels on molecular measures are proposed in Section 4, and the approach
is further extended by kernelizing the IGV through an a priori kernel defined itself on the
space of components in Section 5. Section 6 contains the general integral representation of
semigroup kernels and Section 7 makes the link between p.d. kernels and Bayesian posterior
mixture probabilities. Finally, Section 8 contains an empirical evaluation of the proposed
kernels on a benchmark experiment of handwritten digits classification.

2. Notations and Framework: Semigroup Kernels on Measures

In this section we set up the framework and notations of this paper, in particular the idea
of semigroup kernel on the semigroup of measures.

2.1 Measures on Basic Components

We model the space of basic components by a Hausdorff space (X ,B, ν) endowed with
its Borel σ-algebra and a Borel dominant measure ν. A positive Radon measure µ is a
positive Borel measure which satisfies (i) µ(C) < +∞ for any compact subset C ⊆ X and
(ii) µ(B) = sup{µ(C)|C ⊆ B, C compact } for any B ∈ B (see for example Berg et al. (1984)
for the construction of Radon measures on Hausdorff spaces). The set of positive bounded
(i.e., such that µ(X ) < +∞) Radon measures on X is denoted by M b

+(X ). We introduce
the subset of M b

+(X ) of molecular (or atomic) measures Mol+(X ), namely measures such
that

supp(µ) def= {x ∈ X |µ(U) > 0, for all open subset U s.t. x ∈ U}
is finite, and we denote by δx ∈ Mol+(X ) the molecular (Dirac) measure of weight 1 on x.
For a molecular measure µ, an admissible base is a finite list γ of weighted points of X ,
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namely γ = (xi, ai)d
i=1, where xi ∈ X and ai > 0 for 1 ≤ i ≤ d, such that µ =

∑d
i=1 aiδxi .

We write in that case |γ| =
∑d

i=1 ai and l(γ) = d. Reciprocally, a measure µ is said to be
the image measure of a weighted set γ if the previous equality holds. Finally, for a Borel
measurable function f ∈ R

X and a Borel measure µ, we write µ[f ] =
∫
X fdµ.

2.2 Semigroups and Sets of Points

We follow in this paper the definitions found in Berg et al. (1984), which we now recall. An
Abelian semigroup (S, +) is a nonempty set S endowed with an associative and commutative
composition + and a neutral element 0. Referring further to the notations used in Berg
et al. (1984), note that we will only use auto-involutive semigroups in this paper.

A function ϕ : S → R is called a positive definite (resp. negative definite, n.d.) function
on the semigroup (S, +) if (s, t) �→ ϕ(s + t) is a p.d. (resp. n.d.) kernel on S × S. The
symmetry of the kernel being ensured by the commutativity of +, the positive definiteness
is equivalent to the fact that the inequality

N∑
i,j=1

cicjϕ(xi + xj) ≥ 0 (resp. ≤ 0 )

holds for any N ∈ N, (x1, . . . , xN ) ∈ SN and (c1 . . . , cn) ∈ R
N , with the additional condi-

tion that
∑n

i=1 ci = 0 for negative definiteness. Hence semigroup kernels are real-valued
functions ϕ defined on the set of interest S, the similarity between two elements s, t of S
being just the value taken by that function on their composition, namely ϕ(s + t).

Recalling our initial goal to quantify the similarity between two complex objects through
finite weighted lists of elements in X , we note that (P(X ),∪) the set of subsets of X
equipped with the usual union operator ∪ is a semigroup. Such a semigroup might be
used as a feature representation for complex objects by mapping an object to the set of its
components, forgetting about the weights. The resulting representation would therefore by
an element of P(X ). A semigroup kernel k on P(X ) measuring the similarity of two sets of
points A, B ∈ P(X ) would use the value taken by a given p.d. function ϕ on their union,
namely k(A, B) = ϕ(A ∪ B). However we put aside this framework for two reasons. First,
the union composition is idempotent (i.e., for all A in P(X ), we have A ∪ A = A) which
as noted in (Berg et al., 1984, Proposition 4.4.18) drastically restricts the class of possible
p.d. functions. Second, such a framework defined by sets would ignore the frequency (or
weights) of the components described in lists, which can be misleading when dealing with
finite sets of components. Other problematic features would include the fact that k(A, B)
would be constant when B ⊂ A regardless of its characteristics, and that comparing sets of
very different sizes should be difficult.

In order to overcome these limitations we propose to represent a weighted set of points
z = (xi, ai)d

i=1, where for 1 ≤ i ≤ d we have xi ∈ X and ai > 0, by its image measure
δz =

∑d
i=1 aiδxi , and focus now on the abelien semigroup (M b

+(X ), +) to define kernels
between weighted sets of points. This representation is richer than the one suggested in the
previous paragraph in the semigroup (P(X ),∪) to consider the merger of two lists. First it
performs the union of the supports; second the sum of such molecular measures also adds
the weights of the points common to both measures, with a possible renormalization on
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those weights. Two important features of the original weighted set are however lost in this
mapping: the order of its elements and the original frequency of each element within the
list as a weighted singleton. We assume for the rest of this paper that this information
is secondary compared to the one contained in the image measure, namely its unordered
support and the overall frequency of each point in that support. As a result, we study in the
following sections p.d. functions on the semigroup (M b

+(X ), +), in particular on molecular
measures, in order to define kernels on weighted lists of simple components.

X

θ(δz)

θ(δz′ )θ(δz + δz′ )

δz δz′

Figure 1: Measure representations of two lists z and z′. Each element of z (resp. z′)
list is represented by a black circle (resp. a white square), the size of which
represents the associated weight. Five measures of interest are represented: the
image measures δz and δz′ of those weighted finite lists, the smoothed density
estimates θ(δz) and θ(δz′) of the two lists of points, and the smoothed density
estimate θ(δz + δz′) of the union of both lists.

Before starting the analysis of such p.d. functions, it should however be pointed out
that several interesting semigroup p.d. kernels on measures are not directly applicable to
molecular measures. For example, the first function we study below is only defined on
the set of absolutely continuous measures with finite entropy. In order to overcome this
limitation and be able to process complex objects in such situations, it is possible to think
about alternative strategies to represent such objects by measures, as illustrated in Figure
1:

• The molecular measures δz and δz′ as the image measures corresponding to the two
weighted sets of points of z and z′, where dots and squares represent the different
weights applied on each points;

• Alternatively, smoothed estimates of these distributions obtained for example by non-
parametric or parametric statistical density estimation procedures, and represented
by θ(δz) and θ(δz′) in Figure 1. Such estimates can be considered if a p.d. kernel
is only defined for absolutely continuous measures. When this mapping takes the
form of estimation among a given family of densities (through maximum likelihood
for instance) this can also be seen as a prior belief assumed on the distribution of the
objects;
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• Finally, a smoothed estimate of the sum δz +δz′ corresponding to the merging of both
lists, represented by θ(δz + δz′), can be considered. Note that θ(δz + δz′) might differ
from θ(δz) + θ(δz′).

