Theory on Positive Definite Kernels

Statistical Data Analysis with Positive Definite Kernels

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS
Department of Statistical Science, Graduate University for Advanced Studies

October 6-10, 2008, Kyushu University

Outline

Positive and negative definite kernels Review on positive definite kernels Negative definite kernel

Bochner's theorem
Bochner's theorem

Mercer's theorem
Mercer's theorem

Positive and negative definite kernels Review on positive definite kernels

Negative definite kernel

Bochner's theorem

Bochner's theorem

Mercer's theorem

Mercer's theorem

Review: operations that preserve positive definiteness

Proposition 1

If $k_i : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ (i = 1, 2, ...) are positive definite kernels, then so are the following:

- 1. (positive combination) $ak_1 + bk_2$ $(a, b \ge 0)$.
- 2. (product) $k_1k_2 (k_1(x,y)k_2(x,y))$.
- 3. (limit) $\lim_{i\to\infty}k_i(x,y)$, assuming the limit exists.

Remark. Proposition 1 says that the set of all positive definite kernels is closed (w.r.t. pointwise convergence) convex cone stable under multiplication.

Example: If k(x, y) is positive definite,

$$e^{k(x,y)} = 1 + k + \frac{1}{2}k^2 + \frac{1}{3!}k^3 + \cdots$$

is also positive definite.

Review: operations that preserve positive definiteness

Proposition 2

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ be a positive definite kernel and $f: \mathcal{X} \to \mathbb{C}$ be an arbitrary function. Then,

$$\tilde{k}(x,y) = f(x)k(x,y)\overline{f(y)}$$

is positive definite. In particular,

$$f(x)\overline{f(y)}$$

is a positive definite kernel.

Example. Normalization:

$$\tilde{k}(x,y) = \frac{k(x,y)}{\sqrt{k(x,x)k(y,y)}}$$

Positive and negative definite kernels

Review on positive definite kernels

Negative definite kernel

Bochner's theorem

Bochner's theorem

Mercer's theorem

Mercer's theorem

Negative definite kernel

Definition. A function $\psi: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is called a negative definite kernel if it is Hermitian i.e. $\psi(y,x) = \overline{\psi(x,y)}$, and

$$\sum_{i,j=1}^{n} c_i \overline{c_j} \psi(x_i, x_j) \le 0$$

for any x_1, \ldots, x_n $(n \ge 2)$ in $\mathcal X$ and $c_1, \ldots, c_n \in \mathbb C$ with $\sum_{i=1}^n c_i = 0$.

Note: a negative definite kernel is not necessarily minus pos. def. kernel because of the condition $\sum_{i=1}^{n} c_i = 0$.

Properties of negative definite kernels

Proposition 3

- 1. If k is positive definite, $\psi = -k$ is negative definite.
- 2. Constant functions are negative definite.

(2)
$$\sum_{i,j=1}^{n} c_i c_j = \sum_{i=1}^{n} c_i \sum_{j=1}^{n} c_j = 0.$$

Proposition 4

If $\psi_i: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ ($i=1,2,\ldots$) are negative definite kernels, then so are the following:

- 1. (positive combination) $a\psi_1 + b\psi_2$ $(a, b \ge 0)$.
- 2. (limit) $\lim_{i\to\infty}\psi_i(x,y)$, assuming the limit exists.
 - The set of all negative definite kernels is a closed convex cone.
 - Multiplication does not preserve negative definiteness.

Example of negative definite kernel

Proposition 5

Let V be an inner product space, and $\phi: \mathcal{X} \to V$. Then,

$$\psi(x, y) = \|\phi(x) - \phi(y)\|^2$$

is a negative definite kernel on \mathcal{X} .

Proof. Suppose $\sum_{i=1}^{n} c_i = 0$.

$$\begin{split} & \sum_{i,j=1}^{n} c_{i}\overline{c_{j}} \|\phi(x_{i}) - \phi(x_{j})\|^{2} \\ & = \sum_{i,j=1}^{n} c_{i}\overline{c_{j}} \{\|\phi(x_{i})\|^{2} + \|\phi(x_{j})\|^{2} - (\phi(x_{i}), \phi(x_{j})) - (\phi(x_{j}), \phi(x_{i}))\} \\ & = \sum_{i=1}^{n} c_{i} \|\phi(x_{i})\|^{2} \sum_{j=1}^{n} \overline{c_{j}} + \sum_{j=1}^{n} c_{j} \|\phi(x_{j})\|^{2} \sum_{i=1}^{n} c_{i} \\ & - \left(\sum_{i=1}^{n} c_{i}\phi(x_{i}), \sum_{j=1}^{n} c_{j}\phi(x_{j})\right) - \left(\sum_{j=1}^{n} \overline{c_{j}}\phi(x_{j}), \sum_{i=1}^{n} \overline{c_{i}}\phi(x_{i})\right) \\ & = - \|\sum_{i=1}^{n} c_{i}\phi(x_{i})\|^{2} - \|\sum_{i=1}^{n} \overline{c_{i}}\phi(x_{i})\|^{2} \leq 0 \end{split}$$

