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Definition of Positive Definite Kernel
Definition. Let X be a set. k : X × X → R is a positive definite
kernel if k(x, y) = k(y, x) and for every x1, . . . , xn ∈ X and
c1, . . . , cn ∈ R

n∑
i,j=1

cicjk(xi, xj) ≥ 0,

i.e. the symmetric matrix

(k(xi, xj))
n
i,j=1 =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, x)


is positive semidefinite.

• The symmetric matrix (k(xi, xj))
n
i,j=1 is often called a Gram

matrix.
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Definition: Complex-valued Case

Definition. Let X be a set. k : X × X → C is a positive definite
kernel if for every x1, . . . , xn ∈ X and c1, . . . , cn ∈ C

n∑
i,j=1

cicjk(xi, xj) ≥ 0.

Remark. The Hermitian property k(y, x) = k(x, y) is derived
from the positive-definiteness. [Exercise]

If k(x, y) is positive definite, so is k(x, y) = k(y, x).
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Some Basic Properties

Facts. Assume k : X × X → C is positive definite. Then, for
any x, y in X ,

1. k(x, x) ≥ 0.

2. |k(x, y)|2 ≤ k(x, x)k(y, y).

Proof. (1) is obvious. For (2), with the fact k(y, x) = k(x, y), the
definition of positive definiteness implies that the eigenvalues of the
hermitian matrix (

k(x, x) k(x, y)

k(x, y) k(y, y)

)
is non-negative, thus, its determinant k(x, x)k(y, y)− |k(x, y)|2 is
non-negative.
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Examples
Real valued positive definite kernels on Rn:

- Linear kernel1

k0(x, y) = xT y

- Exponential

kE(x, y) = exp(βxT y) (β > 0)

- Gaussian RBF (radial basis function) kernel

kG(x, y) = exp
(
− 1

2σ2
‖x− y‖2

)
(σ > 0)

- Laplacian kernel

kL(x, y) = exp
(
−α
∑n

i=1|xi − yi|
)

(α > 0)

- Polynomial kernel

kP (x, y) = (xT y + c)d (c ≥ 0, d ∈ N)
1[Exercise] prove that the linear kernel is positive definite.

7 / 27



Feature Map must be Positive Definite
Proposition 1

Let V be an vector space with an inner product 〈·, ·〉. If we have
a map

Φ : X → V, x 7→ Φ(x),

the kernel on X defined by

k(x, y) = 〈Φ(x),Φ(y)〉

is positive definite.

Proof. Let x1, . . . , xn in X and c1, . . . , cn ∈ C.∑n
i,j=1cicjk(xi, xj) =

∑n
i,j=1cicj〈Φ(xi),Φ(xj)〉

=
〈∑n

i=1ciΦ(xi),
∑n

j=1cjΦ(xj)
〉

=
∥∥∥∑n

i=1ciΦ(xi)
∥∥∥2 ≥ 0.
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Reproducing kernel Hilbert space

Definition. Let X be a set. A reproducing kernel Hilbert space
(RKHS) (over X ) is a Hilbert space H consisting of functions on
X such that for each x ∈ X there is a function kx ∈ H with the
property

〈f, kx〉H = f(x) (∀f ∈ H) (reproducing property).

k(·, x) := kx(·) is called a reproducing kernel of H.

Fact 1. A reproducing kernel is Hermitian (or symmetric).

Proof.
k(y, x) = 〈k(·, x), ky〉 = 〈kx, ky〉 = 〈ky, kx〉 = 〈k(·, y), kx〉 = k(x, y).

Fact 2. The reproducing kernel is unique, if exists. [Exercise]
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Positive Definite Kernel and RKHS I

Proposition 2 (RKHS⇒ positive definite kernel)

The reproducing kernel of a RKHS is positive definite.

