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Exponential manifold by reproducing kernel Hilbert
spaces

1.1 Introduction

The purpose of this paper is to propose a method of constructing exponen-
tial families of Hilbert manifold, on which estimation theory can be built.
Although there have been works on infinite dimensional exponential families
of Banach manifolds [14, 10, 13], they are not appropriate for discussing sta-
tistical estimation with a finite sample; the likelihood function with a finite
sample is not realized as a continuous function on the manifold.

The proposed exponential manifold uses a Reproducing Kernel Hilbert
Space (RKHS) as a functional space in the construction. A RKHS is de-
fined as a Hilbert space of functions such that evaluation of a function at an
arbitrary point is a continuous functional on the Hilbert space. Since eval-
uation of the likelihood function is necessary for the estimation theory, it is
very natural to use a manifold associated with a RKHS in defining an expo-
nential family. Such a manifold can be either finite or infinite dimensional
depending of the choice of RKHS.

This paper focuses on the Maximum Likelihood Estimation (MLE) with
the exponential manifold associated with a RKHS. As in many non-parametric
estimation methods, straightforward extension of MLE to an infinite dimen-
sional exponential manifold suffers the problem of ill-posedness; the estima-
tor is chosen from the infinite dimensional space, while only a finite number
of constraints is given by the sample. To solve this problem, a pseudo-
maximum likelihood method is proposed by restricting the infinite dimen-
sional manifold to a series of finite dimensional submanifolds, which enlarge
as the sample size increases. Some asymptotic results in the limit of infinite
sample are shown, including the consistency of the pseudo-MLE.

This paper is an extended version of the previous conference paper [6].
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2 Exponential manifold by reproducing kernel Hilbert spaces

1.2 Exponential family associated with a reproducing kernel
Hilbert space

1.2.1 Reproducing kernel Hilbert space

This subsection provides a brief review of reproducing kernel Hilbert spaces.
Only real Hilbert spaces are discussed in this paper, while a RKHS is defined
as a complex Hilbert space in general. For the details on RKHS, see [1].

Let Ω be a set, and H be a Hilbert space included in the set of all real-
valued functions on Ω. The inner product of H is denoted by 〈 , 〉H . The
Hilbert space H is called a reproducing kernel Hilbert space (RKHS) if there
is a function

k : Ω× Ω → R

such that (i) k(·, x) ∈ H for all x ∈ Ω, and (ii) for any f ∈ H and x ∈ Ω,

〈f, k(·, x)〉H = f(x)

The condition (ii) is called the reproducing property and k is called a repro-
ducing kernel.

A reproducing kernel is symmetric, because k(x, y) = 〈k(·, y), k(·, x)〉H =
〈k(·, x), k(·, y)〉H = k(y, x). It is easy to see that a reproducing kernel is
unique if it exists. The following proposition is a characterization of RKHS.

Proposition 1 A Hilbert space of functions on Ω is a RKHS if and only
if the evaluation mapping ex : H → R, f 7→ f(x), is a continuous linear
functional on H for any x ∈ Ω.

Proof Suppose k : Ω×Ω → R is a reproducing kernel of H . For any x ∈ Ω
and f ∈ H , we have |ex(f)| = |f(x)| = |〈f, k(·, x)〉H | ≤ ‖f‖H ‖k(·, x)‖H =
‖f‖H

√
k(x, x), which shows ex is bounded. Conversely, if the evaluation

mapping ex is bounded, by Riesz’s representation theorem, there exists φx ∈
H such that f(x) = ex(f) = 〈f, φx〉H . The function k(y, x) = φx(y) is then
a reproducing kernel on H .

A function k : Ω × Ω → R is said to be positive definite if it is symmet-
ric, k(x, y) = k(y, x) for any x, y ∈ Ω, and for any points x1, . . . , xn ∈ Ω
the symmetric matrix (k(xi, xj))i,j is positive semidefinite, i.e., for any real
numbers c1, . . . , cn the inequality

∑n
i,j=1 cicjk(xi, xj) ≥ 0 holds.

A RKHS and a positive definite kernel have one-to-one correspondence.
If H is a RKHS on Ω, the reproducing kernel k(x, y) is positive definite,
because

∑
i,j cicjk(xi, xj) = ‖∑

i cik(·, xi)‖2
H ≥ 0. It is also known ([1])

that for a positive definite kernel k on Ω there uniquely exists a RKHS Hk
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such that Hk consists of functions on Ω, the class of functions
∑m

i=1 aik(·, xi)
(m ∈ N, xi ∈ Ω, ai ∈ R) is dense in Hk, and 〈f, k(·, x)〉Hk

= f(x) holds for
any f ∈ Hk and x ∈ Ω. Thus, a Hilbert space H of functions on Ω is
a RKHS if and only if H = Hk for some positive definite kernel k. In
practice, a RKHS is often given by a positive definite kernel.