Relation between positive and negative definite kernels

Lemma 6

Let $\psi(x,y)$ be a hermitian kernel on \mathcal{X} . Fix $x_0 \in \mathcal{X}$ and define

$$\varphi(x,y) = -\psi(x,y) + \psi(x,x_0) + \psi(x_0,y) - \psi(x_0,x_0).$$

Then, ψ is negative definite if and only if φ is positive definite.

Proof. "If" part is easy (exercise). Suppose ψ is neg. def. Take any $x_i \in \mathcal{X}$ and $c_i \in \mathbb{C}$ (1 = 1,...,n). Define $c_0 = -\sum_{i=1}^n c_i$. Then,

$$0 \geq \sum_{i,j=0}^{n} c_i \overline{c_j} \psi(x_i, x_j) \qquad [\text{for } x_0, x_1, \dots, x_n]$$

$$= \sum_{i,j=1}^{n} c_i \overline{c_j} \psi(x_i, x_j) + \overline{c_0} \sum_{i=1}^{n} c_i \psi(x_i, x_0) + c_0 \sum_{j=1}^{n} c_i \psi(x_0, x_j)$$

$$+ |c_0|^2 \psi(x_0, x_0)$$

$$= \sum_{i,j=1}^{n} c_i \overline{c_j} \{ \psi(x_i, x_j) - \psi(x_i, x_0) - \psi(x_0, x_j) + \psi(x_0, y_0) \}$$

$$= -\sum_{i,j=1}^{n} c_i \overline{c_j} \varphi(x_i, x_j).$$

Schoenberg's theorem

Theorem 7 (Schoenberg's theorem)

Let $\mathcal X$ be a nonempty set, and $\psi: \mathcal X \times \mathcal X \to \mathbb C$ be a kernel. ψ is negative definite if and only if $\exp(-t\psi)$ is positive definite for all t>0.

Proof.

If part:

$$\psi(x,y) = \lim_{t \downarrow 0} \frac{1 - \exp(-t\psi(x,y))}{t}.$$

Only if part: We can prove only for t = 1. Take $x_0 \in \mathcal{X}$ and define

$$\varphi(x,y) = -\psi(x,y) + \psi(x,x_0) + \psi(x_0,y) - \psi(x_0,x_0).$$

 φ is positive definite (Lemma 6).

$$e^{-\psi(x,y)} = e^{\varphi(x,y)}e^{-\psi(x,x_0)}\overline{e^{-\psi(y,x_0)}}e^{\psi(x_0,x_0)}.$$

This is also positive definite.

Generating new kernels I

Proposition 8

If $\psi: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is negative definite and $\psi(x, x) \geq 0$. Then, for any 0 ,

$$\psi(x,y)^p$$

is negative definite.

Proof. Use the following formula.

$$\psi(x,y)^{p} = \frac{p}{\Gamma(1-p)} \int_{0}^{\infty} t^{-p-1} (1 - e^{-t\psi(x,y)}) dt$$

The integrand is negative definite for all t > 0.

• For any $0 and <math>\alpha > 0$,

$$\exp(-\alpha \|x - y\|^p)$$

is positive definite on \mathbb{R}^n .

• $\alpha = 2 \Rightarrow$ Gaussian kernel. $\alpha = 1 \Rightarrow$ Laplacian kernels.

Generating new kernels II

Proposition 9

If $\psi: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is negative definite and $\text{Re}\psi(x,y) \geq 0$. Then, for any a>0,

$$\frac{1}{\psi(x,y)+a}$$

is positive definite.

Proof.

$$\frac{1}{\psi(x,y)+a} = \int_0^\infty e^{-t(\psi(x,y)+a)} dt.$$

The integrand is positive definite for all t > 0.

For any 0 ,

$$\frac{1}{1+|x-y|^p}$$

is positive definite on \mathbb{R} .

