Learning Causal Structure with Kernel-based Dependence Measures

Kenji Fukumizu
Institute of Statistical Mathematics
Graduate University for Advances Studies

Joint work with Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, and Arthur Gretton.

November 3-4, 2007
Outline

1. Introduction
2. Kernel measures for dependence
3. Kernel measures for conditional dependence
4. Causal inference with kernels
 – Kernel-based Causal Learning algorithm –
5. Conclusion
Conditional independence in causal learning

- Determining independence and conditional independence is essential in causal learning.

\[X \perp Y \quad \text{and} \quad X \not\perp Y \mid Z \]

- But, in practice
 - Dependence for continuous domain is not straightforward. How can we estimate mutual information?
 - Many algorithms use linear statistical methods (partial correlation) or discretization.
“Kernel methods” for dependence of variables

- Positive definite kernels have been used for capturing nonlinearity of original data. e.g. Support vector machine.

- Kernelization: mapping data into a functional space (RKHS) and apply linear methods on RKHS.

- Recently, kernel methods have been applied for dependence analysis. Covariance structure on RKHS gives dependence and conditional dependence of the original variables.
Positive Definite Kernel and RKHS

Positive definite kernel (p.d. kernel)

\(\Omega \): set. \(k : \Omega \times \Omega \rightarrow \mathbb{R} \)

\(k \) is **positive definite** if \(k(x,y) = k(y,x) \) and for any \(n \in \mathbb{N}, \ x_1, \ldots x_n \in \Omega \), the matrix \(\left(k(x_i, x_j) \right)_{i,j} \) (Gram matrix) is positive semidefinite.

- Example: Gaussian RBF kernel \(k(x, y) = \exp\left(-\frac{||x - y||^2}{\sigma^2}\right) \)

Reproducing kernel Hilbert space (RKHS)

\(k \): p.d. kernel on \(\Omega \).

\(\Longleftrightarrow \exists H \) : reproducing kernel Hilbert space (RKHS)

1) \(k(\cdot, x) \in H \) for all \(x \in \Omega \).
2) \(\text{Span}\{k(\cdot, x) \mid x \in \Omega\} \) is dense in \(H \).
3) \(\langle k(\cdot, x), f \rangle_H = f(x) \) (reproducing property)
Feature map / feature vector

\[\Phi : \Omega \rightarrow H, \quad x \mapsto k(\cdot, x) \quad \text{i.e.} \quad \Phi(x) = k(\cdot, x) \]

Data: \(X_1, \ldots, X_N \rightarrow \Phi(X_1), \ldots, \Phi(X_N) : \text{functional data} \)

Why RKHS?

– By the reproducing property, computation of the inner product on RKHS does not need expansion by basis functions.

\[\langle \Phi(x), \Phi(y) \rangle = k(x, y) \]

\[f = \sum_{i=1}^{N} a_i \Phi(x_i) = \sum_{i} a_i k(\cdot, x_i), \quad g = \sum_{j=1}^{N} b_j \Phi(x_j) = \sum_{j} b_j k(\cdot, x_j) \]

\[\Rightarrow \quad \langle f, g \rangle = \sum_{i,j} a_i b_j k(x_i, x_j) \]

The computational cost essentially depends on the sample size. Advantageous for high-dimensional data of small sample size.
Outline

1. Introduction
2. Kernel measures for dependence
3. Kernel measures for conditional dependence
4. Causal learning with kernels
 – Kernel-based Causal Learning algorithm –
5. Conclusion
Covariance on RKHS

- Linear case (Gaussian):

- On RKHS:
 \(X, Y\) : random variables on \(\Omega_X\) and \(\Omega_Y\), resp.
 Prepare RKHS \((H_X, k_X)\) and \((H_Y, k_Y)\) defined on \(\Omega_X\) and \(\Omega_Y\), resp.
 Define random variables on the RKHS \(H_X\) and \(H_Y\) by
 \[\Phi_X(X) = k_X(\cdot, X) \quad \Phi_Y(Y) = k_Y(\cdot, Y) \]