Proof. Special case of Proposition 1, because with
Φ(x) = k(·, x)

k(x, y) = k(y, x) = 〈k(·, x), k(·, y)〉 = 〈Φ(x),Φ(y)〉.
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Positive Definite Kernel and RKHS II

Theorem 3 (positive definite kernel⇒ RKHS.
Moore-Aronszajn)

Let k : X × X → C (or R) be a positive definite kernel on a set
X . Then, there uniquely exists a RKHS Hk on X such that

1. k(·, x) ∈ Hk for every x ∈ X ,

2. Span{k(·, x) | x ∈ X} is dense in Hk,
3. k is the reproducing kernel on Hk, i.e.,

〈f, k(·, x)H〉 = f(x) (∀x ∈ X ,∀f ∈ Hk).

Proof omitted.
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Positive Definite Kernel and RKHS III

One-to-one correspondence between positive definite kernels
and RKHS.

k ←→ Hk

• Proposition 2: RKHS 7→ positive definite kernel k.

• Theorem 3: k 7→ Hk (injective).
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RKHS as Feature Space

If we define
Φ : X → Hk, x 7→ k(·, x),

then,
〈Φ(x),Φ(y)〉 = 〈k(·, x), k(·, y)〉 = k(x, y).

RKHS associated with a positive definite kernel k gives a
desired feature space!!

In kernel methods, the above feature map and feature space
are always used.
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Examples of RKHS

1) Linear kernel on Rm: k0(x, y) = xT y.

• RKHS for the linear kernel:
H = {f : Rm → R | f(u) = k0(u, a) = aTu (a ∈ Rm)}.

• Inner product of H:

〈aTu, bTu〉 = aT b (〈k0(·, a), k0(·, b)〉 = k0(a, b))

• H is isomorphic to Rm:

H ∼= Rm, aTu 7→ a.

• Feature map Φ(x) = k0(u, x) = xTu is simply the above
isomorphism.

• Nothing is gained from the viewpoint of data analysis.
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2) Positive definite kernel on finite set X = {1, 2, . . . ,m}.

• Positive definite kernel k(i, j) corresponds one-to-one to a
m×m positive semidefinite matrix K.

• Eigendecomposition:

K = UΛUT , U = (u1, . . . , um),Λ = diag(λ1, . . . , λm).

• Assume K is (strictly) positive definite, i.e., λi > 0.

• RKHS of k:
H = {f : {1, . . . ,m} → R} = {(f(1), . . . , f(m))T ∈ Rm}.

• Inner product of H: for f =
∑m

i=1 aiui, g =
∑m

i=1 biui,

〈f, g〉H = fTK−1g =

m∑
i=1

aibi
λi

.
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• Reproducing property:
Let K = (k1, . . . , km) i.e. ki = k(·, i).
For f =

∑m
j=1 ajkj ∈ H,

〈f, k(·, i)〉 =

m∑
j=1

ajk
T
j K

−1ki =

m∑
j=1

ajk
T
j ei =

m∑
j=1

ajk(j, i) = f(i).

3) Gaussian kernel

• RKHS for Gaussian kernel is infinite dimensional.

• Discussed in the next week.
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Operations that Preserve Positive Definiteness I

Proposition 4

If ki : X × X → C (i = 1, 2, . . .) are positive definite kernels,
then so are the following:

1. (positive combination) ak1 + bk2 (a, b ≥ 0).

2. (product) k1k2 (k1(x, y)k2(x, y)) .

3. (limit) limi→∞ki(x, y), assuming the limit
exists.

Remark. From Proposition 4, the set of all positive definite
kernels is a closed (w.r.t. pointwise convergence) convex cone
stable under multiplication.
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Operations that Preserve Positive Definiteness II
Proof.
(1): Obvious.
(3): The non-negativity in the definition holds also for the limit.
(2): It suffices to show that two Hermitian matrices A and B are
positive semidefinite, so is their component-wise product. This is
done by the following lemma.

Definition. For two matrices A and B of the same size, the
matrix C with Cij = AijBij is called the Hadamard product of A
and B.
The Hadamard product of A and B is denoted by A�B.