Many functions are known to be positive definite. On Rn, the basic ex-
amples include the linear kernel k(x, y) = xT y, and more generally, the
polynomial kernel k(x, y) = (xT y + c)d (c ≥ 0, d ∈ N). The RKHS defined
by the linear kernel is isomorphic to the n-dimensional Euclidean space.
The RKHS given by (xT y + c)d (c > 0) is the polynomials of degree d

or less as a vector space. It is also known that the shift-invariant kernel
exp(−|x− y|p) on R is positive definite for 0 < p ≤ 2. The positive definite
kernel exp(− 1

2σ2 |x−y|2) (σ > 0) is often referred to as Gaussian RBF kernel,
and the associated RKHS is infinite dimensional. When p = 1, it is known
that the RKHS defined by exp(−|x−y|) is the Sobolev space H1(R) = {u ∈
L2(R) | there exists u′ ∈ L2(R) such that u(x) =

∫ x
−∞ u′(y)dy}. Many ex-

amples of positive definite kernels and the associated RKHSs are shown in
[3] and [2].

It is also important to note that if a positive definite kernel k on a topo-
logical space is continuous, all the functions in Hk are continuous. This is
easily seen from |f(x) − f(y)| = |〈f, k(·, x) − k(·, y)〉Hk

| ≤ ‖f‖Hk
(k(x, x) +

k(y, y)− 2k(x, y))1/2.

1.2.2 Exponential manifold associated with a RKHS

Let Ω be a topological space, and µ be a Borel probability measure on Ω. The
support of µ is defined by the smallest closed set F such that µ(Ω\F ) = 0.
Throughout this paper, it is assumed that the support of µ is Ω. The set of
positive probability density functions with respect to µ is denoted by

Mµ =
{

f : Ω → R
∣∣∣∣ f > 0 almost everywhere-µ, and

∫

Ω
fdµ = 1

}
.

Hereafter, the probability given by the density f ∈ Mµ is denoted by fµ,
and the expectation of a measurable function on Ω with respect to fµ is
denoted by Ef [u] or Ef [u(X)].

Let k : Ω × Ω → R be a continuous positive definite kernel on Ω. Define
a subclass of Mµ by

Mµ(k) =
{

f ∈ M c
µ

∣∣∣∣ there exists δ > 0 such that
∫

eδ
√

k(x,x)f(x)dµ(x) < ∞
}

.
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A positive definite kernel k is bounded if and only if the function k(x, x)
on Ω is bounded, since |k(x, y)| ≤ k(x, x)k(y, y) by the positive semidefi-
niteness. For bounded k, we have Mµ(k) = Mµ.

It is also worth noting that f ∈ Mµ(k) if and only if the function x 7→√
k(x, x) belongs to the Orlicz space Lcosh−1(f), which is used for construct-

ing the Banach manifold by [14]. In fact, Lcosh−1(f) is defined by the class
of function u for which there is α > 0 such that

Ef

[
cosh

(u

α

)
− 1

]
< ∞.

Throughout this paper, the following assumption is made unless otherwise
mentioned;

(A) The RKHS Hk contains the constant functions.

This is a mild assumption, because for any RKHS Hk the direct sum Hk+R,
where R denotes the RKHS associated with the positive definite kernel 1
on Ω, is again a RKHS with reproducing kernel k(x, y) + 1 ([1]). This
assumption is made so that subtracting a constant may be operated within
Hk.

For any f ∈ Mµ(k), the expectation Ef [
√

k(X,X)] is finite, because

δEf [
√

k(X, X)] ≤ Ef [eδ
√

k(X,X)] < ∞. From |u(x)| = |〈u, k(·, x)〉Hk
| ≤√

k(x, x)‖u‖Hk
, the mapping u 7→ Ef [u(X)] is a bounded functional on Hk

for any f ∈ Mµ(k). We define a closed subspace Tf of Hk by

Tf := {u ∈ Hk | Ef [u(X)] = 0},
which works as a tangent space at f , as we will see later. Note that, by the
assumption (A), u− Ef [u] is included in Tf for any u ∈ Hk.

For f ∈ Mµ(k), let Wf be a subset of Tf defined by

Wf =
{
u ∈ Tf

∣∣ there exists δ > 0 such that Ef [eδ
√

k(X,X)+u(X)] < ∞}
.

The cumulant generating function Ψf on Wf is defined by

Ψf (u) = log Ef [eu(X)].

Lemma 1 For any u ∈ Wf , the probability density function

eu−Ψf (u)f

belongs to Mµ(k).

Proof It is obvious that Ψ(u) is finite for any u ∈ Wf , so that the above
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probability density function is well-defined. By the definition of Wf , there

is δ > 0 such that Ef [eδ
√

k(X,X)+u(X)] < ∞, which derives
∫

eδ
√

k(x,x)eu(x)−Ψf (u)f(x)dµ(x) = e−Ψf (u)Ef

[
eδ
√

k(X,X)+u(X)
]

< ∞.