Define the big (possibly infinite dimensional) covariance matrix \(\Sigma_{YX}\) on the RKHS.
Cross-covariance operator

- Definition

\[\Sigma_{YX} = E[\Phi_Y(Y)\langle \Phi_X(X), \cdot \rangle] - E[\Phi_Y(Y)]E[\langle \Phi_X(X), \cdot \rangle] \]

\[\Sigma_{YX} \text{ is an operator from } H_X \text{ to } H_Y \text{ such that} \]

\[\langle g, \Sigma_{YX} f \rangle = E[g(Y)f(X)] - E[g(Y)]E[f(X)] = \text{Cov}[f(X), g(Y)] \]

for all \(f \in H_X, g \in H_Y \)

- c.f. Euclidean case

\[V_{YX} = E[YY^T] - E[Y]E[X]^T \text{ : covariance matrix} \]

\[(b, V_{YX} a) = \text{Cov}[(b, Y), (a, X)] \]
Higher-order moments

Suppose X and Y are \mathbb{R}-valued, and $k(x,u)$ admits the expansion

$$k(x,u) = 1 + c_1 xu + c_2 x^2 u^2 + c_3 x^3 u^3 + \cdots \quad \text{e.g.) } k(x,u) = \exp(xu)$$

With respect to the basis $1, u, u^2, u^3, \ldots$, the random variables on RKHS are expressed by

$$\Phi(X) = k(X,u) \sim (1, c_1 X, c_2 X^2, c_3 X^3, \ldots)^T$$

$$\Phi(Y) = k(Y,u) \sim (1, c_1 Y, c_2 Y^2, c_3 Y^3, \ldots)^T$$

$$\Sigma_{YX} \sim \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 0 & c_1^2 \text{Cov}[Y,X] & c_1 c_2 \text{Cov}[Y,X^2] & c_1 c_3 \text{Cov}[Y^3,X] & \cdots \\ 0 & c_2 c_1 \text{Cov}[Y^2,X] & c_2^2 \text{Cov}[Y^2,X^2] & c_2 c_3 \text{Cov}[Y^2,X^3] & \cdots \\ 0 & c_3 c_1 \text{Cov}[Y^3,X] & c_3 c_2 \text{Cov}[Y^3,X^2] & c_3^2 \text{Cov}[Y^3,X^3] & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

The operator Σ_{YX} contains the information on all the higher-order correlation.
Characterization of Independence

Independence and Cross-covariance operator

If the RKHS’s are “rich enough” to express all the moments,

\[X \text{ and } Y \text{ are independent } \iff \Sigma_{XY} = O \]

\(\Leftrightarrow \) is always true.
\(\iff \) requires some assumption

Gaussian RBF kernels gives the above equivalence.

\[k(x, y) = \exp\left(-\frac{\|x - y\|^2}{\sigma^2}\right) \]

- c.f. for Gaussian variables

\[X \text{ and } Y \text{ are independent } \iff V_{XY} = O \quad \text{i.e. uncorrelated} \]
Kernel Dependence Measure

- Hilbert-Schmidt Independence Criteria (HSIC)

\[\text{HSIC}(X, Y) = \| \Sigma_{YX} \|_{HS}^2 \]

\[\text{HSIC} = 0 \quad \iff \quad X \perp Y \]

- Empirical estimator

\[\text{HSIC}_{\text{emp}}(X, Y) = \| \hat{\Sigma}_{YX}^{(N)} \|_{HS}^2 = \text{Tr}[G_X G_Y] \]

\[G_X = \left(I_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T \right) K_X \left(I_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T \right) : \text{centered Gram matrix} \]

\[K_X = \left(k(X_i, X_j) \right)_{i,j=1}^N \]

- Hilbert-Schmidt norm of an operator

\[A : H_1 \to H_2 \quad \text{operator on a Hilbert space} \]

\[\{ \varphi_i \}, \{ \psi_j \} : \text{complete orthonormal system of } H_1 \text{ and } H_2 \text{ (resp.)} \]

\[\| A \|_{HS}^2 = \sum_j \sum_i \langle \psi_j, A \varphi_i \rangle^2 \quad \text{c.f. Frobenius norm of a matrix} \]
Independence Test

