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Kernel Methodology: Feature Space by RKHS
Kernel methodology = Data analysis by transforming data into a
high-dimensional feature space given by RKHS.

k: positive definite kernel.

Φ : X → Hk, x 7→ Φ(x) := k(·, x)

X 3 X1, . . . , XN 7→ Φ(X1), . . . ,Φ(XN ) ∈ Hk

Feature space (RKHS)

xi

Hk

X xｊ

,
ixφ

jxφ

Space of original data

feature map

),()( xkx ⋅=Φ

Apply linear methods on RKHS – kernelization
The computation of the inner product is feasible.
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Higher-order Statistics by Positive Definite Kernel
• A nonlinear kernel includes higher-order statistics.

Example: Polynomial kernel on R: k(y, x) = (yx+ 1)d.

• Data are transformed as k(·, X1), . . . , k(·, XN ) ∈ Hk.
• Regarding Φ(X) = k(y,X) as a function of y,

k(y,X) = Xdyd+ad−1X
d−1yd−1+· · ·+a1Xy+a0 (ai 6= 0).

• W.r.t. the basis {1, y, y2, . . . , yd} of Hk, the component of
the feature vector Φ(X) is given by

(Xd, ad−1X
d−1, . . . , a1X, a0)T .

This includes the statistics (X,X2, . . . , Xd).

• Similar nonlinear statistics appear in other kernels such as
Gaussian, Lapacian, etc.
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Properties of Kernel Method
• The inner product of H is efficiently computable, while the

dimensionality may be infinite: for f =
∑n

i=1 aiΦ(Xi) and
g =

∑n
i=1 biΦ(Xi),

〈f, g〉 =
∑n

i,j=1aibjk(Xi, Xj) (Gram matrix)

• The computational cost essentially depends on the sample
size n.
c.f. L2 inner product / power series expansion

(X,Y, Z,W ) 7→ (X,Y, Z,W,X2, Y 2, Z2,W 2, XY,XZ,XW,Y Z, . . .)

• Advantageous for high-dimensional data. For a large
sample, some techniques are needed (discussed in this
chapter).

• Data may not be vectorial. The methods are applicable to
structured data, such as strings, graphs, etc. (Discussed
later).
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Kernel PCA I

Kernel PCA ([SSM98])

• X1, . . . , XN : data on X .

• k : X × X positive definite kernel, Hk: RKHS.

• Transform the data into Hk by Φ(x) = k(·, x) :

X1, . . . , XN 7→ Φ(X1), . . . ,Φ(XN ).

• Apply PCA to {Φ(Xi)} on Hk.

1st principal direction = arg max
‖f‖=1

Var[〈f,Φ(X)〉]

• It suffices to use f =
∑N

i=1 aiΦ̃(Xi), where
Φ̃(Xi) = Φ(Xi)− 1

N

∑N
j=1Φ(Xj).
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Kernel PCA II
• The PCA solution:
p-th principal direction: f (p) =

∑N
i=1 a

(p)
i Φ̃(Xi).

maxα(p)T K̃2α(p) subj. to

{
α(p)K̃a(p) = 1

α(p)K̃a(r) = 0 (r = 1, . . . , p− 1).

where K̃ is N ×N matrix with K̃ij = 〈Φ̃(Xi), Φ̃(Xj)〉.

K̃ij = k(Xi, Xj)− 1
N

∑N
b=1k(Xi, Xb)− 1

N

∑N
a=1k(Xa, Xj)

+ 1
N2

∑N
a,b=1k(Xa, Xb) (centered Gram matrix).

Principal components of kernel PCA

K̃ =
∑N

p=1λpu
(p)u(p)T : eigen decomposition (λ1 ≥ · · · ≥ λN ≥ 0).

p-th principal component of the data Xi

= 〈Φ̃(Xi),
∑N

j=1α
(p)
j Φ̃(Xj)〉 =

∑N
j=1

√
λpu

(p)
i .
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Example of Kernel PCA:

• Wine data (from UCI repository [MA94]).
• 178 data of 13 dimension, which represent chemical

measurements of different wine.
• There are three clusters corresponding to types of wine.
• The classes are shown in different colors, but not used for

the PCA analysis.

Linear PCA KPCA Gaussian kernel
linear σ = 3
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• KPCA with Gaussian kernels. k(x, y) = exp
{
− 1
σ2 ‖x− y‖2

}
.