This implies eu−Ψf (u)f ∈ Mµ(k).

From Lemma 1, the mapping

ξf : Wf → Mµ(k), u 7→ eu−Ψf (u)f

is well-defined. The map ξf is one-to-one, because ξf (u) = ξf (v) implies
u− v is constant, which is necessarily zero from Ef [u] = Ef [v] = 0, since u

is continuous and the support of fµ is Ω †.
Let Sf = ξf (Wf ), and ϕf be the inverse of ξf , that is,

ϕf : Sf → Wf , g 7→ log
g

f
− Ef

[
log

g

f

]
.

It will be shown that ϕf works as a local coordinate that makes Mµ(k) a
Hilbert manifold. The following facts are basic;

Lemma 2 Let f and g be arbitrary elements in Mµ(k).

(i) Wf is an open subset of Tf .
(ii) g ∈ Sf if and only if Sg = Sf .

Proof (i). For an arbitrary u ∈ Wf , take δ > 0 so that Ef [eu(X)+δ
√

k(X,X)] <

∞. Define an open neighborhood Vu of u in Tf by Vu = {v ∈ Tf | ‖v−u‖Hk
<

δ/2}. Then, for any v ∈ Vu,

Ef

[
e(δ/2)

√
k(X,X)+v(X)

]
= Ef

[
e(δ/2)

√
k(X,X)+〈v−u,k(·,X)〉Hk

+u(X)
]

≤ Ef

[
e(δ/2)

√
k(X,X)+‖v−u‖Hk

√
k(X,X)+u(X)

]

≤ Ef

[
eδ
√

k(X,X)+u(X)
]

< ∞,

which implies Wf is open.
(ii). “If” part is obvious. For the “only if” part, we first prove Sg ⊂ Sf

on condition that g ∈ Sf . Let h be an arbitrary element in Sg, and take

† The continuity assumption on k is made to guarantee the injectiveness of ξf . With an almost-

everywhere positive density function f , it is obvious that two density functions eu(x)−Ψf (u)f(x)

and ev(x)−Ψf (v)f(x) define the same probability if and only if u − v is constant almost ev-
erywhere with respect to fµ. We wish to further guarantee, however, that u − v is exactly
constant, because a function is identified as the zero element in a RKHS only if it is exactly
zero. We thus assume that the functions in Hk are continuous and the support of µ is Ω.
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u ∈ Wf and v ∈ Wg such that g = eu−Ψf (u)f and h = ev−Ψg(v)g. From the

fact g ∈ Wf , there is δ > 0 such that Eg[ev(X)+δ
√

k(X,X)] < ∞. We have∫
ev(x)+u(x)+δ

√
k(x,x)−Ψf (u)f(x)dµ(x) < ∞, which means v+u−Ef [v] ∈ Wf .

From h = e(v+u−Ef [v])−(Ψf (u)+Ψg(v)−Ef [v])f , we have Ψf (v + u − Ef [v]) =
Ψf (u) + Ψg(v)−Ef [v] and h = ξf (v + u− Ef [v]) ∈ Sf .

For the opposite inclusion, it suffices to show f ∈ Sg. Let γ > 0 be

a constant so that Ef [eγ
√

k(X,X)] < ∞. From e−ug = e−Ψf (u)f , we see∫
eγ
√

k(x,x)−u(x)g(x)dµ(x) < ∞, which means −u + Eg[u] ∈ Wg. It follows
that f = e−u+Ψf (u)g = e(−u+Eg [u])−(−Ψf (u)+Eg [u])g means f = ξg(−u +
Eg[u]) ∈ Sg.

The map ϕf defines a structure of Hilbert Manifold on Mµ(k), which we
call reproducing kernel exponential manifold.

Theorem 1 The system {(Sf , ϕf )}f∈Mµ(k) is a C∞-atlas of Mµ(k), that
is,

(i) If Sf ∩Sg 6= ∅, then ϕf (Sf ∩Sg) is an open set in Tf .
(ii) If Sf ∩Sg 6= ∅, then

ϕg ◦ ϕ−1
f |ϕf (Sf∩Sg) : ϕf (Sf ∩Sg) → ϕg(Sf ∩Sg)

is a C∞ map.

Thus, Mµ(k) admits a structure of C∞-Hilbert manifold.

Proof The assertion (i) is obvious, because Sf ∩Sg 6= ∅ means Sf = Sg

from Lemma 2. Suppose Sf ∩Sg 6= ∅, that is, Sf = Sg. For any u ∈ Wf ,

ϕg ◦ ϕ−1
f (u) = ϕg

(
eu−Ψf (u)f

)
= log

eu−Ψf (u)f

g
−Eg

[
log

eu−Ψf (u)f

g

]

= u + log(f/g)− Eg

[
u + log(f/g)

]
,

from which the assertion (ii) is obtained, because u 7→ Eg[u] is of C∞ on
Wf .