Permutation test for independence

- Null hypothesis
 \[H_0: \quad X \perp Y \]

- Permutation test: simulation of the distribution of test statistics under \(H_0 \).
 - Make many samples consistent with the null hypothesis by random permutations of the original sample.
 - Compute the values of test statistics (dependence measure) for the samples.
 - Compute the critical region for a prescribed significance level.
Experiments of independence test

- Synthesized data: two d-dimensional samples
 \begin{align*}
 (X^{(1)}_1, \ldots, X^{(1)}_d), \ldots, (X^{(N)}_1, \ldots, X^{(N)}_d) & \quad \quad (Y^{(1)}_1, \ldots, Y^{(1)}_d), \ldots, (Y^{(N)}_1, \ldots, Y^{(N)}_d)
 \end{align*}

- H_0: X and Y are independent
- Significance level = 5%
Power Divergence (Ku&Fine05, Read&Cressie)

- Make partition \(\{A_j\}_{j \in J} \): Each dimension is divided into \(q \) parts so that each bin contains almost the same number of data.

- Power-divergence

 \[
 T_N = 2I^\lambda (X,m) = N \frac{2}{\lambda(\lambda + 2)} \sum_{j \in J} \hat{p}_j \left\{ \left(\frac{\hat{p}_j}{\prod_{k=1}^{N} \hat{p}_{j_k}} \right)^{\lambda} - 1 \right\}
 \]

 \(I^0 = \text{MI} \)

 \(I^2 = \text{Mean Square Conting.} \)

 \(\hat{p}_j \): frequency in \(A_j \)

 \(\hat{p}_{j_k}^{(k)} \): marginal freq. in \(r \)-th interval

- Null distribution under independence

 \[
 T_N \implies \chi^2_{q^N - qN + N - 1} \quad (N \to \infty)
 \]

- Estimation for high-dimensional data is difficult.
Outline

1. Introduction

2. Kernel measures for dependence

3. Kernel measures for conditional dependence

4. Causal inference with kernels
 – Kernel-based Causal Learning algorithm –

5. Conclusion
Conditional Covariance on RKHS

Conditional Cross-covariance operator

\(X, Y, Z \) : random variables on \(\Omega_X, \Omega_Y, \Omega_Z \) (resp.).

\((H_X, k_X), (H_Y, k_Y), (H_Z, k_Z) : \) RKHS defined on \(\Omega_X, \Omega_Y, \Omega_Z \) (resp.).

- Conditional cross-covariance operator \(H_X \rightarrow H_Y \)

\[\Sigma_{Y|X} \equiv \Sigma_{YY} - \Sigma_{YZ} \Sigma_{ZZ}^{-1} \Sigma_{ZX} \]

- c.f. For Gaussian variables

Conditional covariance of \(Y \) given \(X \) is equal to

\[V_{Y|X} \equiv V_{YY} - V_{YZ} V_{ZZ}^{-1} V_{ZX} \]

(conditional covariance matrix)
Conditional independence with kernels

Theorem
Define the augmented variable \(\tilde{X} = (X, Z) \) and define a kernel on \(\Omega_X \times \Omega_Z \) by

\[k_{\tilde{X}} = k_X k_Z \]

Under some richness assumption, which is satisfied by Gaussian RBF kernels,

\[\Sigma_{y\tilde{X}|Z} = O \quad \iff \quad X \perp Y \mid Z \]

\[\Sigma_{y\tilde{X}|Z} = O \quad \iff \quad \Sigma_{\tilde{Y}X|Z} = O \quad \iff \quad \Sigma_{\tilde{Y}\tilde{X}|Z} = O \quad \iff \quad X \perp Y \mid Z \]
Kernel conditional dependence measure

- Hilbert-Schmidt conditional independent criterion

\[
HSCIC(X,Y \mid Z) = \left\| \Sigma_{YX|Z} \right\|_{HS}^2
\]