σ = 2 σ = 4 σ = 5

• The results depends much on the kernel parameter σ.
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Application of Kernel PCA to Noise Reduction
• PCA can be used for noise reduction (principal directions

represent signal).
• Apply kernel PCA to noise reduction:

• Compute d-dim. subspace Vd spanned by f (1), . . . , f (d).
• Π(x) (∈ Hk): orthogonal projection of Φ(x) onto Vd.
• Find a point y in the original space such that

y = arg min
y∈X
‖Φ(y)−Π(x)‖Hk

.

Note: Π(x) is not necessarily in the image of Φ.
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USPS hand-written digits data:
7191 images of hand-written digits of 16 × 16 pixels.

Sample of denoised images (linear PCA)

Sample of noisy images 

Sample of denoised images (kernel PCA, Gaussian kernel)

Sample of original images (not used for experiments)

Generated by Matlab Stprtool (by V. Franc).
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Properties of kernel PCA

• Nonlinear PCA: Nonlinear features can be extracted.

• The results depend on the choice of kernel and kernel
parameters. Interpreting the results may not be
straightforward.

• Can be used for a preprocessing of other analysis such as
classification and regression. (dimension reduction /
feature extraction).

• How to choose a kernel and kernel parameter?
• Cross-validation is not possible (unsupervised learning).
• If it is a preprocessing, the performance of the final analysis

should be maximized.
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Canonical Correlation Analysis I

Canonical correlation analysis (CCA)

• Linear dependence of two multi-dimensional variables.
• Data (X1, Y1), . . . , (XN , YN ), Xi ∈ Rm, Yi ∈ R`.

• Find the directions a and b so that the correlation between
the projections aTX and bTY is maximized:

ρ = max
a∈Rm,b∈R`

Corr[aTX, bTY ]

X Y

a

aTX bTY

b
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Canonical Correlation Analysis II
• CCA:

ρ = max
a∈Rm,b∈R`

aT V̂XY b√
aT V̂XXa

√
bT V̂Y Y b

,

V̂XX , V̂Y Y , V̂XY : sample (co)variance matrices.

• Equivalent form:

max aT V̂XY b subject to aT V̂XXa = bT V̂Y Y b = 1.

• Solution = the largest ρ for the generalized eigenproblem:(
O V̂XY
V̂Y X O

)(
a

b

)
= ρ

(
V̂XX O

O V̂Y Y

)(
a

b

)
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Canonical Correlation Analysis III
Derivation:
Lagrange multiplier method.

L(a, b;µ, ν) = aT V̂XY b+
µ

2
(aT V̂XXa− 1) +

ν

2
(bT V̂Y Y b− 1).

From ∂L/∂a = 0, ∂L/∂b = 0,

V̂XY b+ µV̂XXa = 0, V̂Y Xa+ νV̂Y Y b = 0.

From ∂L/∂µ = 0, ∂L/∂ν = 0,

aT V̂XXa = bT V̂Y Y b = 1. (constraints)

1st equation⇒ aT V̂XY b = −µaT V̂XXa = −µ .
2nd equation⇒ bT V̂Y Xa = −νbT V̂Y Y b = −ν.

Thus, µ = ν. Set ρ = −µ = −ν. Then,

V̂XY b = ρV̂XXa, V̂Y Xa = ρV̂Y Y b.
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Kernel CCA I

Kernel CCA: kernelization of CCA ([Aka01, MRB01, BJ02]).

• Data: (X1, Y1), . . . , (XN , YN ).
• Xi, Yi: arbitrary variables taking values in X and Y (resp.).

• Transforming: prepare kernels kX on X and kY on Y.
X1, . . . , XN 7→ ΦX (X1), . . . ,ΦX (XN ) ∈ HX .
Y1, . . . , YN 7→ ΦY(Y1), . . . ,ΦY(YN ) ∈ HY .

• Apply CCA on HX and HY .

X Y
f

Φx(X) )(Xf
Φx

Φy(Y)
Φyg

)(Yg
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Kernel CCA II

ρ = max
f∈HX ,g∈HY

∑N
i=1〈f, Φ̃X (Xi)〉HX 〈g, Φ̃Y(Yi)〉HY√∑N

i=1〈f, Φ̃X (Xi)〉2HX

√∑N
i=1〈g, Φ̃Y(Yi)〉2HY

= max
f∈HX ,g∈HY

Cov[f(Xi), g(Yi)]

Var[f(Xi)]1/2Var[g(Yi)]1/2
,

where Φ̃X (Xi) = ΦX (Xi)− 1
N

∑N
j=1ΦX (Xj), and Φ̃Y(Yi) similar.