A kernel between two lists of points can therefore be derived from a p.d. function on
(M b

+(X ), +) in at least three ways:

k(z, z′) =

⎧⎪⎨
⎪⎩

ϕ(δz + δz′), using ϕ directly on molecular measures,
ϕ (θ(δz) + θ(δz′)) , using ϕ on smoothed versions of the molecular measures,
ϕ (θ(δz + δz′)) , evaluating ϕ on a smoothed version of the sum.

The positive definiteness of ϕ on M b
+(X ) ensures positive definiteness of k only in the first

two cases. The third expression can be seen as a special case of the first one, where we
highlight the usage of a preliminary mapping on the sum of two measures; in that case ϕ◦θ
should in fact be p.d. on (M b

+(X ), +), or at least (Mol+(X ), +). Finally, note that we will
most frequently define normalized kernels in this paper, such that k(µ, µ) = 1 for any µ in
M b

+(X ).

3. The Entropy and Inverse Generalized Variance Kernels

In this section we present two basic p.d. semigroup kernels for measures, motivated by a
common intuition: the kernel between two measures should increase when the sum of the
measures gets more “concentrated”. The two kernels differ in the way they quantify the
concentration of a measure, using either its entropy or its variance. They are therefore
limited to a subset of measures, namely the subset of measures with finite entropy and the
subset of measure with non-degenerated variance, but are extended to a broader class of
measures, including molecular measures, in Section 4.

3.1 Entropy Kernel

We consider the subset of M b
+(X ) of absolutely continous measures with respect to the

dominant measure ν, and identify in this section a measure with its corresponding den-
sity with respect to ν. We further limit the subset to the set of non-negative valued
ν-measurable functions on X with finite sum, such that Mh

+(X ) = {f : X → R
+| f is

ν-measurable , |h(f)| < ∞, |f | < ∞} where we write for any measurable non-negative val-
ued function g,

h(g) = −
∫
X

g ln g dν,

(with 0 ln 0 = 0 by convention) and |g| =
∫
X g dν consistently with the notation used for

measures. If |g| = 1, h(g) is its differential entropy. Using the following inequalities,

(a + b) ln(a + b) ≤ a ln a + b ln b + (a + b) ln 2, by convexity of x �→ x lnx,

(a + b) ln(a + b) ≥ a ln a + b ln b,

we have that (Mh
+(X ), +) is an Abelian semigroup since for f, f ′ in Mh

+(X ) we have that
h(f + f ′) is bounded by integrating pointwise the inequalities above, the boundedness of
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|f + f ′| being also ensured. Following (Rao, 1987) we consider the quantity

J(f, f ′) = h(
f + f ′

2
) − h(f) + h(f ′)

2
, (2)

known as the Jensen divergence (or Jensen-Shannon divergence) between f and f ′, which as
noted by Fuglede and Topse (2004) can be seen as a symmetrized version of the Kullback-
Leibler (KL) divergence D, since J(f, f ′) = 1

2D(f ||f+f ′
2 )+ 1

2D(f ′||f+f ′
2 ). As recently shown

in Endres and Schindelin (2003) and Österreicher and Vajda (2003),
√

J is a metric on
Mh

+(X ) which is a direct consequence of J ’s negative definiteness proven below, through
Berg et al. (1984, Proposition 3.3.2) for instance. The expression of Equation (2) fits our
framework of devising semigroup kernels, unlike the direct use of the KL divergence (Moreno
et al., 2004) which is furthermore not negative definite.

Proposition 1 h is a negative definite function on the semigroup Mh
+(X ). Thus kh

def
= e−J

is an infinitely divisible positive definite kernel on Mh
+(X ).

Proof It is known that the real-valued function r : y �→ −y ln y is n.d. on R+ as a semigroup
endowed with addition (Berg et al., 1984, Example 6.5.16). As a consequence the function
f �→ r ◦ f is n.d. on Mh

+(X ) as a pointwise application of r since r ◦ f is integrable w.r.t
ν. For any real-valued n.d. kernel k and any real-valued function g, we have trivially that
(y, y′) �→ k(y, y′) + g(y) + g(y′) remains negative definite. This allows first to prove that
h(f+f ′

2 ) is also n.d. through the identity h(f+f ′
2 ) = 1

2h(f + f ′)+ ln 2
2 (|f |+ |f ′|). Subtracting

the normalization factor 1
2(h(f) + h(f ′)) gives the negative definiteness of J . This finally

yields the positive definiteness of kh as the exponential of the negative of a n.d. function
through Schoenberg’s theorem (Berg et al., 1984, Theorem 3.2.2).

We name this semigroup kernel between measurable functions the entropy kernel because
what it indeed measures for f and f ′ normalized (such that |f | = |f ′| = 1) is the dif-
ference of the average of the entropy of f and f ′ from the entropy of their average. The
set of absolutely continuous probability measures on (X , ν) with finite entropies, namely{
f ∈ Mh

+(X ) s.t. |f | = 1
}
, is not a semigroup since it is not closed by addition, but we can

nonetheless define the restriction of J and hence kh to obtain a p.d. kernel inspired by
semigroup formalism.

3.2 Inverse Generalized Variance Kernel

We assume in this subsection that X is an Euclidian space of dimension n endowed with
Lebesgue’s measure ν. Following the previous section using entropy, we propose under
those restrictions a second semigroup p.d. kernel between measures which uses generalized
variance. The generalized variance of a measure, namely the determinant of its variance
matrix, is a quantity homogeneous to a volume in X . This volume can be interpreted as
a typical volume occupied by a measure when considering only its second order moments,
making it hence a useful quantification of its dispersion. Besides being easy to compute in
the case of molecular measures, this quantity is also linked to entropy if we consider that
for normal laws N (m, Σ) the following relation holds:

e−2h(N (m,Σ)) ∝ 1
det Σ

.
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Through this observation, we note that considering the Inverse of the Generalized Variance
(IGV) of a measure is equivalent to considering the value taken by e−2h on its maximum
likelihood normal law. We will put aside this interpretation in this section, before reviewing
it with more care in Section 7.

Let us define the variance operator on measures µ with finite first and second moment
of M b

+(X ) as

Σ(µ) def= µ[xx�] − µ[x]µ[x]�.

Note that Σ(µ) is always a positive semi-definite matrix when |µ| ≤ 1, since

Σ(µ) = µ[(x − µ[x]) (x − µ[x])�] + (1 − |µ|) µ[x]µ[x]�.

We call det Σ(µ) the generalized variance of a measure µ, and say a measure µ is non-
degenerated if det Σ(µ) is non-zero, meaning that Σ(µ) is of full rank. The subset of M b

+(X )
of such measures with total weight equal to 1 is denoted by Mv

+(X ); Mv
+(X ) is convex

through the following proposition:

Proposition 2 Mv
+(X ) def=

{
µ ∈ M b

+(X ) : |µ| = 1, det Σ(µ) > 0
}

is a convex set, and more
generally for λ ∈ [0, 1), µ′ ∈ M b

+(X ) such that |µ′| = 1 and µ ∈ Mv
+(X ), (1 − λ)µ + λµ′ ∈

Mv
+(X ).