It is known that with the assertions (i) and (ii) a topology is introduced
on Mµ(k) so that all Sf are open, and Mµ(k) is equipped with the structure
of C∞-Hilbert manifold (see [12]).

The open set Sf is regarded as a maximal exponential family in Mµ(k).
In fact, we have the following
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Theorem 2 For any f ∈ Mµ(k),

Sf = {g ∈ Mµ(k) | there exists u ∈ Tf such that g = eu−Ψf (u)f}.

Proof It suffices to show that g = eu−Ψf (u)f in the right hand side is
included in the left hand side, as the opposite inclusion is obvious. From
g ∈ Mµ(k), there is δ > 0 such that Eg[eδ

√
k(X,X)] < ∞, which means

Ef [eδ
√

k(X,X)+u(X)] < ∞. Therefore, u ∈ Wf and g = ξf (u) ∈ Sf .

From Lemma 2 (ii), we can define an equivalence relation such that f and
g are equivalent if and only if they are in the same local maximal exponential
family, that is, if and only if Sf ∩Sg 6= ∅. Let {S (λ)}λ∈Λ be the equivalence
classes. Then, they are equal to the set of connected components.

Theorem 3 Let {S (λ)}λ∈Λ be the equivalence classes of the maximum local
exponential families described above. Then, {S (λ)}λ∈Λ are the connected
components of Mµ(k). Moreover, each component S (λ) is simply connected.

Proof From Lemma 2 and Theorem 1, {S (λ)}λ∈Λ are disjoint open covering
of Mµ(k). The proof is completed if every Wf is shown to be convex. Let
u0 and u1 be arbitrary elements in Wf . Then, there exists δ > 0 such

that Ef

[
eδ
√

k(X,X)+u0(X)
]

< ∞ and Ef

[
eδ
√

k(X,X)+u1(X)
]

< ∞. For ut =
tu1 + (1 − t)u0 ∈ Tf (t ∈ [0, 1]), we have eut(x) ≤ teu1(x) + (1 − t)eu0(x) by
the convexity of z 7→ ez. It leads

Ef

[
eδ
√

k(X,X)+ut(X)
]

≤ tEf

[
eδ
√

k(X,X)+u1(X)
]

+ (1− t)Ef

[
eδ
√

k(X,X)+u0(X)
]

< ∞,

which means ut ∈ Wf .

The Hilbert space Hk, which is used for giving the manifold structure to
Mµ(k), has stronger topology than the Orlicz space Lcosh−1(f). Recall that
the norm of u ∈ Lcosh−1(f) is defined by

‖u‖Lcosh−1(f) = inf
{

α > 0
∣∣∣ Ef

[
cosh

(u

α

)
− 1

]
≤ 1

}
.

Proposition 2 For any f ∈ Mµ(k), the RKHS Hk is continuously included
in Lcosh−1(f). Moreover, if a positive number Af is defined by

Af = inf
{

α > 0
∣∣∣∣
∫

e

√
k(x,x)

α f(x)dµ(x) ≤ 2
}

,
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then for any u ∈ Hk

‖u‖Lcosh−1(f) ≤ Af‖u‖Hk
.

Proof From the inequality

Ef

[
cosh(u(X)/α)− 1

] ≤ Ef

[
e|u(X)|/α

]− 1

≤ Ef

[
e

1
α‖u‖Hk

√
k(X,X)

]
− 1,

if ‖u‖Hk
/α < 1/Af , then Ef [cosh(u/α) − 1] ≤ 1. This means Af‖u‖Hk

≥
‖u‖Lcosh−1(f).

Proposition 2 tells that the manifold Mµ(k) is a subset of the maximum
exponential manifold. However, the former is not necessarily a submanifold
of the latter, because Hk is not a closed subspace of Lcosh−1(f) in general.
Note also that Lcosh−1(f) is continuously embedded in Lp(f) for all p ≥ 1.
Thus, Ef |u|p is finite for any f ∈ Mµ(k), u ∈ Hk, and p ≥ 1.

The reproducing kernel exponential manifold and its connected compo-
nents depend on the underlying RKHS. It may be either finite or infinite
dimensional. A different choice of the positive definite kernel results in a
different exponential manifold. A connected component of Mµ(k) in Theo-
rem 3 is in general smaller than the maximal exponential model discussed
in [14].

1.2.3 Mean and covariance on reproducing kernel exponential

manifolds

As in the case of finite dimensional exponential families and the exponential
manifold by [14], the derivatives of the cumulant generating function provide
the cumulants or moments of the random variables given by tangent vectors.
Let f ∈ Mµ(k) and v1, . . . , vd ∈ Tf . The d-th Fréchet derivative of Ψf in
the directions v1, . . . , vd at fu = eu−Ψf (u)f is denoted by Dd

uΨf (v1, . . . , vd).
From Proposition 2 and the known results on the derivatives for the maximal
exponential manifolds [14, 5], the Ψf is C∞-Fréchet differentiable on Mµ(k),
and in particular, we have

DuΨf (v) = Efu [v], D2
uΨf (v1, v2) = Covfu [v1(X), v2(X)],

where Covg[v1, v2] = Eg[v1(X)v2(X)]−Eg[v1(X)]Eg[v2(X)] is the covariance
of v1 and v2 under the probability gµ.