Lemma 5
Let A and B be non-negative Hermitian matrices of the same
size. Then, A�B is also non-negative.
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Operations that Preserve Positive Definiteness III

Proof.
Let

A = UΛU∗

be the eigendecomposition of A, where
U = (u1, . . . , up): a unitary matrix, i.e., U∗ = U

T

Λ: diagonal matrix with non-negative entries (λ1, . . . , λp).

Then, for arbitrary c1, . . . , cp ∈ C,

∑
i,j=1

cic̄j(A�B)ij =

p∑
a=1

λacic̄ju
a
i ū
a
jBij =

p∑
a=1

λaξ
aTBξa,

where ξa = (c1u
a
1 , . . . , cpu

a
p)T ∈ Cp.

Since ξaTBξa and λa are non-negative for each a, so is the sum.
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Modification
Proposition 6

Let k : X × X → C be a positive definite kernel and f : X → C
be an arbitrary function. Then,

k̃(x, y) = f(x)k(x, y)f(y)

is positive definite. In particular,

f(x)f(y)

and

k(x, y)√
k(x, x)

√
k(y, y)

(normalized kernel)

are positive definite.

Proof is left as an exercise.
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Proofs for Positive Definiteness of Examples

• Linear kernel: Proposition 1

• Exponential:

exp(βxT y) = 1 + βxT y +
β2

2!
(xT y)2 +

β3

3!
(xT y)3 + · · ·

Use Proposition 4.

• Gaussian RBF kernel:

exp
(
− 1

2σ2
‖x−y‖2

)
= exp

(
−‖x‖

2

2σ2

)
exp
(xT y
σ2

)
exp
(
−‖y‖

2

2σ2

)
.

Apply Proposition 6.

• Laplacian kernel: The proof is shown later.

• Polynomial kernel: Just sum and product.
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Definition by Evaluation Map
Proposition 7

Let H be a Hilbert space consisting of functions on a set X .
Then, H is a RKHS if and only if the evaluation map

ex : H → K, ex(f) = f(x),

is a continuous linear functional for each x ∈ X .

Proof. Assume H is a RKHS. The boundedness of ex is obvious from

|ex(f)| = |〈f, kx〉| ≤ ‖kx‖‖f‖.

Conversely, assume the evaluation map is continuous. By Riesz
lemma, there is kx ∈ H such that

〈f, kx〉 = ex(f) = f(x),

which means H is a RKHS having kx as a reproducing kernel.
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Continuity
The functions in a RKHS are "nice" functions.

Proposition 8

Let k be a positive definite kernel on a topological space X , and
Hk be the associated RKHS. If x 7→ k(x, x) is continuous for
any x and Re[k(y, x)] is continuous for every x, y ∈ X , then all
the functions in Hk are continuous.

Proof. Let f be an arbitrary function in Hk.

|f(x)− f(y)| = |〈f, k(·, x)− k(·, y)〉| ≤ ‖f‖‖k(·, x)− k(·, y)‖.

The assertion is easy from

‖k(·, x)− k(·, y)‖2 = k(x, x) + k(y, y)− 2Re[k(x, y)].

Remark. If k(x, y) is differentiable, then all the functions in Hk
are differentiable.

c.f. L2 space contains non-continuous functions.
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Summary of Sections 1 and 2
• We would like to use a feature map Φ : X → H to

incorporate nonlinearity or high order moments.

• The inner product in the feature space must be computed
efficiently. Ideally,

〈Φ(x),Φ(y)〉 = k(x, y).

• To satisfy the above relation, the kernel k must be positive
definite.

• A positive definite kernel k defines an associated RKHS,
where k is the reproducing kernel;

〈k(·, x), k(·, y)〉 = k(x, y).