Proof We use the following identity,

Σ
(
(1 − λ)µ + λµ′) = (1 − λ)Σ(µ) + λΣ(µ′) + λ(1 − λ)

(
µ[x] − µ′[x]

) (
µ[x] − µ′[x]

)�
,

to derive that Σ((1 − λ)µ + λµ′) is a (strictly) positive-definite matrix as the sum of two
positive semi-definite matrices and a strictly positive definite matrix Σ(µ).

Mv
+(X ) is not a semigroup, since it is not closed under addition. However we will work

in this case on the mean of two measures in the same way we used their standard addition
in the semigroup framework of M b

+(X ).

Proposition 3 The real-valued kernel kv defined on elements µ, µ′ of Mv
+(X ) as

kv(µ, µ′) =
1

det Σ(µ+µ′
2 )

is positive definite.
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Proof Let y be an element of X . For any N ∈ N, any c1, ..., cN ∈ R such that
∑

i ci = 0
and any µ1, ..., µN ∈ Mv

+(X ) we have

∑
i,j

cicjy
�Σ(

µi + µj

2
)y =

∑
i,j

cicjy
�

(
1
2
µi[xx�] +

1
2
µj [xx�]−

1
4

(
µi[x]µi[x]� + µj [x]µj [x]� + µj [x]µi[x]� + µi[x]µj [x]�

) )
y

= −1
4

∑
i,j

cicjy
�

(
µj [x]µi[x]� + µi[x]µj [x]�

)
y

= −1
2

(∑
i

ciy
�µi[x]

)2

≤ 0,

making thus the function µ, µ′ �→ y�Σ(µ+µ′
2 )y negative-definite for any y ∈ X . Using

again Schoenberg’s theorem (Berg et al., 1984, Theorem 3.2.2) we have that µ, µ′ �→
e−y�Σ( µ+µ′

2
)y is positive definite and so is the sum 1

(2π)
n
2

∫
X e−y�Σ( µ+µ′

2
)yν(dy) which is equal

to 1/
√

det Σ(µ+µ
2 ) ensuring thus the positive-definiteness of kv as its square.

4. Semigroup Kernels on Molecular Measures

The two positive definite functions defined in Sections 3.1 and 3.2 cannot be applied in the
general case to Mol+(X ) which as exposed in Section 2 is our initial goal. In the case of
the entropy kernel, molecular measures are generally not absolutely continuous with respect
to ν (except on finite spaces), and they have therefore no entropy; we solve this problem
by mapping them into Mh

+(X ) through a smoothing kernel. In the case of the IGV, the
estimates of variances might be poor if the number of points in the lists is not large enough
compared to the dimension of the Euclidean space; we perform in that case a regularization
by adding a unit-variance correlation matrix to the original variance. This regularization is
particularly important to pave the way to the kernelized version of the IGV kernel presented
in the next section, when X is not Euclidian but simply endowed with a prior kernel κ.

The application of both the entropy kernel and the IGV kernel to molecular measures
requires a previous renormalization to set the total mass of the measures to 1. This technical
renormalization is also beneficial, since it allows a consistent comparison of two weighted
lists even when their size and total mass is very different. All molecular measures in this
section, and equivalently all admissible bases, will hence be supposed to be normalized such
that their total weight is 1, and Mol1+(X ) denotes the subset of Mol+(X ) of such measures.

4.1 Entropy Kernel on Smoothed Estimates

We first define the Parzen smoothing procedure which allows to map molecular measures
onto measures with finite entropy:
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Definition 4 Let κ be a probability kernel on X with finite entropy, i.e., a real-valued
function defined on X 2 such that for any x ∈ X , κ(x, ·) : y �→ κ(x, y) satisfies κ(x, ·) ∈
Mh

+(X ) and |κ(x, ·)| = 1. The κ-Parzen smoothed measure of µ is the probability measure
whose density with respect to ν is

θκ : Mol1+(X ) −→ Mh
+(X )

µ �→
∑

x∈supp µ

µ({x})κ(x, ·).

Note that for any admissible base (xi, ai)d
k=1 of µ we have that θκ(µ) =

∑d
i=1 aiκ(xi, ·).

Once this mapping is defined, we use the entropy kernel to propose the following kernel on
two molecular measures µ and µ′,

kκ
h(z, z′) = e−J(θκ(µ), θκ(µ′)).

As an example, let X be an Euclidian space of dimension n endowed with Lebesgue’s
measure, and κ the Gaussian RBF kernel on that space, namely

κ(x, y) =
1

(2πσ)
n
2

e−
‖x−y‖2

2σ2 .

Given two weighted lists z and z′ of components in X , θκ(δz) and θκ(δz′) are thus mixtures
of Gaussian distributions on X . The resulting kernel computes the entropy of θκ(δz) and
θκ(δz′) taken separately and compares it with that of their mean, providing a positive
definite quantification of their overlap.

4.2 Regularized Inverse Generalized Variance of Molecular Measures

In the case of a molecular measure µ defined on an Euclidian space X of dimension n, the
variance Σ(µ) is simply the usual empirical estimate of the variance matrix expressed in an
orthonormal basis of X :

Σ(µ) = µ[xx�] − µ[x]µ[x]� =
d∑

i=1

aixix
�
i −

(
d∑

i=1

aixi

)(
d∑

i=1

aixi

)�
,

where we use an admissible base γ = (xi, ai)d
i=1 of µ to give a matrix expression of Σ(µ),

with all points xi expressed as column vectors. Note that this matrix expression, as would
be expected from a function defined on measures, does not depend on the chosen admissible
base. Given such an admissible base, let Xγ = [xi]i=1..d be the n × d matrix made of all
column vectors xi and ∆γ the diagonal matrix of weights of γ taken in the same order
(ai)1≤ı≤d. If we write Id for the identity matrix of rank d and 1d,d for the d × d matrix
composed of ones, we have for any base γ of µ that:

Σ(µ) = Xγ(∆γ − ∆γ1d,d∆γ)X�
γ ,

which can be rewritten as

Σ(µ) = Xγ(Id − ∆γ1d,d)∆γ(Id − 1d,d∆γ)X�
γ ,
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noting that (∆γ1d,d)2 = ∆γ1d,d since trace ∆γ = 1.
The determinant of Σ(µ) can be equal to zero when the size of the support of µ is smaller

than n, the dimension of X , or more generally when the linear span of the points in the
support of µ does not cover the whole space X . This problematic case is encountered in
Section 5 when we consider kernelized versions of the IGV, using an embedding of X into a
functional Hilbert space of potentially infinite dimension. Mapping an element of Mol1+(X )
into Mv

+(X ) by adding to it any element of Mv
+(X ) through Proposition 2 would work as a

regularization technique; for an arbitrary ρ ∈ Mv
+(X ) and a weight λ ∈]0, 1[ we can use the

kernel defined as
µ, µ′ �→ 1

det Σ
(
λµ+µ′

2 + (1 − λ)ρ
) .

