Kernel Method: Data Analysis with Positive Definite Kernels 7. Mean on RKHS and characteristic class

Kenji Fukumizu

The Institute of Statistical Mathematics Graduate University for Advanced Studies / Tokyo Institute of Technology

Nov. 17-26, 2010 Intensive Course at Tokyo Institute of Technology

Outline

- 1. Introduction
- 2. Mean on RKHS
- 3. Characteristic kernel

1. Introduction

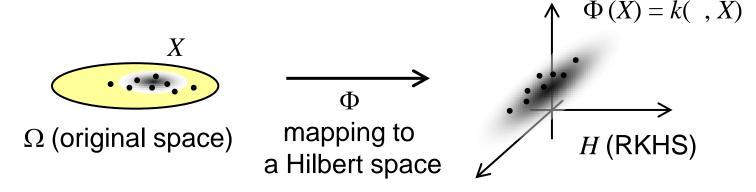
- 2. Mean on RKHS
- 3. Characteristic kernel

Introduction

- Kernel methods for statistical inference
 - We have seen that positive definite kernels are used for capturing 'nonlinearity' or 'high-order moments' of original data.

e.g. Support vector machine, kernel PCA, kernel CCA, etc.

 Kernelization: mapping data into a RKHS and apply linear methods on the RKHS.



- Consider more basic statistics!
 - Consider basic statistics (mean, variance, ...) on RKHS, and their meaning on the original space.
 - Basic statistics
 on Euclidean space
 Mean
 Covariance
 Conditional covariance
 Basic statistics
 on RKHS
 Mean
 Cross-covariance operator
 Conditional covariance

Outline

- 1. Introduction
- 2. Mean on RKHS
- 3. Characteristic kernel

Mean on RKHS I

 $(\mathcal{X}, \mathcal{B})$: measurable space.

X: random variable taking value on \mathcal{X} .

k: measurable positive definite kernel on \mathcal{X} .

H: RKHS defined by *k*.

 $\Phi(X) = k(\cdot, X)$: random variable on RKHS.

- Assume $E[\sqrt{k(X,X)}] < \infty$. (satisfied by a bounded kernel)
- We want to define the mean $E[\Phi(X)]$ of $\Phi(X)$ on *H*.

It can be defined as the integral of a Hilbert-valued function.

Mean on RKHS II

– Alternative definition:

Define the mean of *X* on *H* by $m_X \in H$ that satisfies

$$\langle m_X, f \rangle = E[f(X)] \quad (\forall f \in H)$$

– Intuition:

Sample mean
$$\hat{m}_X(u) = \frac{1}{N} \sum_{i=1}^N \Phi(X_i) = \frac{1}{N} \sum_{i=1}^N k(\cdot, X_i)$$

 $\langle \hat{m}_X, f \rangle = \frac{1}{N} \sum_{i=1}^N f(X_i) \qquad \Longrightarrow \qquad \langle m_X, f \rangle = E[f(X)]$

- Explicit form:

$$m_X(u) = E[k(u, X)] = \int k(u, x) dP(x)$$

$$\therefore) \quad m_X(u) = \langle m_X, k(\cdot, u) \rangle = E[k(X, u)].$$

We call $m_X(u)$ kernel mean.

Mean on RKHS III



- The kernel mean does exist uniquely.

Existence and uniqueness:

 $\left| E[f(X)] \right| \le E \left| \left\langle f, k(\cdot, X) \right\rangle | \le \| f \| E \| k(\cdot, X) \| = E\left[\sqrt{k(X, X)} \right] \| f \|.$

 $f \mapsto E[f(X)]$ is a bounded linear functional on *H*.

Use Riesz's lemma.

Mean on RKHS IV

 Intuition: the mean contains the information of the high-order moments.