- Empirical measure

\[
HSCIC_{emp}(X,Y \mid Z) = \left\| \hat{\Sigma}^{(N)}_{YX} - \hat{\Sigma}^{(N)}_{YZ} \left(\hat{\Sigma}^{(N)}_{ZZ} + \varepsilon_N I \right)^{-1} \hat{\Sigma}^{(N)}_{Z\bar{X}} \right\|_{HS}^2
\]

\[
= \text{Tr} \left[G_X G_Y - 2G_X \left(G_Z + N\varepsilon_N I_N \right)^{-1} G_Z G_Y \right.
\]
\[
+ G_Z \left(G_Z + N\varepsilon_N I_N \right)^{-1} G_X \left(G_Z + N\varepsilon_N I_N \right)^{-1} G_Z G_Y \left. \right]
\]

Consistency

If the regularization coefficient satisfies

\[
\varepsilon_N \to 0 \quad N^{1/3} \varepsilon_N \to \infty,
\]

then

\[
HSCIC_{emp} \to HSCIC \quad (N \to \infty)
\]
Conditional Independence Test

Permutation test with the kernel measure

\[
T_N = \left\| \hat{\Sigma}_{XY|Z}^{(N)} \right\|_{HS}^2
\]

- If \(Z \) takes values in a finite set \(\{1, \ldots, L\} \), set

\[
A_\ell = \{ i \mid Z_i = \ell \} \quad (\ell = 1, \ldots, L),
\]

otherwise, partition the values of \(Z \) into \(L \) subsets \(C_1, \ldots, C_L \), and set

\[
A_\ell = \{ i \mid Z_i \in C_\ell \} \quad (\ell = 1, \ldots, L).
\]

- Repeat the following process \(B \) times: (\(b = 1, \ldots, B \))
 1. Generate pseudo cond. independent data \(D^{(b)} \) by permuting \(X \) data within each \(A_\ell \).
 2. Compute \(T_N^{(b)} \) for the data \(D^{(b)} \).

 → Approximate null distribution under cond. indep. assumption

- Set the threshold by the \((1-\alpha)\)-percentile of the empirical distributions of \(T_N^{(b)} \).
Outline

1. Introduction
2. Kernel measures for dependence
3. Kernel measures for conditional dependence
4. Causal inference with kernels
 – Kernel-based Causal Learning algorithm –
5. Conclusion
Causal Inference from Non-Experimental Data

- **Constraint-based method**
 - Determine the (cond.) independence of the underlying probability.
 - Relatively efficient for hidden variables.

- **Score-based method**
 - Structure learning of Bayesian network
 - Able to use informative prior.
 - Optimization in huge search space.
 - Many methods assume discrete variables (discretization) or parametric model.

- **Kernel-based Causal Learning**
 - Constraint-based method. A variant of Inductive Causation (IC)
Fundamental Assumptions

■ Causal Markov Condition
 - Causal relation is expressed by a DAG, and the probability generating data is consistent with the graph.

\[p(X) = p(X_a)p(X_b)p(X_c | X_a, X_b)p(X_d | X_c) \]

■ Causal Faithfulness Condition
 - The inferred DAG (causal structure) must express all the independence relations.

This includes the true probability as a special case, but the structure does not express \(a \perp b \).
Inductive Causation

IC algorithm (Verma&Pearl 90)

Input – \(V \): set of variables, \(D \): dataset of the variables.

Output – DAG (specifies an equivalence class, directed partially)

1. For each \((a,b) \in V \times V \ (a \neq b)\) , search for \(S_{ab} \subseteq V \setminus \{a,b\} \) such that
 \[X_a \perp\!\!\!\!\!\!\!\!\!\!\perp X_b \mid S_{ab} \]
 Construct an **undirected graph (skeleton)** by making an edge between \(a \) and \(b \) if and only if no set \(S_{ab} \) can be found.

2. For each nonadjacent pair \((a,b)\) with \(a \rightarrow c \leftarrow b \), direct the edges by \(a \rightarrow c \leftarrow b \) if \(c \not\in S_{ab} \)

3. Orient as many of undirected edges as possible on condition that neither new v-structures nor directed cycles are created.
Kernel-based Causal Learning

Limitations of the previous implementations of IC

- Linear / discrete assumptions in Step 1.

 e.g. PC-algorithm (Spirtes & Glymour 91) uses partial correlation and χ^2 test.