We use in this section a different strategy inspired by previous works (Fukumizu et al.,
2004, Bach and Jordan, 2002) further motivated in the case of covariance operators on infi-
nite dimensional spaces as shown by Cuturi and Vert (2005). The considered regularization
consists in modifying directly the matrix Σ(µ) by adding a small diagonal component ηIn

where η > 0 so that its spectrum never vanishes. When considering the determinant of
such a regularized matrix Σ(µ) + ηIn this is equivalent to considering the determinant of
1
ηΣ(µ)+ In up to a factor ηn, which will be a more suitable expression in practice. We thus
introduce the regularized kernel kη

v defined on measures (µ, µ′) ∈ M b
+(X ) with finite second

moment as
kη

v(µ, µ′) =
1

det
(

1
ηΣ

(
µ+µ′

2

)
+ In

) .

It is straightforward to prove that the regularized function kη
v is a positive definite kernel

on the measures of M b
+(X ) with finite second-order moments using the same proof used in

Proposition 3. If we now introduce

Kγ =
[
x�

i xj

]
1≤i,j≤d

,

for the d × d matrix of dot-products associated with the elements of a base γ, and

K̃γ =

[
(xi −

d∑
k=1

akxk)�(xj −
d∑

k=1

akxk)

]
1≤i,j≤d

= (Id − 1d,d∆γ)Kγ(Id − ∆γ1d,d),

for its centered expression with respect to the mean of µ, we have the following result:

Proposition 5 Let X be an Euclidian space of dimension n. For any µ ∈ Mol1+(X ) and
any admissible base γ of µ we have

det
(

1
η
K̃γ∆γ + Il(γ)

)
= det

(
1
η
Σ(µ) + In

)
.

Proof We omit the references to µ and γ in this proof to simplify matrix notations, and
write d = l(γ). Let X̃ be the n× d matrix [xi −

∑d
j=1 ajxj ]i=1..d of centered column vectors

enumerated in γ, namely X̃ = X(Id − ∆1d,d). We have

Σ = X̃∆X̃�,

K̃∆ = X̃�X̃∆.

11



Through the singular value decomposition of X̃∆
1
2 , it is straightforward to see that the non

zero-elements of the spectrums of matrices K̃∆, ∆
1
2 X̃�X̃∆

1
2 and Σ are identical. Thus,

regardless of the difference between n and d, we have

det
(

1
η
K̃∆ + Id

)
= det

(
1
η
∆

1
2 X̃�X̃∆

1
2 + Id

)
= det

(
1
η
X̃∆X̃� + In

)
= det

(
1
η
Σ + In

)
,

where the addition of identity matrices only introduces an offset of 1 for all eigenvalues.

Given two measures µ, µ′ ∈ Mol1+(X ), the following theorem can be seen as a regularized
equivalent of Proposition 3 through an application of Proposition 5 to µ′′ = µ+µ′

2 .

Theorem 6 Let X be an Euclidian space. The kernel kη
v defined on two measures µ, µ′ of

Mol1+(X ) as

kη
v(µ, µ′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) ,

where γ is any admissible base of µ+µ′
2 , is p.d. and independent of the choice of γ.

Given two objects z, z′ and their respective molecular measures δz and δz′ , the computation
of the IGV for two such objects requires in practice an admissible base of δz+δz′

2 as seen in
Theorem 6. This admissible base can be chosen to be of the cardinality of the support of
the mixture of δz and δz′ , or alternatively be the simple merger of two admissible bases of
z and z′ with their weights divided by 2, without searching for overlapped points between
both lists. This choice has no impact on the final value taken by the regularized IGV-kernel
and can be arbitrated by computational considerations.

5. Inverse Generalized Variance on the RKHS associated with a Kernel κ

As with many quantities defined by dot-products, one is tempted to replace the usual dot-
product matrix K̃ of Theorem 6 by an alternative Gram-matrix obtained through a p.d.
kernel κ defined on X . The advantage of such a substitution, which follows the well known
“kernel trick” principle (Schölkopf and Smola, 2002), is multiple as it first enables us to
use the IGV kernel on any non-vectorial space endowed with a kernel, thus in practice on
any component space endowed with a kernel; second, it is also useful when X is a dot-
product space where a non-linear kernel can however be used (e.g., using Gaussian kernel)
to incorporate into the IGV’s computation higher-order moment comparisons. We check in
this section whether the inverse of the regularized generalized variance previously computed
in Proposition 5 through the centered dot-product matrix K̃γ of elements in any admissible
base γ of µ is still positive definite if we replace K̃γ by a centered Gram-matrix K̃γ , computed
with a prior kernel κ on X , namely

Kγ = [κ(xi, xj)]1≤i,j≤d

K̃γ = (Id − 1d,d∆γ)Kγ(Id − ∆γ1d,d).

The following theorem proves that this substitution is valid.
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Theorem 7 Let X be a set endowed with a p.d. kernel κ. The kernel

kη
κ(µ, µ′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) , (3)

defined on two elements µ, µ′ in Mol1+(X ) is positive definite, where γ is any admissible
base of µ+µ′

2 .

Proof Let N ∈ N, µ1, .., µN ∈ Mol1+(X ) and (ci)N
i=1 ∈ R

N . Let us now study the quantity∑N
i=1 cicj kη

κ(µi, µj). To do so we introduce by the Moore-Aronszajn theorem (Berlinet and
Thomas-Agnan, 2003, p.19) the reproducing kernel Hilbert space Ξ with reproducing kernel
κ indexed on X . The usual mapping from X to Ξ is denoted by φ, that is φ : X  x �→ κ(x, ·).
We define

Y def= supp

(
N∑

i=1

µi

)
⊂ X ,

the finite set which numbers all elements in the support of the N considered measures, and

Υ def= span φ(Y) ⊂ Ξ,

the linear span of the elements in the image of Y through φ. Υ is a vector space whose
finite dimension is upper-bounded by the cardinality of Y. Endowed with the dot-product
inherited from Ξ, we further have that Υ is Euclidian. Given a molecular measure µ ∈
Mol1+(Y), let φ(µ) denote the image measure of µ in Υ, namely φ(µ) =

∑
x∈Y µ({x})δφ(x).

One can easily check that any admissible base γ = (xi, ai)d
i=1 of µ can be used to provide

an admissible base φ(γ) def= (φ(xi), ai)d
i=1 of φ(µ). The weight matrices ∆γ and ∆φ(γ) are

identical and we further have K̃γ = K̃φ(γ) by the reproducing property, where K̃ is defined
by the dot-product of the Euclidian space Υ induced by κ. As a result, we have that
kη

κ(µi, µj) = kη
v(φ(µi), φ(µj)) where kη

v is defined on Mol1+(Υ), ensuring the non-negativity

N∑
i=1

cicj kη
κ(µi, µj) =

N∑
i=1

cicj kη
v(φ(µi), φ(µj)) ≥ 0

and hence positive-definiteness of kη
κ.

6. Integral Representation of p.d. Functions on a Set of Measures

In this section we study a general characterization of all p.d. functions on the whole
semigroup (M b

+(X ), +), including thus measures which are not normalized. This character-
ization is based on a general integral representation theorem valid for any semigroup kernel,
and is similar in spirit to the representation of p.d. functions obtained on Abelian groups
through Bochner’s theorem (Rudin, 1962). Before stating the main results in this section
we need to recall basic definitions of semicharacters and exponentially bounded function
(Berg et al., 1984, chap. 4).
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Definition 8 A real-valued function ρ on an Abelian semigroup (S, +) is called a semichar-
acter if it satisfies the following properties:

(i) ρ(0) = 1

(ii) ∀s, t ∈ S, ρ(s + t) = ρ(s)ρ(t).