Positive and negative definite kernels

Review on positive definite kernels Negative definite kernel

Bochner's theorem
Bochner's theorem

Mercer's theorem

Mercer's theorem

Positive definite functions

Definition. Let $\phi : \mathbb{R}^n \to \mathbb{C}$ be a function. ϕ is called a positive definite function (or function of positive type) if

$$k(x,y) = \phi(x-y)$$

is a positive definite kernel on \mathbb{R}^n , i.e.

$$\sum_{i,j=1}^{n} c_i \overline{c_j} \phi(x_i - x_j) \ge 0$$

for any $x_1, \ldots, x_n \in \mathcal{X}$ and $c_1, \ldots, c_n \in \mathbb{C}$.

- A positive definite kernel of the form $\phi(x-y)$ is called shift invariant (or translation invariant).
- Gaussian and Laplacian kernels are examples of shift-invariant positive definite kernels.

Bochner's theorem I

The Bochner's theorem characterizes *all* the continuous shift-invariant kernels on \mathbb{R}^n .

Theorem 10 (Bochner)

Let ϕ be a continuous function on \mathbb{R}^n . Then, ϕ is positive definite if and only if there is a finite non-negative Borel measure Λ on R^n such that

$$\phi(x) = \int e^{\sqrt{-1}\omega^T x} d\Lambda(\omega).$$

- ϕ is the inverse Fourier (or Fourier-Stieltjes) transform of Λ .
- Roughly speaking, the shift invariant functions are the class that have non-negative Fourier transform.

Bochner's theorem II

• The Fourier kernel $e^{\sqrt{-1}x^T\omega}$ is a positive definite function for all $\omega\in\mathbb{R}^n$.

$$\exp(\sqrt{-1}(x-y)^T\omega) = \exp(\sqrt{-1}x^T\omega)\overline{\exp(\sqrt{-1}y^T\omega)}.$$

- The set of all positive definite functions is a convex cone, which is closed under the pointwise-convergence topology.
- The generator of the convex cone is the Fourier kernels $\{e^{\sqrt{-1}x^T\omega}\mid \omega\in\mathbb{R}^n\}.$
- Example on ℝ: (positive scales are neglected)

$$\exp(-\frac{1}{2\sigma^2}x^2) \qquad \exp(-\frac{\sigma^2}{2}|\omega|^2)$$
$$\exp(-\alpha|x|) \qquad \frac{1}{\omega^2 + \alpha^2}$$

 Bochner's theorem is extended to topological groups and semigroups [BCR84].

Positive and negative definite kernels

Review on positive definite kernels Negative definite kernel

Bochner's theorem

Bochner's theorem

Mercer's theorem Mercer's theorem

Integral characterization of positive definite kernels I

 Ω : compact Hausdorff space.

 μ : finite Borel measure on Ω .

Proposition 11

Let K(x,y) be a continuous symmetric function on $\Omega \times \Omega$. K(x,y) is a positive definite kernel on Ω if and only if

$$\int_{\Omega} \int_{\Omega} K(x, y) f(x) \overline{f(y)} dx dy \ge 0$$

for each function $f \in L^2(\Omega, \mu)$.

c.f. Definition of positive definiteness:

$$\sum_{i,j} K(x_i, x_j) c_i \overline{c_j} \ge 0.$$

Integral characterization of positive definite kernels II

Proof.

 (\Rightarrow) . For a continuous function f, a Riemann sum satisfies

$$\sum_{i,j} K(x_i, x_j) f(x_i) \overline{f(x_j)} \mu(E_i) \mu(E_j) \ge 0.$$

The integral is the limit of such sums, thus non-negative. For $f\in L^2(\Omega,\mu)$, approximate it by a continuous function.

(⇐). Suppose

$$\sum_{i,j=1}^{n} c_i \overline{c_j} K(x_i, x_j) = -\delta < 0.$$

By continuity of K, there is an open neighborhood U_i of x_i such that

$$\sum_{i,j=1}^{n} c_i \overline{c_j} K(z_i, z_j) \le -\delta/2.$$

for all $z_i \in U_i$.

We can approximate $\sum_i \frac{c_i}{\mu(U_i)} I_{U_i}$ by a continuous function f with arbitrary accuracy.

Integral Kernel

 $(\Omega, \mathcal{B}, \mu)$: measure space.

K(x,y): measurable function on $\Omega \times \Omega$ such that

$$\int_{\Omega} \int_{\Omega} |K(x,y)|^2 dx dy < \infty. \qquad \text{(square integrability)}$$

Define an operator T_K on $L^2(\Omega,\mu)$ by

$$(T_K f)(x) = \int_{\Omega} K(x, y) f(y) dy \qquad (f \in L^2(\Omega, \mu)).$$

 T_K : integral operator with integral kernel K.

Fact: $T_K f \in L^2(\Omega, \mu)$.

Hilbert-Schmidt operator I

 \mathcal{H} : separable Hilbert space.