The first and second moments are expressed also by an element and an
operator of the Hilbert space. Let P be a probability on Ω such that
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EP [
√

k(X, X)] < ∞. Because the functional Hk 3 u 7→ EP [u(X)] is
bounded, there exists mP ∈ Hk such that

EP [u(X)] = 〈u,mP 〉Hk

for all u ∈ Hk. We call mP the mean element for P . Noticing that the
mapping Hk × Hk 3 (v1, v2) 7→ CovP [v1(X), v2(X)] is a bounded bilinear
form, we see that there uniquely exists a bounded operator ΣP on Hk such
that

CovP [v1(X), v2(X)] = 〈v1, ΣP v2〉Hk

holds for all v1, v2 ∈ Hk. The operator ΣP is called the covariance operator
for P . For the detail of covariance operators on a RKHS, see [7].

When a local coordinate (ϕf0 , Sf0) in a reproducing kernel exponential
manifold Mµ(k) is assumed, the notations mu and Σu are also used for
the mean element and covariance operator, respectively, with respect to the
probability density fu = eu−Ψf0

(u)f0. We have

DuΨf (v) = 〈mu, v〉Hk
, D2

uΨf (v1, v2) = 〈v1, Σuv2〉Hk
.

The mapping Wf 3 u 7→ mu ∈ Hk is locally one-to-one, because the
derivative Σu|Tf0

is strictly positive for non-degenerate µ. The element mu

is equal to the mean parameter ([13]) for the density fu by identifying the
bounded linear functional DuΨf with the element of Tf .

The mean element mP (y) as a function is explicitly expressed by

mP (y) = EP [k(X, y)]

from mP (y) = 〈mP , k(·, y)〉Hk
= EP [k(X, y)]. The operator Σu is an exten-

sion of Fisher information matrix.
It is interesting to ask when the mean element specifies a probability.

Definition 1 Let (Ω, B) be a measurable space, and k be a measurable posi-
tive definite kernel on Ω such that

∫
k(x, x)dP (x) is finite for any probability

P on (Ω, B). The kernel k is called characteristic if the mapping P 7→ mP

uniquely determines a probability.

It is known that Gaussian RBF kernels and Laplacian kernels are char-
acteristic on Rn and any compact subset in Rn with Borel σ-field ([9, 15]).
If k(x, y) = exp(−|x − y|) is used for defining Mk(µ) on the unit interval
[0, 1] with the uniform distribution µ, then the mean parameter mu uniquely
determines a probability in Mµ.
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1.2.4 Kullback-Leibler divergence

Let f0 ∈ Mµ(k) and u, v ∈ Wf0 . With the local coordinate (ϕf0 , Sf0), it is
easy to see that the Kullback-Leibler divergence from fu = eu−Ψf0

(u)f0 to
fv = ev−Ψf0

(v)f0 is given by

KL(fu||fv) = Ψf0(v)−Ψf0(u)− 〈v − u,mu〉Hk
. (1.1)

Let fu, fv, and fw be points in Sf0 . It is straightforward to see

KL(fu||fw) = KL(fu||fv) + KL(fv||fw)− 〈w − v, mu −mv〉Hk
. (1.2)

Let U be a closed subspace of Tf0 , and V = U ∩ Wf0 . The subset N =
ϕ−1

f0
(V) is a submanifold of Sf0 , which is also an exponential family. Let

f∗ = eu∗−Ψf0
(u∗) be a point in Sf0 , and consider the minimizer of the KL

divergence from f∗ to a point in N ;

uopt = arg min
u∈V

KL(f∗||fu). (1.3)

Theorem 4 Under the assumption that the minimizer uopt of Eq.(1.3) ex-
ists, the orthogonal relation

〈u− uopt, mu∗ −muopt〉Hk
= 0. (1.4)

and the Pythagorean equation

KL(f∗||fu) = KL(f∗||fuopt) + KL(fuopt ||fu) (1.5)

hold for any u ∈ V.

Proof Since Wf0 is an open convex set, ut = t(u − uopt) + uopt lies in Wf0

for all t ∈ (−δ, δ) with sufficiently small δ > 0. From Eq. (1.2), KL(f∗||fut)
is differentiable with respective to t, and d

dtKL(f∗||fut)|t=0 = 0 by the min-
imality. This derives

〈u− uopt,muopt〉Hk
− 〈u− uopt,mu∗〉Hk

= 0,

which is the orthogonal relation. Pythagorean relation is obvious from
Eqs.(1.2) and (1.4).