X: R-valued random variable. k: pos.def. kernel on R.
Suppose pos. def. kernel k admits a power-series expansion on R.

$$k(u, x) = c_0 + c_1(xu) + c_2(xu)^2 + \cdots$$
 (c_i > 0)
e.g.) $k(x, u) = \exp(xu)$

The mean m_X works as a moment generating function:

$$m_{X}(u) = E[k(u, X)] = c_{0} + c_{1}E[X]u + c_{2}E[X^{2}]u^{2} + \cdots$$
$$\frac{1}{c_{\ell}}\frac{d^{\ell}}{du^{\ell}}m_{X}(u)\Big|_{u=0} = E[X^{\ell}]$$

Characteristic Kernel I

- \mathcal{P} : family of all the probabilities on a measurable space (Ω , \mathcal{B}).
- *H*: RKHS on Ω with a bounded measurable kernel *k*.
- m_P : mean on H for a probability $P \in \mathcal{P}$
- **Def.** The kernel k is called characteristic (w.r.t. P) if the mapping

$$\mathcal{P} \to H, \qquad P \mapsto m_P$$

is one-to-one.

The kernel mean by a characteristic kernel uniquely determines a probability.

$$m_P = m_Q \quad \Leftrightarrow \quad P = Q$$

i.e.

$$E_{X \sim P}[k(u, X)] = E_{X \sim Q}[k(u, X)] \quad \Leftrightarrow \quad P = Q$$

Characteristic Kernel II

- Generalization of characteristic function With Fourier kernel $k_F(x, y) = \exp(\sqrt{-1} x^T y)$

Ch.f._{*X*}(*u*) = $E[k_F(X, u)]$.

- The characteristic function uniquely determines a Borel probability on \mathbf{R}^{m} .
- The kernel mean m_X(u) = E[k(u, X)] by a characteristic kernel uniquely determines a probability on (Ω, B).
 Note: Ω may not be Euclidean.

Characteristic Kernel III

- The characteristic RKHS must be large enough! Examples for \mathbf{R}^m (proved later)
 - Gaussian RBF kernel

$$k_G(x, y) = \exp\left(-\frac{1}{2\sigma^2} \|x - y\|^2\right)$$

• Laplacian kernel

$$k_L(x, y) = \exp\left(-\alpha \sum_{i=1}^m |x_i - y_i|\right)$$

- Polynomial kernels are not characteristic.
 - The RKHS for $(x^Ty + c)^d$ is the space of polynomials of degree not greater than *d*.
 - The moments larger than *d* cannot be considered.

Empirical Estimation of Kernel Mean

- Empirical mean on RKHS
 - An advantage of RKHS approach is its easy empirical estimation.

-
$$X^{(1)},...,X^{(N)}$$
: i.i.d. sample
 $\rightarrow \Phi(X_1),...,\Phi(X_N)$: i.i.d. sample on RKHS

Empirical kernel mean:
$$\hat{m}_X^{(N)} = \frac{1}{N} \sum_{i=1}^N \Phi(X_i) = \frac{1}{N} \sum_{i=1}^N k(\cdot, X_i)$$

The empirical kernel mean gives empirical average

$$\left\langle \hat{m}_{X}^{(N)}, f \right\rangle = \frac{1}{N} \sum_{i=1}^{N} f(X_{i}) \equiv \hat{E}_{N}[f(X)] \qquad (\forall f \in H)$$

Asymptotic Properties I

Theorem (strong \sqrt{N} -consistency) Assume $E[k(X,X)] < \infty$. For i.i.d. sample X_1, \dots, X_N , $\left\| \hat{m}_X^{(N)} - m_X \right\| = O_p \left(1/\sqrt{N} \right) \qquad (N \to \infty)$

Proof.

$$E\|\widehat{m}_{X}^{(n)} - m_{X}\|^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} E_{X_{i}} E_{X_{j}}[k(X_{i}, X_{j})] - \frac{2}{n} \sum_{i=1}^{n} E_{X_{i}} E_{X}[k(X_{i}, X)] + E_{X} E_{\tilde{X}}[k(X, \tilde{X})] = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j \neq i} E[k(X_{i}, X_{j})] + \frac{1}{n} E_{X}[k(X, X)] - E_{X} E_{\tilde{X}}[k(X, \tilde{X})] = \frac{1}{n} \{ E_{X}[k(X, X)] - E_{X} E_{\tilde{X}}[k(X, \tilde{X})] \}.$$

By Chebychev's inequality,

$$\Pr(\sqrt{n}\|\widehat{m}^{(n)} - m_X\| \ge \delta) \le \frac{nE\|\widehat{m}^{(n)} - m_X\|^2}{\delta^2} = \frac{C}{\delta^2}. \qquad \Box$$