• We can assume f =
∑N
i=1 αiΦ̃X (Xi) and g =

∑N
i=1 βiΦ̃Y(Yi).

ρ = max
α∈RN ,β∈RN

αT K̃XK̃Y β√
αT K̃2

Xα
√
βT K̃2

Y β
,

K̃X and K̃Y are the centered Gram matrices.
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Kernel CCA III

• This problem is ill-posed with correlation 1, (if
R(K̃X)) ∩R(K̃Y )) 6= 0).

• Kernel CCA with regularization:

max
f∈HX ,g∈HY

∑
i〈f, Φ̃X (Xi)〉HX 〈g, Φ̃Y(Yi)〉HY√∑

i〈f, Φ̃X (Xi)〉2HX
+ εN‖f‖2

√∑
i〈g, Φ̃Y(Yi)〉2HY

+ εN‖g‖2

• Kernel CCA

(
O K̃XK̃Y

K̃Y K̃X O

)(
α

β

)
= ρ

(
K̃2
X + εNKX O

O K̃2
Y + εNKy

)(
α

β

)
The Solution is obtained as a generalized eigenproblem.
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Some Properties of Kernel CCA

• The multiple feature vectors (second, third, eigenvectors)
can be also obtained.

• The canonical correlation value may not represent the
dependence value well (by regularization).

• The results depends on the choice of kernels and εN .
Choice of parameters:

• Cross-validation may be possible.
• Some methods have been proposed ([HSST04] See later.).

• The consistency is known if εN decreases sufficiently
slowly as N →∞ ([FBG07]).
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Toy Example of Kernel CCA

X, Y : one-dimensional. Gaussian RBF kernels are used.
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Application of Kernel CCA to Image Retrieval ([HSST04])

Idea: use d eigenvectors f1, . . . , fd and g1, . . . , gd as the feature
spaces which contain the dependence between X and Y .

• Xi: image, Yi: text (extracted from the same webpage).Experimental Results 19
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Figure 5 Images retrieved for the text query: ”at phoenix sky harbor on july
6, 1997. 757-2s7, n907wa phoenix suns taxis past n902aw teamwork america
west america west 757-2s7, n907wa phoenix suns taxis past n901aw arizona at
phoenix sky harbor on july 6, 1997.” The actual match is the middle picture in
the first row.

and the reminding eigenvectors would not necessarily add meaningful semantic
information.

It is visible that the kernel-CCA significantly outperformes the GVSM method
both in content retrieval and in mate retrieval.

5.3 Regularisation Parameter

We next verify that the method of selecting the regularisation parameter κ
a priori gives a value performed well. We randomly split each class into two
halves which were used as training and test data accordingly, we keep this
divided set for all runs. We set the value of the incomplete Gram-Schmidt
orthogonolisation precision parameter η = 0.5 and run over possible values
κ where for each value we test its content-based and mate-based retrieval
performance.

Let κ̂ be the previous optimal choice of the regularisation parameter κ̂ = κ = 7.
As we define the new optimal value of κ by its performance on the testing set,
we can say that this method is biased (loosely its cheating). Though we will
show that despite this, the difference between the performance of the biased κ
and our a priori κ̂ is slight.

In table 5 we compare the overall performance of the Content Based (CB)
performance in respect to the different values of κ and in figures 8 and 9
we view the plotting of the comparison. We observe that the difference in

Yi: ‘Phoenix’, ‘sky’, ‘harbor’, ...

• For text, “bag-of-words” kernel (histogram of frequency of words)
is used.

• Compute the d-eigenvectors f1, . . . , fd and g1, . . . , gd by kernel
CCA.

• The regularization parameter ε is chosen so that

ε = arg max ‖ρ(ε)− ρR(ε)‖

(ρ(ε): eigenspectrum of KCCA. ρR: eigenspectrum with
randomized data.)
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• Compute the feature vectors by projections
ξi = (〈ΦX (Xi), fa〉HX )da=1 ∈ Rd for all images.