1.3 Pseudo maximum likelihood estimation with Mµ(k)

In this section, statistical estimation with a reproducing kernel exponential
manifold is discussed. Throughout this section, a positive definite kernel k

with the assumption (A) and a connected component S of Mµ(k) are fixed.
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From Lemma 2 and Theorem 2, for any f0 ∈ S the component S can be
expressed by

S = {f ∈ Mµ(k) | f = eu−Ψ0(u)f0 for some u ∈ Tf0},
where Ψ0 is an abbreviation of Ψf0 . For notational simplicity, W0 = Wf0

and fu = eu−Ψ0(u)f0 for u ∈ W0 are used.
It is assumed that (X1, X2, . . . , Xn) is an i.i.d. sample with probability

f∗µ with f∗ ∈ S , which is called a true probability density. We discuss
the problem of estimating f∗ with the statistical model S given the finite
sample.

1.3.1 Likelihood equation on a reproducing kernel exponential

manifold

The maximum likelihood estimation (MLE) is the most popular estimation
method for finite dimensional exponential families. In the following, we con-
sider the MLE approach with the reproducing kernel exponential manifold
S , which may not be finite dimensional. The objective function of MLE
with S is given by

sup
u∈W0

Ln(u), Ln(u) =
1
n

n∑

i=1

u(Xi)−Ψ0(u),

where Ln(u) is called the log likelihood function. By introducing the empir-
ical mean element

m̂(n) =
1
n

n∑

i=1

k(·, Xi),

the log likelihood function is rewritten by

Ln(u) = 〈m̂(n), u〉Hk
−Ψ0(u).

Taking the partial derivative of Ln(u), we obtain the likelihood equation,

〈m̂(n), v〉Hk
= 〈mu, v〉Hk

(∀v ∈ Hk), (1.6)

where mu is the mean parameter corresponding to the density fu. Note
that the above equation holds not only for v ∈ Tf0 but for all v ∈ Hk,
since 〈m̂(n) −mu, 1〉Hk

always vanishes. The log likelihood equation is thus
reduced to

mu = m̂(n), (1.7)
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that is, the mean parameter for the maximum likelihood estimator shoudl
be the empirical mean element m̂(n).

If Hk is finite dimensional and (φ1, . . . , φd) is a basis of Tf0 , Eq. (1.7) is
equivalent to

mj
u =

1
n

n∑

i=1

φj(Xi) (j = 1, . . . , d),

where (m1
u, . . . , md

u) is the component of mu with respect to the basis (φ1, . . . , φd).
If the mapping u 7→ mu is invertible, which is often the case with ordinary
finite dimensional exponential families, the MLE û is given by the inverse
image of m̂(n).

Unlike the finite dimensional exponential family, the likelihood equation
Eq. (1.7) does not necessarily have a solution in the canonical parameter
u. As [13] points out for their exponential manifold, the inverse mapping
from the mean parameter to the canonical parameter u is not bounded in
general. For reproducing kernel exponential manifolds, the unboundedness
of the inverse of u 7→ mu can been seen by investigating its derivative. The
derivative of the map u 7→ mu is given by the covariance operator Σu, which
is known to be of trace class ([7], Section 4.2). In fact, it is easy to see
Tr[Σu] = Efu [‖k(·, X)−mu‖2

Hk
] = E[k(X, X)]− E[k(X, X̃)], where X and

X̃ are independent variables with the same distribution fuµ. If Hk is infinite
dimensional, Σu has arbitrary small positive eigenvalues, which implies Σu

does not have a bounded inverse. Thus, the mean parameter does not give
a coordinate system for infinite dimensional manifolds.

If k is characteristic, another explanation by the moment matching is
possible to the fact that the likelihood equation does not have a solution.
From Eq.??1.7), the empirical distribution 1

n

∑n
i=1 δXi and the probabil-

ity eu−Ψ0(u)f0µ must have the same mean element. For a characteristic k,
however, these two probabilities must be the same; this is impossible if the
support of µ is uncountable.

To solve this problem, a method of pseudo maximum likelihood estimation
will be proposed in Section 1.3.3, in which asymptotic properties of the mean
parameter yet play an important role.

1.3.2
√

n-consistency of the mean parameter

Although the mean parameter does not give a local coordinate of Mµ(k),
it is useful to analyze the asymptotic behavior of an estimator based on
the likelihood approach. The next theorem establishes

√
n-consistency of
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the mean parameter in a general form. While this is a known result ([2],
Lemma 22, Section 9.1), the proof is shown for completeness.

Theorem 5 Let (Ω,B, P ) be a probability space, k : Ω×Ω → R be a positive
definite kernel so that EP [k(X,X)] < ∞, and mP ∈ Hk be the mean element
with respect to P . Suppose X1, . . . , Xn are i.i.d. sample from P , and define
the empirical mean element m̂(n) by m̂(n) = 1

n

∑n
i=1 k(·, Xi). Then, we have

‖m̂(n) −mP ‖Hk
= Op

(
1/
√

n
)

(n →∞).