Asymptotic Properties II

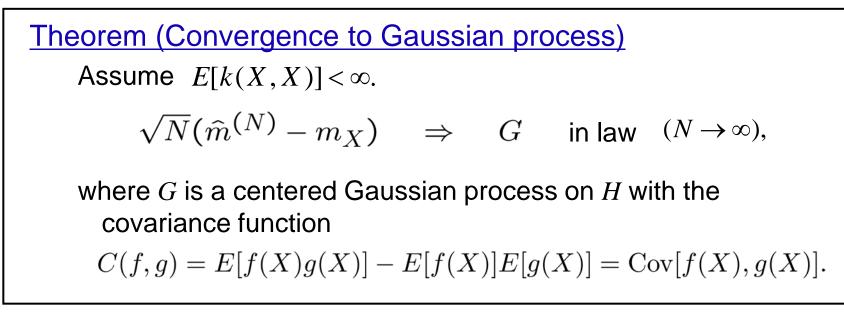
$$\begin{array}{l} \hline \textbf{Corollary (Uniform law of large numbers)} \\ \textbf{Assume} \quad E[k(X,X)] < \infty. \quad \textbf{For i.i.d. sample } X_1, \dots, X_N, \\ \\ \sup_{f \in H, \|f\| \leq 1} \left| \frac{1}{N} \sum_{i=1}^N f(X_i) - E[f(X)] \right| = O_p(1/\sqrt{N}) \qquad (N \to \infty). \end{array}$$

Proof.

$$LHS = \sup_{f \in H, \|f\| \le 1} \left| \langle \hat{m}_X^{(N)} - m_X, f \rangle \right| = \| \hat{m}_X^{(N)} - m_X \|.$$

Note:
$$\sup_{\|f\|\leq 1} |\langle h, f \rangle| = \|h\|$$

Asymptotic Properties III



Proof is omitted. See Berlinet & Thomas-Agnan, Theorem 108.

Application: Two-sample Problem

Tow-sample homogeneity test

Two i.i.d. samples are given;

 $X^{(1)},...,X^{(N_X)}$ and $Y^{(1)},...,Y^{(N_Y)}$.

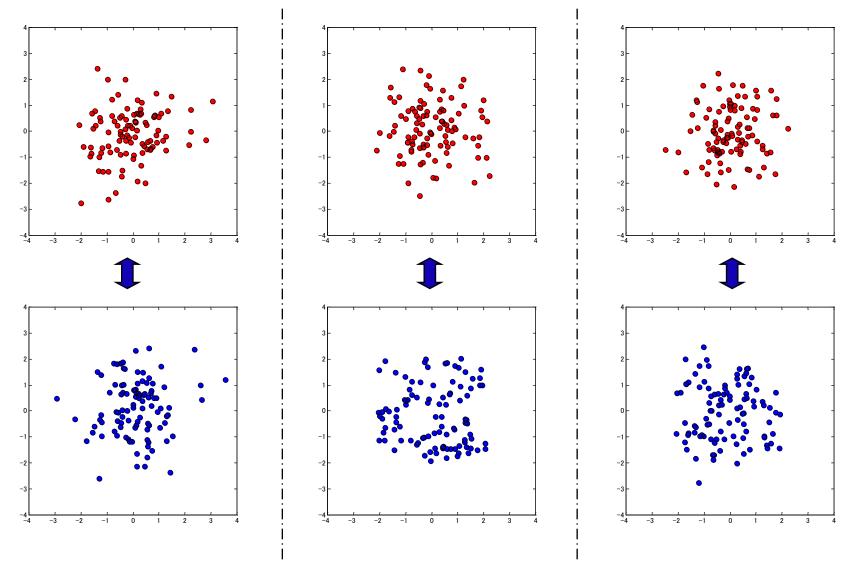
- Q: Are they sampled from the same distribution?
- Practically important.