• For a text query Ynew, compute the feature
ζ = (〈ΦY(Ynew), ga〉HY )da=1 ∈ Rd, and output the image such that

arg maxi = ξTi ζ.
Experimental Results 17

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

100

110

Figure 3 Images retrieved for the text query: ”height: 6-11 weight: 235 lbs
position: forward born: september 18, 1968, split, croatia college: none”

Method overall success

GVSM 72.3%

KCCA (30) 79.12%

KCCA (5) 88.25%

Table 2 Success rate over all image sets (1 − 200).

few eigenvectors. Hence a minimal selection of 5 eigenvectors is sufficient to
obtain a high success rate.

5.2 Mate-Based Retrieval

In the experiment we used the first 150 and 30 α̃ eigenvectors and β̃ eigenvectors
(corresponding to the largest eigenvalues). We computed the 10 and 30 images
for which their semantic feature vector has the closest inner product with the
semantic feature vector of the chosen text. A successful match is considered if
the image that actually matched the chosen text is contained in this set. We
compute the success as the average of 10 runs (Figure 5 - retrieval example for
set of 5 images).

Image set GVSM success KCCA success (30) KCCA success (150)

10 8% 17.19% 59.5%

30 19% 32.32% 69%

Table 3 Success cross-results between kernel-cca & generalised vector space.

In Table 3 we compare the performance of the KCCA algorithm with the GVSM

From Hardoon et al. Neural Computation (2004).
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Linear Classifier

• (X1, Y1), . . . , (XN , YN ): data
• Xi: explanatory variable (m-dimensional)
• Yi ∈ {+1,−1} binary,

• Linear classifier

f(x) = sgn
(
wTx+ b

)

y = fw(x)

fw(x)≧0

fw(x) < 0

27 / 65



Large Margin Classifier I

Linear support vector machine (in Rm)

• Assumption: the data is linearly separable.

• Large margin criterion:
Among infinite number of separating hyperplanes, choose
the one to give the largest margin.

• Margin = distance of two classes measured along the
direction of w.

• The classifying hyperplane is the middle of the margin.
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Large Margin Classifier II

To fix a scale, assume{
min(wTXi + b) = 1 i : Yi = +1,

max(wTXi + b) = −1 i : Yi = −1.

Then,

Margin =
2

‖w‖ -8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

w
support vector
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Large Margin Classifier III
• Large margin linear classifier

max
1

‖w‖
subj. to

{
wTXi + b ≥ 1 if Yi = +1,

wTXi + b ≤ −1 if Yi = −1.

Equivalently,

Linear support vector machine (hard margin)

min
w,b
‖w‖2 subject to Yi(w

TXi + b) ≥ 1 (∀i).

• This problem is quadratic programming (QP, quadratic
objective function with linear constraints. Discussed later).

• free from local minima!
• Many standard solvers available.
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SVM with Soft Margin

Relax the separability assumption. The linear separability is too
restrictive in practice.

• Hard constraint: Yi(w
TXi + b) ≥ 1

• Soft constraint: Yi(w
TXi + b) ≥ 1− ξi (ξi ≥ 0)

Linear support vector machine (soft margin)

min
w,b,ξi

‖w‖2+C

N∑
i=1

ξi subj. to

{
Yi(w

TXi + b) ≥ 1− ξi,
ξi ≥ 0.

• The optimization is still QP.

• C is a hyper-parameter, which we have to decide.
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Soft Margin as Regularization

• Soft margin linear SVM is equivalent to the following
regularization problem (λ = 1/C):

min
w,b

N∑
i=1

(
1− Yi(wTXi + b)

)
+

+ λ‖w‖2

where
(z)+ = max(z, 0)

z0

max(z,0)

• `(f(x), y) = (1− yf(x))+: hinge loss.
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Tikhonov Regularization
General theory of regularization

• When the solution of the optimization

min
α∈A

Ω(α)

(A ⊂ H) is not unique or stable, a regularization technique
is often used.

• Tikhonov regularization: add a regularization term (or
penalty term), e.g.,

min
α∈A

Ω(α) + λ‖α‖2.

λ > 0: regularization coefficient.
• The solution is often unique and stable.
• Other regularization terms, such as ‖α‖ and

∑
i |αi|, are

also possible, but differentiability may be lost.
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Tikhonov Regularization II
• Example

• Ill-posed problem:

min
f

(Yi − f(Xi))
2.

Many f give zero error, if f is taken from a large space.