Proof Let EX [·] denote the expectation with respect to the random variable
X which follows P . Suppose X, X̃,X1, . . . , Xn are i.i.d. We have

E‖m̂(n) −mP ‖2
Hk

=
1
n2

n∑

i=1

n∑

j=1

EXiEXj [k(Xi, Xj)]

− 2
n

n∑

i=1

EXiEX [k(Xi, X)] + EXEX̃ [k(X, X̃)]

=
1
n2

n∑

i=1

∑

j 6=i

E[k(Xi, Xj)] +
1
n

EX [k(X, X)]−EXEX̃ [k(X, X̃)]

=
1
n
{EX [k(X,X)]− EXEX̃ [k(X, X̃)]}

= O(1/n).

The assertion is obtained by Chebyshev’s inequality.

It is further known ([2], Section 9.1) that
√

n(m̂(n) − mP ) converges in
law to a Gaussian distribution on Hk.

1.3.3 Pseudo maximum likelihood estimation

This subsection proposes the pseudo maximum likelihood estimation using
a series of finite dimensional subspaces in Hk to make the inversion from
the mean parameter to the canonical parameter possible. With an infinite
dimensional reproducing kernel exponential manifold, the estimation of the
true density with a finite sample is an ill-posed problem, as discussed in Sec-
tion 1.3.1. Among many methods of regularization to solve such ill-posed
problems, one of the most well-known methods is Tikhonov regularization
[11], which adds a regularization term to the objective function for making
inversion stable. Canu and Smola [4] have proposed a kernel method for den-
sity estimation using an exponential family defined by a positive definite ker-
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nel, while they do not formulate it rigorously. They discuss Tikhonov-type
regularization for estimation. Another major approach to regularization is
to approximate the original infinite dimensional space by finite dimensional
subspaces [11]. This paper uses the latter approach, because it matches
better with the geometrical apparatus developed in the previous sections.

Let {H (`)}∞`=1 be a series of finite dimensional subspaces of Hk such that
H (`) ⊂ H (`+1) for all ` ∈ N. For any f ∈ Mµ(k), a subspace T

(`)
f of Tf

is defined by T
(`)
f = Tf ∩H (`), and an open set W

(`)
f of T

(`)
f is defined by

W
(`)

f = Wf ∩H (`). For simplicity, the notations W (`) and S (`) are used for

W
(`)

f0
and {fu ∈ S | u ∈ W (`)}, respectively.

For each ` ∈ N, the pseudo maximum likelihood estimator û(`) in W (`) is
defined by

û(`) = arg max
u∈W (`)

〈m̂(n), u〉Hk
−Ψ0(u).

In the following discussion, it is assumed that the maximizer û(`) exists in
W (`), and further the following two assumptions are made;

(A-1) For all u ∈ W0, let u
(`)
∗ ∈ W (`) (` ∈ N) be the minimizer of

min
u(`)∈W (`)

KL(fu||fu(`)).

Then

‖u− u
(`)
∗ ‖Hk

→ 0 (` →∞).

(A-2) For u ∈ W0, let λ(`)(u) be the least eigenvalue of the covariance
operator Σu restricted on T

(`)
fu

, that is,

λ(`)(u) = inf
v∈T

(`)
fu

, ‖v‖Hk
=1

〈v, Σuv〉Hk
.

Then, there exists a subsequence (`n)∞n=1 of N such that for all u ∈ W0

we can find δ > 0 for which

λ̃(`)
u = inf

u′∈W0, ‖u′−u‖Hk
≤δ

λ(`)(u′)

satisfies

lim
n→∞

√
nλ̃(`n)

u = +∞.

The assumption (A-1) means S (`) can approximate a function in S at
any precision as ` goes to infinity. The assumption (A-2) provides a stable
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MLE in the submodel S (`) by lower-bounding the least eigenvalue of the
derivative of the map u 7→ mu.

Theorem 6 Under the assumptions (A-1) and (A-2),

KL(f∗||fû(`n)) → 0 (n →∞)

in probability.
Moreover, let u∗ ∈ W0 be the element which gives fu∗ = f∗, and u

(`)
∗ be the

element in (A-1) with respect to u∗. If positive constants γn and εn satisfy

‖u∗ − u
(`n)
∗ ‖Hk

= o(γn) (n →∞) (1.8)

and
1

√
nλ̃

(`n)
u∗

= o(εn) (n →∞), (1.9)

then we have

KL(f∗||fû(`n)) = op(max{γn, εn}) (n →∞).

Proof We prove the second assertion of the theorem. The first one is similar.
Let m∗ and m

(`)
∗ be the mean parameters corresponding to u∗ and u

(`)
∗ ,

respectively. From Eqs. (1.4) and (1.5), we have

〈u− u
(`)
∗ ,m

(`)
∗ 〉Hk

= 〈u− u
(`)
∗ ,m∗〉Hk

(1.10)

for all u ∈ W (`), and

KL(f∗||fû(`n)) = KL(f∗||fu
(`n)
∗

) + KL(f
u
(`n)
∗
||fû(`n)).