• Use a RKHS as a feature space, and Φ : x 7→ k(·, x) as the
feature map.
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Vector space with inner product I

Definition. V : vector space over a field K = R or C.
V is called an inner product space if it has an inner product (or
scalar product, dot product) (·, ·) : V × V → K such that for
every x, y, z ∈ V

1. (Strong positivity) (x, x) ≥ 0, and (x, x) = 0 if and only if
x = 0,

2. (Addition) (x+ y, z) = (x, z) + (y, z),

3. (Scalar multiplication) (αx, y) = α(x, y) (∀α ∈ K),

4. (Hermitian) (y, x) = (x, y).
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Vector space with inner product II

(V, (·, ·)): inner product space.

Norm of x ∈ V :
‖x‖ = (x, x)1/2.

Metric between x and y:

d(x, y) = ‖x− y‖.

Theorem 9 (Cauchy-Schwarz inequality)

|(x, y)| ≤ ‖x‖‖y‖.

Remark: Cauchy-Schwarz inequality holds without requiring
‖x‖ = 0⇒ x = 0.
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Hilbert space I

Definition. A vector space with inner product (H, (·, ·)) is called
Hilbert space if the induced metric is complete, i.e. every
Cauchy sequence2 converges to an element in H.

Remark 1:
A Hilbert space may be either finite or infinite dimensional.

Example 1.
Rn and Cn are finite dimensional Hilbert space with the
ordinary inner product

(x, y)Rn =
∑n

i=1xiyi or (x, y)Cn =
∑n

i=1xiyi.

2A sequence {xn}∞n=1 in a metric space (X, d) is called a Cauchy
sequence if d(xn, xm)→ 0 for n,m→∞.
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Hilbert space II

Example 2. L2(Ω, µ).
Let (Ω,B, µ) is a measure space.

L =
{
f : Ω→ C

∣∣∣ ∫ |f |2dµ <∞}.
The inner product on L is define by

(f, g) =

∫
fgdµ.

L2(Ω, µ) is defined by the equivalent classes identifying f and g
if their values differ only on a measure-zero set.

- L2(Ω, µ) is complete.

- L2(Rn, dx) is infinite dimensional.
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Orthogonality
• Orthogonal complement.

Let H be a Hilbert space and V be a closed subspace.

V ⊥ := {x ∈ H | (x, y) = 0 for all y ∈ V }

is a closed subspace, and called the orthogonal
complement.

• Orthogonal projection.

Let H be a Hilbert space and V be a closed subspace.
Every x ∈ H can be uniquely decomposed

x = y + z, y ∈ V and z ∈ V ⊥,

that is,
H = V ⊕ V ⊥.

34 / 27



Complete orthonormal system I

• ONS and CONS.
A subset {ui}i∈I of H is called an orthonormal system
(ONS) if (ui, uj) = δij (δij is Kronecker’s delta).

A subset {ui}i∈I of H is called a complete orthonormal
system (CONS) if it is ONS and if (x, ui) = 0 (∀i ∈ I)

implies x = 0.

Fact: Any ONS in a Hilbert space can be extended to a
CONS.
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Complete orthonormal system II

• Separability
A Hilbert space is separable if it has a countable CONS.

Assumption
In this course, a Hilbert space is always assumed to be
separable.
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Complete orthonormal system III
Theorem 10 (Fourier series expansion)
Let {ui}∞i=1 be a CONS of a separable Hilbert space. For each
x ∈ H,

x =
∑∞

i=1(x, ui)ui, (Fourier expansion)

‖x‖2 =
∑∞

i=1|(x, ui)|
2. (Parseval’s equality)

Proof omitted.

Example: CONS of L2([0 2π], dx)

un(t) = 1√
2π
e
√
−1nt (n = 0, 1, 2, . . .)

Then,
f(t) =

∑∞
n=0anun(t)

is the (ordinary) Fourier expansion of a periodic function.
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Bounded operator I
Let H1 and H2 be Hilbert spaces. A linear transform
T : H1 → H2 is often called operator.

Definition. A linear operator H1 and H2 is called bounded if

sup
‖x‖H1

=1
‖Tx‖H2 <∞.