• Regularized objective function

min
f

(Yi − f(Xi))
2 + λ‖f‖2

finds a unique solution, which is often smoother
⇒ Kernel ridge regression.
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SVM with Kernels I

Kernelization of linear SVM

• (X1, Y1), . . . , (XN , YN ): data
• Xi: arbitrary covariate taking values in X ,
• Yi ∈ {+1,−1} binary,

• k: positive definite kernel on X . H: associated RKHS.

• Φ(Xi) = k(·, Xi): transformed data in H.

• Linear classifier on RKHS

f(x) = sgn
(
〈h,Φ(x)〉H + b

)
= sgn(h(x) + b).
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SVM with kernels II
• Large margin objective function (soft margin):

min
h,b,ξi

‖h‖2H+C

N∑
i=1

ξi subj. to

{
Yi(〈h,Φ(Xi)〉+ b) ≥ 1− ξi,
ξi ≥ 0,

or equivalently

min
h,b

N∑
i=1

(
1− Yi(〈h,Φ(Xi)〉+ b)

)
+

+ λ‖h‖2

• It suffices to assume

h =
∑N

i=1ciΦ(Xi)

The orthogonal direction only increases the regularization
term without changing the first term.

• Note

‖h‖2 =
∑N

i,j=1cicjk(Xi, Xj), 〈h,Φ(Xi)〉 =
∑N

j=1cjk(Xi, Xj).
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SVM with kernels III

In summary,

SVM with kernel

min
ci,b,ξi

N∑
i,j=1

cicjk(Xi, Xj) + C
N∑
i=1

ξi,

subj. to

{
Yi(
∑N

j=1k(Xi, Xj)cj + b) ≥ 1− ξi,
ξi ≥ 0.

• The optimization is numerically solved with QP.

• The dual form is simpler to solve (discussed later.)

• The parameter C and the kernel are often chosen by
cross-validation.
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Demonstration of SVM

Webpages for SVM Java applet

• http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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Results on character recognition

MNIST: Handwritten digit recognition
28× 28 binary pixels.

60000 training data
10000 test data

k-NN
Euclid

10PCA
+
quad.

RBF +
lin.

LeNet-
4

LeNet-
5

SVM
poly4

RS-
SVM
poly5

Test
error
(%)

5.0 3.3 3.6 1.1 0.95 1.1 1.0

Taken from [LBBH01]
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Mini-summary on SVM
• Kernel trick (a common property of kernel methods):

• linear classifier on RKHS.
• High-dimensional feature space, but the computation of

inner product is easy.

• Large margin criterion
• May not be the Bayes optimal, but causes other good

properties.

• Quadratic programming:
• The objective function is solved by the standard QP.

• Sparse representation:
• The classifier is represented by a small number of support

vectors (discussed in the next lecture).
• Regularization:

• The soft margin objective function is equivalent to the
margin loss with regularization.
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Review on Derivation of Kernel Methods

• For the objective function of kernel methods, the solution
f ∈ Hk has the form

f =

N∑
i=1

αik(·, Xi).

• By plugging the above form in the objective function, the
problem can be typically written by Gram matrices.

• Optimize the objective function by a suitable method, e.g.
matrix inversion, eigendecomposition, quadratic program,
etc.
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Representer Theorem I
Minimization problems on RKHS

min
f∈Hk

N∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2 (kernel ridge regression),

min
f∈Hk,b

N∑
i=1

(
1− (Yif(Xi) + b)

)
+

+ λ‖f‖2 (SVM).

min
f∈Hk

[
−
∑N

i=1

(
f(Xi)− 1

N

∑N
j=1f(Xj)

)2]
+I(‖f‖) (Kernel PCA),

where I(t) = 0 for t ≤ 1 and =∞ for t > 1.

We have seen that the solution can be taken from

f =

N∑
i=1

αik(·, Xi).
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Representer Theorem II
• General problem:

• H: RKHS with associated with a positive definite kernel k.
• X1, . . . , XN , Y1, . . . , YN : data.
• h1(x), . . . , hm(x): fixed functions.
• Ψ : [0∞)→ R ∪ {+∞}: non-decreasing function

(regularization).

Minimization

min
f∈H,c∈Rm

L
(
{Xi}Ni=1, {Yi}Ni=1, {f(Xi)+

∑m
a=1 caha(Xi)}Ni=1

)
+Ψ(‖f‖).

Representer theorem
The solution of the above minimization is given by the form

f =
∑N

i=1αik(·, Xi).