It follows from the previous definition and the fact that M b
+(X ) is 2-divisible (i.e., ∀µ ∈

M b
+(X ),∃µ′ ∈ M b

+(X ) s.t. µ = 2µ′) that semicharacters are nonnegative valued since it
suffices to write that ρ(µ) = ρ(µ

2 )2. Note also that semicharacters are trivially positive
definite functions on S. We denote by S∗ the set of semicharacters on M b

+(X ), and by
Ŝ ⊂ S∗ the set of bounded semicharacters. S∗ is a Hausdorff space when endowed with the
topology inherited from R

S having the topology of pointwise convergence. Therefore we
can consider the set of Radon measures on S∗, namely M b

+(S∗).

Definition 9 A function f : M b
+(X ) → R is called exponentially bounded if there exists a

function α : M b
+(X ) → R+ (called an absolute value) satisfying α(0) = 1 and α(µ + µ′) ≤

α(µ)α(µ′) for µ, µ′ ∈ M b
+(X ), and a constant C > 0 such that:

∀µ ∈ M b
+(X ), f(µ) ≤ Cα(µ).

We can now state two general integral representation theorems for p.d. functions on semi-
groups (Berg et al., 1984, Theorems 4.2.5 and 4.2.8). These theorems being valid on any
semigroup, they hold in particular on the particular semigroup (M b

+(X ), +).

Theorem 10 • A function ϕ : M b
+(X ) → R is p.d. and exponentially bounded if and

only if it has an integral representation:

ϕ(s) =
∫

S∗
ρ(s)dω(ρ),

with ω ∈ M c
+(S∗) (the set of Radon measures on S∗ with compact support).

• A function ϕ : M b
+(X ) → R is p.d. and bounded if and only if it has an integral

representation of the form:

ϕ(s) =
∫

Ŝ
ρ(s)dω(ρ),

with ω ∈ M+(Ŝ).
In both cases, if the integral representation exists, then there is uniqueness of the measure

ω in M+(S∗).

In order to make these representations more constructive, we need to study the class of
(bounded) semicharacters on (M b

+(X ), +). Even though we are not able to provide a com-
plete characterization, even of bounded semicharacters, the following proposition introduces
a large class of semicharacters, and completely characterizes the continuous semicharacters.
For matters related to continuity of functions defined on M b

+(X ), we will consider the weak
topology of M b

+(X ) which is defined in simple terms through the portmanteau theorem
(Berg et al., 1984, Theorem 2.3.1). Note simply that if µn converges to µ in the weak topol-
ogy then for any bounded measurable function f we have that µn[f ] → µ[f ]. We further
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denote by C(X ) the set of continous real-valued functions on X and by Cb(X ) its subset of
bounded functions. Both sets are endowed with the topology of pointwise convergence. For
a function f ∈ R

X we write ρf for the function µ �→ eµ[f ] when the integral is well defined.

Proposition 11 A semicharacter ρ : M b
+(X ) → R is continuous on (M b

+(X ), +) endowed
with the weak topology if and only if there exists f ∈ Cb(X ) such that ρ = ρf . In that case,
ρ is a bounded semicharacter on M b

+(X ) if and only if f ≤ 0.

Proof For a continuous and bounded function f , the semicharacter ρf is well-defined. If
a sequence µn in M b

+(X ) converges to µ weakly, we have µn[f ] → µ[f ], which implies the
continuity of ρf . Conversely, suppose ρ is weakly continuous. Define f : X → [−∞,∞) by
f(x) = log ρ(δx). If a sequence xn converges to x in X , obviously we have δxn → δx in the
weak topology, and

ρ(δxn) → ρ(δx),

which means the continuity of f . To see the boundedness of f , assume the contrary. Then,
we can find xn ∈ X such that either of 0 < f(xn) → ∞ or 0 > f(xn) → −∞ holds. Let
βn = |f(xn)|. Because the measure 1

βn
δxn converges weakly to zero, the continuity of ρ

means
ρ
(

1
βn

δxn

) → 1,

which contradicts with the fact ρ( 1
βn

δxn) = e
1

βn
f(xn) = e±1. Thus, ρf is well-defined, weakly

continuous on M b
+(X ) and equal to ρ on the set of molecular measures. It is further equal

to ρ on M b
+(X ) through the denseness of molecular measures in M b

+(X ), both in the weak
and the pointwise topology (Berg et al., 1984, Proposition 3.3.5). Finally suppose now that
ρf is bounded and that there exists x in X such that f(x) > 0. By ρf (n δx) = enf(x) which
diverges with n we see a contradiction. The converse is straightforward.

Let ω be a bounded nonnegative Radon measure on the Hausdorff space of continuous real-
valued functions on X , namely ω ∈ M b

+(C(X )). Given such a measure, we first define the
subset Mω of M b

+(X ) as

Mω = {µ ∈ M b
+(X ) | sup

f∈supp ω
µ[f ] < +∞}.

Mω contains the null measure and is a semigroup.

Corollary 12 For any bounded Radon measure ω ∈ M b
+(C(X )), the following function ϕ

is a p.d. function on the semigroup (Mω, +):

ϕ(µ) =
∫

C(X )
ρf (µ) dω(f). (4)

If supp ω ⊂ Cb(X ) then ϕ is continous on Mω endowed with the topology of weak conver-
gence.

Proof For f ∈ supp ω, ρf is a well defined semicharacter on Mω and hence positive definite.
Since

ϕ(µ) ≤ |ω| sup
f∈supp ω

µ[f ]
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is bounded, ϕ is well defined and hence positive definite. Suppose now that suppω ⊂ Cb(X )
and let µn be a sequence of Mω converging weakly to µ. By the bounded convergence
theorem and continuity of all considered semicharacters (since all considered functions f
are bounded) we have that:

lim
n→∞ϕ(µn) =

∫
C(X )

lim
n→∞ ρf (µn) dω(f) = ϕ(µ).

and hence ϕ is continuous w.r.t the weak topology.

When the measure ω is chosen in such a way that the integral (4) is tractable or can be
approximated, then a valid p.d. kernel for measures is obtained; an example involving
mixtures over exponential families is provided in Section 7.

Before exploiting this constructive representation, a few remarks should be pointed
out. When using non-bounded functions (as is the case when using expectation or second-
order moments of measures) the continuity of the integral ϕ is left undetermined to our
knowledge, even when its existence is ensured. However, when X is compact we have
that C(X ) = Cb(X ) and hence continuity on Mω of any function ϕ constructed through
corollary 12. Conversely, there exist continuous p.d. functions on (M b

+(X ), +) that can not
be represented in the form (4). Although any continuous p.d. function can necessarily be
represented as an integral of semicharacters by Theorem 10, the semicharacters involved in
the representation are not necessarily continuous as in (4). An example of such a continuous
p.d. function written as an integral of non-continous semicharacters is exposed in Appendix
A. It is an open problem to our knowledge to fully characterize continuous p.d. functions
on (M b

+(X ), +).