 Difficulty in testing conditional independence for continuous variables.

 \rightarrow kernel method!

- Errors of the skeleton in Step 1 cannot be recovered in the later steps.

 \rightarrow voting method for direction

Note: The error in Step 1 is inevitable by statistical tests.
KCL algorithm (Sun et al. ICML07, Sun et al. 2007)

- Dependence measure:
 \[\hat{H}_{YX}^{(N)} = HSIC = \left\| \hat{\Sigma}_{YX}^{(N)} \right\|_{HS}^2 \]

- Conditional dependence measure:
 \[\hat{H}_{YX|Z}^{(N)} = \frac{\left\| \hat{\Sigma}_{YX|Z}^{(N)} \right\|_{HS}^2}{\| C_{ZZ} \|_{HS}^2} \]

where the operator \(C_{ZZ} : H_Z \rightarrow H_Z \) is defined by

\[\langle f, C_{ZZ} g \rangle = E[f(Z)g(Z)] \]

Motivation: make \(\left\| \hat{\Sigma}_{YX}^{(N)} \right\|_{HS}^2 \) and \(\left\| \hat{\Sigma}_{YX|Z}^{(N)} \right\|_{HS}^2 \) comparable

Theorem

If \((X, Y) \perp\!\!\!\perp Z \),
\[\left\| \hat{\Sigma}_{YX|Z}^{(N)} \right\|_{HS}^2 = \| C_{ZZ} \|_{HS}^2 \left\| \hat{\Sigma}_{YX}^{(N)} \right\|_{HS}^2 \]
Outline of KCL algorithm: IC algorithm is modified as follows.

KCL-1: Skeleton by statistical tests with the kernel measure $\hat{\mathcal{H}}_{YX|Z}^{(N)}$

1. Permutation tests of conditional independence $X \perp Y \mid S_{XY}$
2. Connect X and Y if no such S_{XY} exists.

The candidates of S_{XY} should be restricted → explained later.

KCL-2: Voting for unshielded triplets

For each triplet $X - Z - Y$ (X and Y not adjacent), compute

$$M_{XY|Z} \equiv \frac{\hat{\mathcal{H}}_{YX|Z}^{(N)}}{\hat{\mathcal{H}}_{YX}^{(N)}}, \quad M_{YZ|X}, \quad M_{ZX|Y}$$

Give a vote to the direction $X \rightarrow Z$ and $Y \rightarrow Z$ if

$$M_{XY|Z} > \max\{M_{YZ|X}, M_{ZX|Y}\}$$

Make an arrow to each edge if a vote is given ("\leftrightarrow" is allowed).

KCL-3: Same as IC-3
KCL-4: Voting for shielded triplets

For each triplet $X - Z - Y$ (X and Y adjacent), compute

\[M_{XY|Z}, M_{YZ|X}, M_{ZX|Y} \]

Give a vote to the direction $X \to Z$ and $Y \to Z$ if

\[M_{XY|Z} > \max\{M_{YZ|X}, M_{ZX|Y}\} \]

Make an arrow to each edge if a vote is given ("\(\leftrightarrow\)" is allowed).

- The resulting graph is mixed: undirected — , directed \to, or bi-directed \leftrightarrow.

- Motivation of KCL-2 and 4:
 - By inevitable errors in statistical tests, it is preferred that the orientation process be separated from Step 1.
 - Step 4 looks for more directed edges.
 It relies on the heuristic assumption that conditioning common effect strengthens the dependence between the causes.
Illustration of KCL

- true
- KCL-1
- KCL-2
- KCL-3
- KCL-4

Heuristic assumption: \[M\left(\begin{array}{c}
\text{(Diagram 1)}
\end{array}\right) > M\left(\begin{array}{c}
\text{(Diagram 2)}
\end{array}\right), M\left(\begin{array}{c}
\text{(Diagram 3)}
\end{array}\right) \]

Conditioning common effect strengthens the dependence between the causes.
Details of Step 1

Auxiliary partially directed graphs are used for restricting conditioning variables S_{XY}.