• The optimization in an high (or infinite) dim. space is
reduced to the problem of N dimension (sample size).
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Proof of Representer Theorem
• Decomposition:

Hk = H0 ⊕H⊥0 ,

H0 = span{k(·, X1), . . . , k(·, XN )}, H⊥0 : orthogonal
complement.
Decompose

f = f0 + f⊥

accordingly.
• Because

〈f⊥, k(·, Xi)〉 = 0,

the loss function L does not change by replacing f with f0.
• The second term:

‖f0‖ ≤ ‖f‖ =⇒ Ψ(‖f0‖) ≤ Ψ(‖f‖).

• Thus, the optimum f can be in the space H0.
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Kernel Fisher Discriminant Analysis
• Fisher’s linear discriminant analysis (LDA):

• X: m-dimensional explanatory variable.
• Y represents binary classes. Y ∈ {±1}.
• Find the linear classifier

h(x) = wTX + b

so that it maximizes

J(w) =
Between-class variance along w

Sum of within-class variances along w
.

• Kernel Fisher Discriminant Analysis (Kernel FDA):
• Find the linear classifier in RKHS,

h(x) = f(x) + b = 〈f,Φ(x)〉+ b

so that it maximizes

JH(f) =
Between-class variance along f

Sum of within-class variances along f
.
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Kernel Logistic Regression
• Logistic regression:

• X: m-dimensional explanatory variable
• Y represents L classes.
Y ∈ {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, . . . , 0, 1)}.

• In Binary case (Y ∈ {±1}),

P (Y = +1|X) =
ea

TX+b

1 + eaTX+b
=

1

1 + e−(aTX+b)
,

P (Y = −1|X) =
1

1 + eaX+b
,

or equivalently

P (Y |X) =
1

1 + e−Y (aTX+b)
(Y ∈ {±1}).

• With sample (X1, Y1), . . . , (XN , YN ),

max
a,b

N∑
i=1

− log(1 + e−Yi(a
TXi+b)).
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• Kernel Logistic Regression: ([Rot01, ZH05])

• Objective function

min
f,b

N∑
i=1

log(1 + e−Yi(f(Xi)+b)) + λ‖f‖2

• The objective function is convex, but not so simple as QP.
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Kernel K-means Clustering

• K-means clustering:

• Partition X1, . . . , XN into K clusters C1, . . . , CK .
• Objective

min

K∑
k=1

∑
Xi∈Ck

‖Xi −mk‖2

where mk = 1
|Ck|

∑
Xj∈Ck

Xj (mean vector in Ck).
• Iterative algorithm is used.

• Kernel K-means clustering: ([DGK04])
Since the mean and norm can be computed for feature
vectors, we can kernelize K-means clustering.
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C1 C2

m2
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Other Kernel Methods

• Kernel PLS (partial least square)

• Support vector regression (SVR)

• ν-SVM

• One-class SVM etc...
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Kernel Methodology

Kernel PCA

Kernel CCA

Introduction to Support Vector Machine

Representer theorem and other kernel methods

Further issues
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Choice of Kernel
How to choose / design a kernel?

• Reflect knowledge on the problem as much as possible.
(structured data)

• For supervised learning such as SVM, use
cross-validation.

• For unsupervised learning such as kernel PCA and kernel
CCA, there are no theoretically guaranteed methods so far.

Suggestions: make a relevant supervised method and use
cross-validation.

• Kernel learning:
• Multiple kernel learning (MKL): optimize a kernel among∑L

a=1 w`k`(x, y).
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Supervised and Unsupervised Learning

Supervised learning:

• Data for input X and output Y are prepared.

• Y is regarded as supervisor or teacher of the learning.

X 7→ f(X) ≈ Y.

• e.g. classification, regression, prediction.

Unsupervised learning:

• There is no teaching data Y .

• e.g. PCA, CCA, clustering.

Semisupervised learning is also considered.
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Empirical Loss and Expected Loss I

Supervised learning:

• D = {(X1, Y1), . . . , (Xn, Yn)}: training data. i.i.d. sample.

• Xi ∈ X : input, Yi ∈ Y: output.

• F ⊂ {f : X → Y}: function class.