7. Projection on Exponential Families through Laplace’s Approximation

The constructive approach presented in corollary 12 can be used in practice to define kernels
by restricting the space C(X ) to subspaces where computations are tractable. A natural
way to do so is to consider a vector space of finite dimension s of C(X ), namely the span
of a free family of s non-constant functions f1, ..., fs of C(X ), and define a measure on that
subspace by applying a measure on the weights associated with each function. The previous
integral representation (4) would then take the form:

ϕ(µ) =
∫

Θ
eµ[

∑s
i=1 θifi] ω(dθ),

where ω is now a bounded measure on a compact subset Θ ⊆ R
s and µ is such that

µ[fi] < +∞ for 1 ≤ i ≤ s. The subspace of C(X ) considered in this section is however
slightly different, in order to take advantage of the natural benefits of exponential densities
generated by all functions f1, ..., fs. Following Amari and Nagaoka (2001, p.69), this requires
the definition of the cumulant generating function of ν with respect to f1, ..., fs as

ψ(θ) def= log ν[e
∑s

i=1 θifi ],

such that for each θ ∈ Θ,

pθ
def= exp

(
s∑

i=1

θifi − ψ(θ)

)
ν,
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is a probability density, which defines an exponential family of densities on X as θ varies in Θ.
Rather than the direct span of functions f1, ..., fs on Θ, this is equivalent to considering the
hypersurface {∑s

i=1 θifi−ψ(θ)} in span{f1, .., fs,−1}. This yields the following expression:

ϕ(µ) =
∫

Θ
eµ[

∑s
i=1 θifi−ψ(θ)] ω(dθ).

Following the notations of Amari and Nagaoka (2001) the η-parameters (or expectation
parameters) of µ are defined as

η̂i
def=

1
|µ|µ[fi], 1 ≤ i ≤ s,

and θ̂ stands for the θ-parameters of η̂. We assume in the following approximations that
θ̂ ∈ Θ and recall two identities (Amari and Nagaoka, 2001, Chapters 3.5 & 3.6):

χ(θ) def=
s∑

i=1

θiηi − ψ(θ) = −h(θ), the dual potential,

D(θ||θ′) = ψ(θ) + χ(θ′) −
s∑

i=1

θiη
′
i, the KL divergence,

where we used the abbreviations h(θ) = h(pθ) and D(θ||θ′) = D(pθ||pθ′). We can then write

µ[
s∑

i=1

θifi − ψ(θ)] = |µ|
(

s∑
i=1

θiη̂i − ψ(θ)

)

= |µ|
(

s∑
i=1

θ̂iη̂i − ψ(θ̂) +
s∑

i=1

(θi − θ̂i)η̂i + ψ(θ̂) − ψ(θ)

)

= −|µ|
(
h(θ̂) + D(θ̂||θ)

)
,

to obtain the following factorized expression,

ϕ(µ) = e−|µ|h(θ̂)

∫
Θ

e−|µ|D(θ̂||θ)ω(dθ). (5)

The quantity e−|µ|h(θ̂) was already evoked in Section 3.2 when multivariate normal distri-
butions were used to express the IGV kernel. When X is an Euclidian space of dimension
n, this is indeed equivalent to defining s = n + n(n + 1)/2 base functions, more precisely
fi = xi and fij = xixj , and dropping the integral of Equation (5). Note that such functions
are not bounded and that Mω corresponds here to the set of measures with finite first and
second order moments.

The integral of Equation (5) cannot be computed in a general case. The use of conjugate
priors can however yield exact calculations, such as in the setting proposed by Cuturi and
Vert (2004). In their work X is a finite set of short sequences formed over an alphabet,
functions fi are all possible indicator functions of X and ω is an additive mixture of Dirichlet
priors. The kernel value is computed through a factorization inspired by the context-tree
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weighting algorithm (Willems et al., 1995). In the general case a numerical approximation
can also be derived using Laplace’s method (Dieudonné, 1968) under the assumption that
|µ| is large enough. To do so, first notice that

∂D(θ̂||θ)
∂θi

|θ=θ̂ =
∂ψ

∂θi
|θ=θ̂ −η̂i = 0,

∂D(θ̂||θ)
∂θi∂θj

=
∂ψ

∂θi∂θj
= gij(θ),

where Gθ = [gij(θ)] is the Fisher information matrix computed in θ and hence a p.d. matrix.
The following approximation then holds:

ϕ(µ) ∼
|µ|→∞

e−|µ|h(θ̂)

∫
Rs

ω(θ̂)e−
|µ|
2

(θ−θ̂)�Gθ̂(θ−θ̂)dθ = e−|µ|h(θ̂)

(
2π

|µ|
) s

2 ω(θ̂)√
det Gθ̂

which can be simplified by choosing ω to be Jeffrey’s prior (Amari and Nagaoka, 2001,
p.44), namely

ω(dθ) =
1
V

√
det Gθ dθ, where V =

∫
Θ

√
det Gθ dθ.

Up to a a multiplication by V this provides an approximation of ϕ by ϕ̃ as

ϕ(µ) ∼
|µ|→∞

ϕ̃(µ) def= e−|µ|h(θ̂)

(
2π

|µ|
) s

2

. (6)

The η-coordinates of µ are independent of the total weight |µ|, hence ϕ̃(2µ) = ϕ̃(µ)2( |µ|4π )
s
2 .

This identity can be used to propose a renormalized kernel for two measures as

k(µ, µ′) def=
ϕ̃(µ + µ′)√
ϕ̃(2µ)ϕ̃(2µ′)

=
e−(|µ+µ′|)h(pµ+µ′ )

e−|µ|h(pµ)−|µ′|h(pµ′ )

(
2
√|µ||µ′|
|µ| + |µ′|

) s
2

.

where pµ stands for pθ̂µ
. When µ and µ′ are normalized such that their total weight coincides

and is equal to β, we have that

k(µ, µ′) = e
−2β

(
h(pµ′′)−

h(pµ)+h(pµ′ )
2

)
, (7)

where µ′′ = µ + µ′. From Equation (7), we see that β can be tuned in practice and thought
of as a width parameter. It should be large enough to ensure the consistency of Laplace’s
approximation and thus positive definiteness, while not too large at the same time to avoid
diagonal dominance issues. In the case of the IGV kernel this tradeoff can however be put
aside since the inverse of the IGV is directly p.d. as was proved in Proposition 3. However
and to our knowledge this assertion does not stand in a more general case when the functions
f1, ..., fs are freely chosen.

18



8. Experiments on images of the MNIST database

We present in this section experimental results and discussions on practical implementations
of the IGV kernels on a benchmark experiment of handwritten digits classification. We
focus more specifically on the kernelized version of the IGV and discuss its performance
with respect to other kernels.