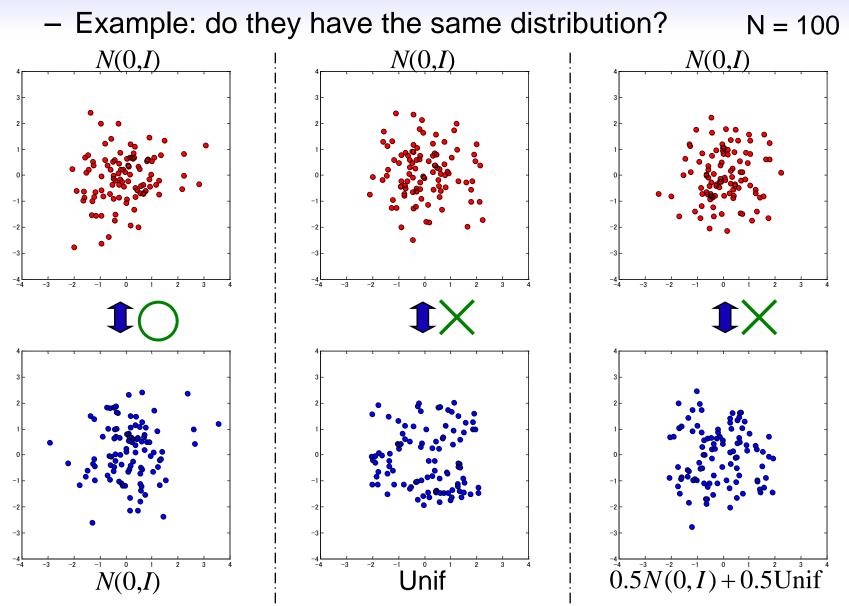
We often wish to distinguish two things:

- Are the experimental results of treatment and control significantly different?
- Were the plays "Henry VI" and "Henry II" written by the same author?
- Approach by kernel method: $m_X m_Y$

Use the difference of means with a characteristic kernel.

Example: do they have the same distribution?N = 100





Kernel Method for Two-sample Problem

- Maximum Mean Discrepancy (Gretton et al 2007, NIPS19)
 - In population

$$MMD^2 = \left\| m_X - m_Y \right\|_H^2$$

- Empirically

$$MMD_{emp}^{2} = \left\| \hat{m}_{X} - \hat{m}_{Y} \right\|_{H}^{2}$$
$$= \frac{1}{N_{X}^{2}} \sum_{i,j=1}^{N_{X}} k(X_{i}, X_{j}) - \frac{2}{N_{X}N_{Y}} \sum_{i=1}^{N_{X}} \sum_{a=1}^{N_{Y}} k(X_{i}, Y_{a}) + \frac{1}{N_{Y}^{2}} \sum_{a,b=1}^{N_{Y}} k(Y_{a}, Y_{b})$$

- With characteristic kernel, MMD = 0 if and only if $P_X = P_Y$.
- Asymptotic distribution of MMD_{emp}^2 is known. After debias, it is U-statistics.

Example

- Two sample test

P: N(0, 1/3) $Q_a: a\phi(x; 0, 1/3) + (1-a)\frac{1}{2}I_{[-1,2]}(x).$

Null hypothesis H_0 : $P = Q_a$ Alternative H_1 : $P \neq Q_a$

Results

- Comparison with Kolmogorov-Smirnov test
- Significance level = 5%. The asymptotic distribution is used.

	MMD					Kolmogorov-Smirnov				
N / a	1	0.75	0.5	0.25	0	1	0.75	0.5	0.25	0
200	0.966	0.898	0.788	0.964	0.882	0.962	0.910	0.730	0.956	0.940
500	0.990	0.868	0.544	0.118	0.038	0.990	0.752	0.382	0.112	0.124
1000	0.986	0.976	0.704	0.088	0	0.954	0.950	0.796	0.316	0.002

Percentage of accepting homogeneity in 500 simulations

- 1. Introduction
- 2. Mean element in RKHS
- 3. Characteristic kernel

Conditions on Characteristic Kernels I

Theorem (FBJ08+)

k: bounded measurable positive definite kernel on a measurable space (Ω , \mathcal{B}). *H*: associated RKHS. Then,

k is characteristic if and only if $H + \mathbf{R}$ is dense in $L^2(P)$ for any probability *P* on (Ω, \mathcal{B}) .

Proof. See Appendix 1.

- The characteristic kernel must be large enough.

Def. A positive definite kernel on a compact space D is called universal if its RKHS is dense in C(D).*

Proposition. A universal kernel is characteristic.