The operator norm of a bounded operator T is defined by

‖T‖ = sup
‖x‖H1

=1
‖Tx‖H2 = sup

x 6=0

‖Tx‖H2

‖x‖H1

.

(Corresponds to the largest singular value of a matrix.)

Fact. If T : H1 → H2 is bounded,

‖Tx‖H2 ≤ ‖T‖‖x‖H1 .
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Bounded operator II

Proposition 11
A linear operator is bounded if and only if it is continuous.

Proof. Assume T : H1 → H2 is bounded. Then,

‖Tx− Tx0‖ ≤ ‖T‖‖x− x0‖

means continuity of T .

Assume T is continuous. For any ε > 0, there is δ > 0 such that
‖Tx‖ < ε for all x ∈ H1 with ‖x‖ < 2δ.
Then,

sup
‖x‖=1

‖Tx‖ = sup
‖x‖=δ

1

δ
‖Tx‖ ≤ ε

δ
.
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Riesz lemma I

Definition. A linear functional is a linear transform from H to C
(or R).

The vector space of all the bounded (continuous) linear
functionals called the dual space of H, and is denoted by H∗.

Theorem 12 (Riesz lemma)
For each φ ∈ H∗, there is a unique yφ ∈ H such that

φ(x) = (x, yφ) (∀x ∈ H).

Proof.
Consider the case of R for simplicity.
⇐) Obvious by Cauchy-Schwartz.
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Riesz lemma II

⇒) If φ(x) = 0 for all x, take y = 0. Otherwise, let

V = {x ∈ H | φ(x) = 0}.

Since φ is a bounded linear functional, V is a closed subspace, and
V 6= H.
Take z ∈ V ⊥ with ‖z‖ = 1. By orthogonal decomposition, for any
x ∈ H,

x− (x, z)z ∈ V.

Apply φ, then

φ(x)− (x, z)φ(z) = 0, i.e., φ(x) = (x, φ(z)z).

Take yφ = φ(z)z.
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Riesz lemma III
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Proof of Theorem 3 I

Proof. (Described in R case.)

• Construction of an inner product space:

H0 := Span{k(·, x) | x ∈ X}.

Define an inner product on H0:
for f =

∑n
i=1 aik(·, xi) and g =

∑m
j=1 bjk(·, yj),

〈f, g〉 :=
∑n

i=1

∑m
j=1aibjk(xi, yj).

This is independent of the way of representing f and g
from the expression

〈f, g〉 =
∑m

j=1bjf(yj) =
∑n

i=1aig(xi).
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Proof of Theorem 3 II

• Reproducing property on H0:

〈f, k(·, x)〉 =
∑n

i=1aik(xi, x) = f(x).

• Well-defined as an inner product:
It is easy to see 〈·, ·〉 is bilinear form, and

‖f‖2 =
∑n

i,j=1aiajk(xi, xj) ≥ 0

by the positive definiteness of f .

If ‖f‖ = 0, from Cauchy-Schwarz inequality,3

|f(x)| = |〈f, k(·, x)〉| ≤ ‖f‖‖k(·, x)‖ = 0

for all x ∈ X ; thus f = 0.
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Proof of Theorem 3 III
• Completion:

Let H be the completion of H0.
• H0 is dense in H by the completion.
• H is realized by functions:

Let {fn} be a Cauchy sequence in H. For each x ∈ X ,
{fn(x)} is a Cauchy sequence, because

|fn(x)− fm(x)| = |〈fn − fm, k(·, x)〉| ≤ ‖fn − fm‖‖k(·, x)‖.

Define f(x) = limn fn(x).
This value is the same for equivalent sequences, because
{fn} ∼ {gn} implies

|fn(x)−gn(x)| = |〈fn−gn, k(·, x)〉| ≤ ‖fn−gn‖‖k(·, x)‖ → 0.

Thus, any element [{fn}] in H can be regarded as a
function f on X .

3Note that Cauchy-Schwarz inequality holds without assuming strong
positivity of the inner product.
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