8.1 Linear IGV Kernel

Following the previous work of Kondor and Jebara (2003), we have conducted experiments
on 500 and 1000 images (28 × 28 pixels) taken from the MNIST database of handwritten
digits (black shapes on a white background), with 50 (resp. 100) images for each digit. To
each image z we randomly associate a set of d distinct points which are black (intensity
superior to 190) in the image. In this case the set of components is {1, .., 28} × {1, .., 28}
which we map onto points with coordinates between 0 and 1, thus defining X = [0, 1]2.
The linear IGV kernel as described in Section 3.2 is equivalent to using the linear kernel
κ((x1, y1), (x2, y2)) = x1x2 +y1y2 on a non-regularized version of the kernelized-IGV. It also
boils down to fitting Gaussian bivariate-laws on the points and measuring the similarity
of two measures by performing variance estimation on the samples taken first separately
and then together. The resulting variances can be diagonalized to obtain three diagonal
variance matrices, which can be seen as performing PCA on the sample,

Σ(µ) =
(

Σ1,1 0
0 Σ2,2

)
, Σ(µ′) =

(
Σ′

1,1 0
0 Σ′

2,2

)
, Σ(µ) =

(
Σ′′

1,1 0
0 Σ′′

2,2

)
.

and the value of the kernel is computed through

kv(µ, µ′) =

√
Σ1,1Σ2,2 Σ′

1,1Σ
′
2,2

Σ′′
1,1Σ

′′
2,2

.

This ratio is for instance equal to 0.3820 for two handwritten digits in the case shown in
Figure 2. The linear IGV manages a good discrimination between ones and zeros. Indeed,
ones are shaped as sticks, and hence usually have a strong variance carried by their first
component with a weak second component, while the variance of zeros is more equally
distributed between the first and second axes. When both weighted sets of points are united,
the variance’s distribution shows an intermediary behaviour and this suffices to discriminate
numerically both images. However this strategy fails when using numbers which are not
so clearly distinct in shape, or more precisely whose surface cannot be efficiently expressed
in terms of Gaussian ellipsoids. To illustrate this we show in Figure 3 the Gram matrix of
the linear IGV on 60 images, namely 20 zeros, 20 ones and 20 twos. Though images of “1”
can be efficiently discriminated from the two other digits, we clearly see that this is not the
case between zeros and twos, whose support may seem similar if we try to capture them
through Gaussian laws.

8.2 Kernelized IGV where Pixels Are Considered as Gaussian Bells

Following previous works (Kondor and Jebara, 2003, Wolf and Shashua, 2003) and as sug-
gested in the initial discussion of Section 5, we use in this section a Gaussian kernel of width
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Figure 2: Weighted PCA of two different measures and their mean, with their first principal
component shown. Below are the variances captured by the first and second
principal components, the generalized variance being the product of those two
values.
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0

1

2

Figure 3: Normalized Gram matrix computed with the linear IGV kernel of twenty images
of “0”, “1” and “2” displayed in that order. Darker spots mean values closer to 1,
showing that the restriction to “0” and “1” yields good separation results, while
“0” and “2” can hardly be discriminated using variance analysis.
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σ to define the reproducing kernel Hilbert space Ξ, namely

κ((x1, y1), (x2, y2)) = exp(−
(
(x1 − x2)2 + (y1 − y2)2

)
2σ2

).

As pointed out by Kondor and Jebara (2003), the pixels are no longer seen as points but
rather as functions (Gaussian bells) defined on the components space [0, 1]2. To illustrate
this approach we show in Figure 4 the first four eigenfunctions of three measures µ1, µ0

and µ1+µ0

2 built from the image of a handwritten “1” and “0” with their corresponding
eigenvalues, as well as for images of “2” and “0” in Figure 5.

0.276 0.168 0.184

0.169 0.142 0.122

0.124 0.119 0.0934

0.0691 0.0962 0.0886

Figure 4: The four first eigenfunctions of respectively three empirical measures µ1 (first
column), µ0 (second column) and µ1+µ0

2 (third column), displayed with their
corresponding eigenvalues, using η = 0.01 and σ = 0.1.
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0.146 0.168 0.142

0.141 0.142 0.122

0.127 0.119 0.103

0.119 0.0962 0.0949

Figure 5: Same representation as in Figure 4, with µ2, µ0 and µ2+µ0

2 .
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Setting σ, the width of κ, to define the functions contained in the rkhs Ξ is not enough
to fully characterize the values taken by the kernelized IGV. We further need to define η,
the regularization parameter, to control the weight assigned to smaller eigenvalues in the
spectrum of Gram-matrices. Both parameters are strongly related, since the value of σ
controls the range of the typical eigenvalues found in the spectrum of Gram matrices of
admissible bases, whereas η acts as a scaling parameter for those eigenvalues as can be seen
in Equation 3. Indeed, using a very small σ value, which means Ξ is only defined by peaked
Gaussian bells around each pixels, yields diagonally dominant Gram matrices very close
to the identity matrix. The resulting eigenvalues for K̃∆ are then all very close to 1

d , the
inverse of the amount of considered points. On the contrary, a large value for σ yields higher
values for the kernel, since all points would be similar to each other and Gram matrices
would turn close to the matrix 1d,d with a single significant eigenvalue and all others close
to zero. We address those issues by doing experiments where both η and σ vary freely.

8.3 Experiments on the SVM Generalization Error

We used two ranges of values for η and σ which were both based on preliminary attempts:

η ∈ 10−2 × {0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8, 10, 20}
σ ∈ {0.05, 0.1, 0.12, 0.15, 0.18, 0.20, 0.25, 0.3}.

For each kernel kη
κ defined by a (σ, η) couple, we trained 10 binary SVM classifiers (each

one trained to recognize each digit versus all other digits) on a training fold of our 500
images dataset such that the proportion of each class was kept to be one tenth of the total
size of the training set. Using then the test fold, our decision for each submitted image
was determined by the highest SVM score proposed by the 10 trained binary SVM’s. To
determine train and test points, we led a 3-fold cross validation, namely randomly splitting
our total dataset into 3 balanced subsets, using successively 2 subsets for training and the
remaining one for testing (that is roughly 332 images for training and 168 for testing). The
test error was not only averaged on those cross-validations folds but also on 5 different fold
divisions. Our experiments were run using the spider1 toolbox. Results displayed in this
section did not improve by choosing different soft margin C parameters, we hence just set
C = ∞ as suggested by default by the authors of the spider toolbox.

The error rates are graphically displayed in Figure 6 using a grey-scale plot. Note that
for this benchmark the best testing errors were reached using a σ value of 0.12 with an η
parameter within 0.008 and 0.02, this error being roughly 19.5%. All values below and on
the right side of this zone are below 32.5%, which is the value reached on the lower right
corner. All standard deviations with respect to multiple cross-validations of those results
were inferior to 2.3%, the whole region under 22% being under a standard deviation of 1%.
Those preliminary tests show that the IGV kernel has an overall robust performance within
what could be considered as a sound range of values for both η and σ.