* C(D) is the Banach space of the continuous function on D with sup norm.

Shift-invariant Characteristic Kernels II

- φ(x-y): continuous shift-invariant kernels on R^m.
 By Bochner's theorem, Fourier transform of φ is non-negative.
 The characteristic kernels in this class are completely determined.
- Intuition:
 - For a shift-invariant kernel, the kernel mean is convolution: $m_P(u) = E_P[k(u, X)] = \int \phi(u - x) dP(x) = (\phi * p)(u)$
 - The characteristic property is equivalent to

$$\phi^* p = \phi^* q \quad \Rightarrow \quad p = q.$$

or by Fourier transform,

$$\hat{\phi}(\hat{p} - \hat{q}) = 0 \implies p = q$$

• It is expected that if $\hat{\phi}(\omega) > 0$ at any ω , then the above condition holds.

Shift-invariant Characteristic Kernels II

<u>Theorem</u> (Sriperumbudur et al. 2008) Let $k(x,y) = \phi(x-y)$ be a **R**-valued continuous shift-invariant positive definite kernel on **R**^m such that

$$\phi(x) = \int e^{\sqrt{-1}x^T\omega} d\Lambda(\omega).$$

Then, k is characteristic if and only if $supp(\Lambda) = \mathbf{R}^{m}$.

 $\operatorname{supp}(\mu) = \{ x \in \mathbf{R}^m \mid \mu(U) \neq 0 \text{ for all open set } U \text{ s.t. } x \in U \}$

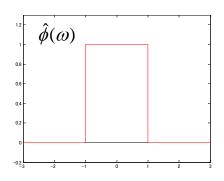
Example on **R**
Gaussian
$$\phi(x) = e^{-x^2/2\sigma^2}$$
 $\hat{\phi}(\omega) = e^{-\sigma^2 \omega^2/2}$
Laplacian $\phi(x) = e^{-\alpha |x|}$ $\hat{\phi}(\omega) = \frac{2\alpha}{\pi(\alpha^2 + x^2)}$
Cauchy $\phi(x) = \frac{2\alpha}{\pi(\alpha^2 + x^2)}$ $\hat{\phi}(\omega) = e^{-\alpha |\omega|}$

26

- if $\hat{\phi}(\omega) = 0$ on an interval of some frequency, then *k* must not be characteristic.

E.g.
$$\phi(x) = \frac{\sin(\alpha x)}{x}$$
 $\hat{\phi}(\omega) = \sqrt{\frac{\pi}{2}} I_{[-\alpha\alpha]}(\omega)$

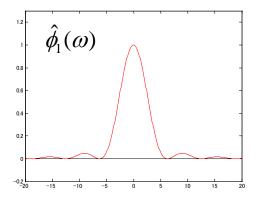
If $(p - q)^{\wedge}$ differ only out of [-a, a], p and q are not distinguishable.



 $- B_{2n+1}$ -spline kernel is characteristic.

$$\phi_{2n+1}(x) = I_{[-\frac{1}{2}\frac{1}{2}]} * \dots * I_{[-\frac{1}{2}\frac{1}{2}]}$$

 $\hat{\phi}_{2n+1}(\omega) = \left(\frac{2}{\pi}\right)^{n+1} \frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$



 Bochner's theorem and the previous theorem can be extended to locally compact Abelian group.

Summary

• Mean on RKHS

A random variable X can be transformed into a RKHS by

 $\Phi(X) = k(\,\cdot\,,X\,)$

Its mean $m_X = E[\Phi(X)]$ contains the information of the higherorder moments of *X*.

- If the positive definite kernel is characteristic, the kernel mean element uniquely determines a probability.
- The kernel mean by characteristic kernel can be applied for two sample tests.
- The shift-invariant characteristic kernels on \mathbf{R}^m (and locally compact Abelian groups) is completely determined.

References

Berlinet, A. and C. Thosma-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Kluwer Academic Press (2004).