Eqs. (1.1) and (1.8) imply

KL(f∗||fu
(`n)
∗

) = o(γn) (n →∞).

Thus, the proof is done if we show

Pr
(‖û(`n) − u

(`n)
∗ ‖Hk

≥ εn

) → 0 (n →∞). (1.11)

In fact, since Eqs. (1.1) and (1.10) give

KL(f
u
(`n)
∗
||fû(`n)) = Ψ0(û(`n))−Ψ0(u

(`n)
∗ )− 〈m∗, û(`n) − u

(`n)
∗ 〉Hk

,

Eq. (1.11) means KL(f
u
(`n)
∗
||fû(`n)) = op(εn) (n →∞).
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Let δ > 0 be the constant in the assumption (A-2) with respect to u∗. If
the event of the probability in Eq. (1.11) holds, we have

sup
u∈W (`n)

‖u−u
(`n)
∗ ‖Hk

≥εn

Ln(u)− Ln(u(`n)
∗ ) ≥ 0, (1.12)

where Ln(u) = 〈u, m̂(n)〉Hk
− Ψ0(u). On the other hand, it follows from

Eq. (1.10) and Taylor expansion that for any u ∈ W (`n)

Ln(u)− Ln(u(`n)
∗ )

= 〈u− u
(`n)
∗ , m̂(n) −m∗〉Hk

− {
Ψ0(u)−Ψ0(u

(`n)
∗ )− 〈u− u

(`n)
∗ ,m

(`n)
∗ 〉Hk

}

= 〈u− u
(`n)
∗ , m̂(n) −m∗〉Hk

− 1
2
〈u− u

(`n)
∗ , Σũ(u− u

(`n)
∗ )〉Hk

,

where ũ is a point in the line segment between u and u
(`n)
∗ . By the definition

of λ̃(`), for sufficiently large n so that ‖u(`n)
∗ − u∗‖Hk

≤ δ, we obtain

sup
u∈W (`n)

‖u−u
(`n)
∗ ‖Hk

≥εn

Ln(u)− Ln(u(`n)
∗ )

≤ sup
u∈W (`n)

‖u−u
(`n)
∗ ‖Hk

≥εn

‖u− u
(`n)
∗ ‖Hk

‖m̂(n) −m∗‖Hk
− 1

2
λ̃(`n)‖u− u

(`n)
∗ ‖2

Hk

≤ sup
u∈W (`n)

‖u−u
(`n)
∗ ‖Hk

≥εn

‖u− u
(`n)
∗ ‖Hk

{
‖m̂(n) −m∗‖Hk

− 1
2
λ̃(`n)εn

}
. (1.13)

Eqs. (1.12) and (1.13) show that the probability in Eq. (1.11) is upper
bounded by

Pr
(‖m̂(n) −m∗‖Hk

≥ 1
2 λ̃(`n)εn

)
,

which converges to zero by Theorem 5 and Eq. (1.9).

There is a trade-off between the decay rates of εn and γn; if the subspace
W (`n) enlarges rapidly, the approximation accuracy γn decreases fast, while
a small value for λ̃

(`n)
u∗ results in a slow rate of εn.

1.4 Concluding Remarks

This paper has proposed a new family of statistical models, reproducing
kernel exponential manifold, which includes infinite dimensional exponen-
tial families. The most significant property of this exponential manifold is
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that the empirical mean parameter is included in the Hilbert space. Thus,
estimation of the density function with a finite sample can be discussed
based on this exponential manifold, while many other formulation of infi-
nite dimensional exponential manifold cannot provide basis for estimation
with a finite sample. Using the reproducing kernel exponential manifold, a
method of pseudo maximum likelihood estimation has been proposed with
a series of finite dimensional submanifolds, and consistency of the estimator
has been shown.

Many problems remain unsolved, however. One of them is a practical
method for constructing a sequence of subspaces used for the pseudo max-
imum likelihood estimation. A possible way of defining the sequence is to
use the subspace spanned by k(·, X1), . . . , k(·, X`). However, with this con-
struction the subspaces are also random depending on the sample, and the
results in this paper should be extended to the case of random subspaces to
guarantee the consistency. Another practical issue is how to choose the sub-
sequence `n so that the assumption (A-2) is satisfied. We need to elucidate
the properties of least eigenvalue of the covariance operator restricted on
finite dimensional subspaces, which is not necessarily obvious. Also, provid-
ing examples of the estimator for specific kernels is practically important.
Investigation of these problems will be among our future works.

Another important problem, which is not discussed in this paper, is the
dual geometry on the infinite dimensional exponential family. Unlike the
finite dimensional cases, it is not straightforward to define the dual connec-
tions on the tangent bundle of the infinite dimensional exponential manifold
([10]). It will be interesting to consider the dual geometric structure on the
reproducing kernel exponential manifolds for various choices of the space
and kernel k.
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