As in Kondor and Jebara (2003), we also compared the results obtained with the k-IGV
to the standard RBF kernel performed on the images seen as binary vectors of {0, 1}28×28

further normalized so that their components sum up to 1. Using the same range for σ that

1. see http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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102 η

σ

0.1 0.3 0.5 0.8 1 1.5 2 3 5 8 10 20

0.05

0.1

0.12

0.15

0.18

0.2

0.25

0.3

e < 19.5 % 

e < 22 % 

e < 22 % 

Figure 6: Average test error (displayed as a grey level) of different SVM handwritten char-
acter recognition experiments using 500 images from the MNIST database (each
seen as a set of 25 to 30 randomly selected black pixels), carried out with 3-fold
(2 for training, 1 for test) cross validations with 5 repeats, where parameters η
(regularization) and σ (width of the Gaussian kernel) have been tuned to different
values.
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was previously tested, we applied the formula k(z, z′) = e−
‖z−z′‖

2σ2 . Since the RBF kernel
measures the exact overlapping between two images we expect it to perform significantly
better when d grows, while we expect the k-IGV to capture more quickly the structure of
the images with fewer pixels. This is illustrated in Figure 7 where the k-IGV outperforms
significantly the RBF kernel, reaching with a sample of less than 30 points a performance
the RBF kernel only reaches above 100 points. Taking roughly all black points in the
images, by setting d = 200 for instance, the RBF kernel error is still 17.5%, an error the
IGV kernel reaches with roughly 35 points. Finally, we compared the kernelized-version of

10 20 30 40 50 60 70 80 90 100
0
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Amount of Sampled Pixels

E
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RBF Kernel

Figure 7: Average test error with RBF (σ = 0.2) and k-IGV (σ = 0.12 and η = 0.01) kernels
led on 90 different samplings of 500 images. The curves show an overall trend
that both kernels perform better when they are given more points to compute
the similarity between two images. If we consider d = 200, the RBF kernel error
is 17.5%, a threshold the IGV kernel reaches with slightly more than 30 points.
Each sampling corresponds to a different amount of sampled points d, those
samplings being ordered increasingly with d. Each sampling has been performed
independently which explains the bumpiness of those curves.

the Bhattacharrya kernel (k-B) proposed in Kondor and Jebara (2003), the k-IGV and the
RBF kernels by using a larger database of the first 1,000 images in MNIST (100 images
for each of the 10 digits), selecting randomly d = 30 points and performing the cross-
validation methodology previously detailed. We followed the observations of Kondor and
Jebara (2003) concerning parameter tuning for the k-B kernel but found out that the k-B
kernel performed better when using the same set of parameters used for the k-IGV as seen
in Table 8.3. The results of the IGV kernel show a significant improvement over all other
kernels for this benchmark of 1000 images. We did not use the kernel described by Wolf
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Method Error rate
k-IGV, η = 0.01; σ = 0.12 15.6%
k-B, η = 0.01; σ = 0.12 20.0%
k-B, η = 0.1; σ = 0.2 23.5%

RBF, σ = 0.1 34.9%
RBF, σ = 0.2 40.4%

Table 1: SVM Error rate of different kernels used on a benchmark test of recognizing digits
images, where only 30 black points where sampled from the original images. The
1,000 images where randomly split into 3 balanced sets to perform cross validation
(2 for training and 1 for testing), the error being averaged over 5 such splits.

and Shashua (2003) in our experiments because of its poor scaling properties for a large
amount of considered points. Indeed, the kernel proposed by Wolf and Shashua (2003)
takes the form of the product of d cosines values where d is the cardinality of the considered
sets of points, thus yielding negligible values in practice when d is large as in our case.
Their SVM experiments were limited to 6 or 7 points while we mostly consider lists of more
than 30 points here. This problem of poor scaling which in practice produces a diagonal-
dominant kernel led us to discarding this method in our comparison. All semigroup kernels
presented in this paper are grounded on statistical estimation, which makes their values
stable under variable sizes of samples through renormalization, a property shared with the
work of Kondor and Jebara (2003). Beyond a minimal amount of points needed to perform
sound estimation, the size of submitted samples influences positively the accuracy by the
IGV kernel. A large sample size can lead however to computational problems since the
value of the IGV-kernel requires not only the computation of the centered Gram-matrix K,
but its determinant, an operation which roughly has a complexity of O(d2.3) where d is the
size of the considered set of points.

9. Conclusion

We presented in this work a new family of kernels between measures. Such kernels are
defined through prior functions which should ideally quantify the concentration of a mea-
sure. Once such a function is properly defined, the kernel computation goes through the
evaluation of the function on the two measures to be compared and on their mixture. As
expected when dealing with concentration of measures, two intuitive tools grounded on
information theory and probability, namely entropy and variance, prove to be useful to
define such functions. Their expression is however still complex in terms of computational
complexity, notably for the k-IGV kernel. Computational improvements or numerical sim-
plifications should be brought forward to ensure a feasible implementation for large-scale
tasks involving tens of thousands of objects.

An attempt to define and understand the general structure of p.d. functions on measures
was also presented, through a representation as integrals of elementary functions known as
semicharacters. We are investigating further theoretical properties and characterizations of
both semicharacters and positive definite functions on measures. The choice of alternative
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priors on semicharacters to propose other meaningful kernels, with convenient properties
on molecular measures for instance, is also a subject of future research. As for practical
applications, these kernels can be naturally applied on complex objects seen as molecular
measures. We also expect to perform further experiments to measure the performance of
semigroup kernels on a diversified sample of challenging tasks, including cases where the
space of components is not a vector space.
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Appendix A : an Example of Continuous Positive Definite Function
Given by Noncontinuous Semicharacters

Let X be the unit interval [0, 1] hereafter. For any t in X , a semicharacter on M b
+(X ) is

defined by
ρht(µ) = eµ([0,t]), (8)

where ht(x) = I[0,t](x) is the index function of the interval [0, t]. Note that ρht is not
continuous for t ∈ [0, 1) by Proposition 11.

For µ ∈ M b
+(X ), the function t �→ µ([0, t)) is bounded and non-decreasing, thus, Borel-

measurable, since the discontinuous points are countable at most. A positive definite func-
tion on M b

+(X ) is defined by

ϕ(µ) =
∫ 1

0
ρht(µ)dt. (9)

This function is continuous, while it is given by the integral of noncontinuous semicharacters.

Proposition The positive definite function ϕ is continuous and exponentially bounded.

Proof Suppose µn converges to µ weakly in M b
+(X ). We write Fn(t) = µn([0, t]) and

F (t) = µ([0, t]). Because µn and µ are finite measures, the weak convergence means

Fn(t) → F (t)

for any continuous point of F . Since the set of discontinuous points of F is at most countable,
the above convergence holds almost everywhere on X with Lebesgue measure. From the
weak convergence, we have Fn(1) → F (1), which means there exists M > 0 such that
supt∈X,n∈N Fn(t) < M . By the bounded convergence theorem, we obtain

lim
n→∞ϕ(µn) = lim

n→∞

∫ 1

0
eFn(t)dt =

∫ 1

0
eF (t)dt = ϕ(µ).
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For the exponential boundedness, by taking an absolute value α(µ) = eµ(X), we have

|ϕ(µ)| ≤
∫ 1

0
α(µ)dt = α(µ).
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