Expected loss and empirical loss

• Loss function `(y, f) : measure discrepancy of Yi and
f(Xi).
e.g. `(y, f) = ‖y − f‖2 (square error)
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Empirical Loss and Expected Loss II

• Empirical loss (training error):

Ln(f) = Ên[`(Y, f(X))] =
1

n

n∑
i=1

`(Yi, f(Xi)) (f ∈ F).

• Expected loss (test error, prediction error): final goal of
learning is to minimize the expected loss:

L(f) = E[`(Y, f(X))] (f ∈ F).

• Learning must be done with data:

f̂ = arg min
f∈F

Ln(f).
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Examples of Loss Function

• Mean square error.
• `(y, f) = (y − f)2.

• Empirical loss: minf∈F
∑n
i=1(Yi − f(Xi))

2 (least mean
square).

• Expected loss = E[(Y − f(X))2] (mean square error)

• 0-1 loss. y, f(x) ∈ {±1}.
• `(y, f) = 1−yf(x)

2 .

• Empirical loss = ratio of errors: 1
n |{i | Yi 6= f(Xi)}|.

• Expected error = mean error rate: Pr(Y 6= f(X)).

• Log likelihood
• `(y, f) = − log p(y|f).

• Empirical loss = - Empirical log likelihood.

• Expected loss = - Expected log likelihood.
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Estimation of Expected Loss
• We wish to know the expected loss L(f̂).

L(f̂)− L̂n(f̂)︸ ︷︷ ︸
known

= E[`(Y, f̂(X))|D]− Ên[`(Y, f̂(X))]︸ ︷︷ ︸
?

.

• Approaches to analysis.
• Asymptotic expansion of the expectation:

e.g. ED

[
E[`(Y, f̂(X))]− Ên[`(Y, f̂(X))]

]
=
A

n
+ ...

=⇒ AIC, GIC.

• Upper bound: (PAC)

e.g. Pr
(
E[`(Y, f̂(X))|D] ≤ Ên[`(Y, f̂(X))] + ε

)
≤ Pr

(
sup
f∈F

(
E[`(Y, f(X))]− Ên[`(Y, f(X))]

)
≤ ε
)
≤ αe−βε

2n.

• For SVM the 2nd approach is often used, but not
discussed in this course.
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Cross-Validation I

• Cross-validation (CV): a method of estimating expected
loss.

• K-fold CV
• Partitioned data (randomly) into K subsamples.
• i = 1, . . . ,K

- Use i-th subsample for testing (validation), and use the
remaining data for training.

• Average the K losses.

• Leave-one-out CV (LOOCV)
• K = N . For i = 1, . . . , N , use i-th data for testing, and the

remaining data for training.
• Average N losses.
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Cross-Validation II

D1 D2 D3 DKD4 ...
1 .... .... N

Validation data

Training data

D1 D2 D3 DKData D4 ...
1 .... .... N

Validation data

Training data

D1 D2 D3 DKD4 ...
1 .... .... N

Validation data

Training data

K-fold cross-validation
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Cross-Validation III

• If data is an i.i.d. sample of size N , LOOCV is an unbiased
estimator for the expected error given by N − 1 training
data.

• CV (especially LOOCV) is computationally expensive.

62 / 65



Low-Rank Approximation I

• If the sample size N is large, operations on Gram matrix K
is not feasible.
Inversion, eigendecomposition costs O(N3).

• Low-rank approximation:

K ≈ RRT

where R is N × r matrix (r � N ).

K ≈ R RT
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Low-Rank Approximation II

• Computational cost is reduced drastically. For example, in
kernel ridge regression,

Y T (K + λIN )−1k(x) ≈ Y T (RRT + λIN )−1k(x)

=
1

λ

{
Y Tk(x)− Y TR(RTR+ λIr)

−1RTk(x)
}
,

which costs O(r2N + r3).

• Two popular methods for low-rank approximation:
• Incomplete Cholesky decomposition: sample complexity
O(r2N), space complexity O(rN).

• Nyström approximation: random sampling +
eigendecomposition.
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Summary of Section 3

• Various classical linear methods of data analysis can be
kernelized – efficient linear algorithms on RKHS.

Kernel PCA, SVM, kernel CCA, kernel FDA, etc.

• The solution often has the form

f =
∑N

i=1αik(·, Xi)

(representer theorem).

• The problem is reduced to operations on Gram matrices of
the sample size N .

• The kernel methods can be applied to any type of data
including non-vectorial (structured) data, such as graphs,
strings, etc, if a positive definite kernel is provided.
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