- Gretton, A., K. M. Borgwardt, M. Rasch, B. Schölkopf and A. Smola. A Kernel Method for the Two-Sample-Problem. *Advances in Neural Information Processing Systems 19*, 513-520, MIT Press. (2007)
- Fukumizu, K., A. Gretton, X. Sun., and B. Schölkopf. Kernel Measures of Conditional Dependence. Advances in Neural Information Processing Systems 21:489-496 (2008)
- Fukumizu, K., B. Sriperumbudur, A. Gretton, B. Schölkopf. Characteristic Kernels on Groups and Semigroups. *Advances in Neural Information Processing Systems 22*: 2009 to appear.
- Sriperumbudur, B., A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Injective Hilbert Space Embeddings of Probability Measures. *Proc. 21st Annual Conference on Learning Theory (COLT 2008).* (2008).

Appendix 1: proof on the characteristic kernel

Proof.

$$\begin{aligned} \Leftarrow \\ & \text{Assume } m_P = m_Q. \\ & |P - Q|: \text{ the total variation of } P - Q. \\ & \text{Since } H + \mathbf{R} \text{ is dense in } L^2(|P - Q|), \text{ for any } \varepsilon > 0 \text{ and } A \in \mathcal{B} \\ & \text{ there exists } f \in H + \mathbf{R} \text{ and such that} \\ & \int |f - I_A|d(|P - Q|) < \varepsilon. \\ & \text{Thus, } |(E_P[f(X)] - P(A)) - (E_Q[f(X)] - Q(A))| < \varepsilon. \\ & \text{From } m_P = m_Q, \ E_P[f(X)] = E_Q[f(X)], \text{ thus } |P(A) - Q(A)| < \varepsilon. \\ & \text{This means } P = Q. \end{aligned}$$

⇒) Suppose $H + \mathbf{R}$ is not dense in $L^2(P)$. There is $f \in L^2(P)$ ($f \neq 0$) such that

 $\int f(x)\varphi(x)dP(x) = 0 \quad (\forall \varphi \in H), \qquad \int f(x)dP(x) = 0.$ Let $c = 1/||f||_{L^{1}(P)}$.

Define probabilities Q_1 and Q_2 by $Q_1(E) = c \int_E (|f(x)| - f(x)) dP(x), \quad Q_2(E) = c \int_E |f(x)| dP(x).$ $Q_1 \neq Q_2$ from $f \neq 0.$

But,

$$E_{Q_2}[k(u,X)] - E_{Q_1}[k(u,X)] = c \int f(x)k(u,x)dP(x) = 0 \quad (\forall u)$$

which means k is not characteristic.

Appendix 2: Review of Fourier analysis

- Fourier transform of $f \in L^1(\mathbf{R}^{\ell})$ $\hat{f}(\omega) = \int f(x)e^{-\sqrt{-1}\omega^T x} dm_x$

$$dm_x = \frac{1}{(2\pi)^{\ell/2}} dx$$

- Fourier inverse transform

$$\check{F}(x) = \int F(\omega) e^{\sqrt{-1}x^T \omega} dm_{\omega}$$

- Fourier transform of a bounded C-valued Borel measure μ $\hat{f}(\omega) = \int e^{-\sqrt{-1}\omega^T x} d\mu(x)$
- Convolution

$$f * g = \int f(x - y)g(y)dm_y = \int g(x - y)f(y)dm_y$$
$$\mu * g = \int f(x - y)d\mu(y)$$

- Fourier transform of convolution:

$$\left(\mu \ast g\right)^{\wedge} = \hat{\mu}\,\hat{g}$$

- Re: convolution $(f * g)^{\hat{}} = \hat{f} \hat{g}$ Proof.

$$(f * g)^{\wedge}(\omega) = \int e^{-\sqrt{-1}x^{T}\omega} \int f(x - y)g(y)dm_{y}dm_{x}$$

$$= \int e^{-\sqrt{-1}(x - y)^{T}\omega} e^{-\sqrt{-1}y^{T}\omega} \int f(x - y)g(y)dm_{y}dm_{x}$$

$$= \int e^{-\sqrt{-1}z^{T}\omega} e^{-\sqrt{-1}y^{T}\omega} \int f(z)g(y)dm_{y}dm_{z} \qquad [z = x - y]$$

$$= \int e^{-\sqrt{-1}z^{T}\omega} f(z)dm_{z} \int e^{-\sqrt{-1}y^{T}\omega}g(y)dm_{y}$$

$$= \hat{f}(\omega)\hat{g}(\omega).$$