– Initialize G by a complete undirected graph.

– 1(a): Unconditional independence tests
 For all pairs (X, Y), apply permutation tests for $X \perp Y$ with $\hat{H}^{(N)}_{YX}$
 Remove $X – Y$ if the independence is accepted.

– 1(b): Auxiliary graph
 Orient G by majority votes on all triplets $X – Y – Z$.

– 1(c): Cond. indep. tests $X \perp Y \mid S_{XY}$ with $\hat{H}^{(N)}_{YX|Z}$ in the auxiliary graph.
 S_{XY}: only variables in the directed (incl. undirected) path between X and Y.

– 1(d): Change the directed edges into undirected ones to make a skeleton G.

– 1(e): Repeat (a)-(d) until nothing changes.
Experiments with Simple Networks

(A) $X_1 \rightarrow X_2 \rightarrow X_3$

$P(X_1 = 1) = 0.6$
$P(X_2 = X_1 \mid X_1) = 0.8$
$X_3 = \text{NoisyOR}(X_1, X_2)$

(B) $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$

$P(X_1 = 1) = 0.6$
$P(X_2 = 1) = 0.5$
$P(X_3 = 1) = 0.4$
$X_4 = \text{NoisyOR}(X_1, X_2, X_3)$

(C) $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$

$P(X_1 = 1) = 0.6$
$P(X_2 = X_1 \mid X_1) = 0.8$
$X_3 = \text{NoisyOR}(X_1, X_2)$
$X_4 = \text{NoisyOR}(X_1, X_2, X_3)$

$X_{n+1} = \text{NoisyOR}(X_1, \ldots, X_n)$

$\iff P(X_{n+1} = 1 \mid X_1, \ldots, X_n) = 0.8 \times (1 - 0.2^{X_1 + \cdots + X_n}) + 0.2$
Results
(200 data,
1000 runs)

KCL

PC

BN-PC
(MI is used)
[Cheng et al. ’02]

BDe
(Score-based)
[Heckerman et al. ’97]
Hidden Common Cause

- One of the difficulties in causal leaning is possible existence of common hidden causes.

- Some methods can handle hidden variables. FCI (Fast Causal Inference, Spirtes et al. 93) extends PC to allow hidden variables.
KCL for hidden common causes

- A bi-directional arrow (↔) given by KCL may suggest existence of a hidden common cause. Empirically verified in some situations, but no theoretical justification.

- Illustration

 ![Diagram of Truth, Voting, and Result with bi-directional arrows]

<table>
<thead>
<tr>
<th>Truth</th>
<th>Voting</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Truth Diagram]</td>
<td>![Voting Diagram]</td>
<td>![Result Diagram]</td>
</tr>
</tbody>
</table>
Experiments (200 data, 1000 runs)

Truth

Latent

OR gates

Noisy OR gates

Result of KCL
Experiments with Real Data

Smoking and Cancer

- Data: 5 continuous variables, $N = 44$
 - CIGARET: Cigarettes sales in 43 states in US and District of Columbia
 - BLADDER, LUNG, KIDNEY, LEUKEMIA: death rates from various cancers

- Results
Montana Economic Outlook Poll (1992)

- Data: 7 discrete variables, \(N = 209 \)
 - AGE (3), SEX (2), INCOME (3), POLITICAL (3), AREA (3), FINANCIAL status (3, better/same/worse than a year ago), OUTLOOK (2)
Conclusion

Kernel measures of (conditional) dependence
- Covariance and conditional covariance considered on RKHS provide criterion of independence and conditional independence, resp.
- Kernel measures are proposed for (conditional) dependence.

Causal inference from non-experimental data
- Kernel-based Causal Learning (KCL) algorithm
 - Constraint-based method: A variant of Inductive Causation
 - Conditional independence tests with kernel measures
 - Voting method for orienting edges
 - KCL can handle discrete and continuous domains in a unified way.
 - More theoretical justification is required.
References