Definition. An operator T on \mathcal{H} is called Hilbert-Schmidt if for a CONS $\{\varphi_i\}_{i=1}^{\infty}$

$$\sum_{i=1}^{\infty} ||T\varphi_i||^2 < \infty.$$

For a Hilbert-Schmidt operator T, the Hilbert-Schmidt norm $\|T\|_{HS}$ is defined by

$$||T||_{HS} = \left(\sum_{i=1}^{\infty} ||T\varphi_i||^2\right)^{1/2}.$$

- ||T||_{HS} does not depend on the choice of a CONS.
 - ::) From Parseval's equality, for a CONS $\{\psi_j\}_{j=1}^{\infty}$,

$$\begin{split} \|T\|_{HS}^2 &= \textstyle \sum_{i=1}^\infty \|T\varphi_i\|^2 = \sum_{i=1}^\infty \sum_{j=1}^\infty |(\psi_j, T\varphi_i)|^2 \\ &= \textstyle \sum_{j=1}^\infty \sum_{i=1}^\infty |(T^*\psi_j, \varphi_i)|^2 = \sum_{j=1}^\infty \|T^*\psi_j\|^2. \end{split}$$

Hilbert-Schmidt operator II

- Fact: $||T|| \le ||T||_{HS}$.
- Hilbert-Schmidt norm is an extension of Frobenius norm of a matrix:

$$||T||_{HS}^2 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |(\psi_j, T\varphi_i)|^2.$$

 $(\psi_j, T\varphi_i)$ is the component of the matrix expression of T with the CONS's $\{\varphi_i\}$ and $\{\psi_j\}$.

Hilbert-Schmidt operator and integral kernel I

$$(T_K f)(x) = \int_{\Omega} K(x, y) f(y) dy \qquad (f \in L^2(\Omega, \mu))$$

with square integrable kernel K.

Theorem 12

Assume $L^2(\Omega, \mu)$ is separable. Then, T_K is a Hilbert-Schmidt operator, and

$$||T_K||_{HS}^2 = \int \int |K(x,y)|^2 dx dy.$$

Proof. Let $\{\varphi_i\}$ be a CONS. From Parseval's equality,

$$\int |K(x,y)|^2 dy = \sum_i \left| (K(x,\cdot),\varphi_i)_{L^2} \right|^2 = \sum_i \left| \int K(x,y) \overline{\varphi_i(y)} dy \right|^2 = \sum_i |T_K \overline{\varphi_i}(x)|^2.$$

Integrate w.r.t. x, ($\{\overline{\varphi_i}\}$ is also a CONS)

$$\int \int |K(x,y)|^2 dx dy = \sum_i ||T_K \overline{\varphi_i}||^2 = ||T_K||_{HS}^2.$$

Hilbert-Schmidt operator and integral kernel II

Converse is true!

Theorem 13

Assume $L^2(\Omega,\mu)$ is separable. For any Hilbert-Schmidt operator T on $L^2(\Omega,\mu)$, there is a square integrable kernel K(x,y) such that

$$T\varphi = \int K(x,y)\varphi(y)dy.$$

Outline of the proof.

Fix a CONS $\{\varphi_i\}$. Define

$$K_n(x,y) = \sum_{i=1}^n (T\varphi_i)(x)\overline{\varphi_i(y)} \qquad (n = 1, 2, 3, \dots,).$$

We can show $\{K_n(x,y)\}$ is a Cauchy sequence in $L^2(\Omega \times \Omega, \mu \times \mu)$, and the limit works as K in the statement.

Integral operator by positive definite kernel

 Ω : compact Hausdorff space.

 μ : finite Borel measure on Ω .

K(x,y): continuous positive definite kernel on Ω .

$$(T_K f)(x) = \int_{\Omega} K(x, y) f(y) dy \qquad (f \in L^2(\Omega, \mu))$$

Fact: From Proposition 11

$$(T_K f, f)_{L^2(\Omega, \mu)} \ge 0 \qquad (\forall f \in L^2(\Omega, \mu)).$$

In particular, any eigenvalue of T_K is non-negative.

Mercer's theorem

K(x,y): continuous positive definite kernel on Ω .

 $\{\lambda_i\}_{i=1}^{\infty}$, $\{\varphi_i\}_{i=1}^{\infty}$: the positive eigenvalues and eigenfunctions of T_K .

$$\lambda_1 \ge \lambda_2 \ge \dots > 0, \qquad \lim_{i \to \infty} \lambda_i = 0.$$

$$T_K \varphi_i = \lambda_i \varphi_i, \qquad \int K(x, y) \varphi_i(y) dy = \lambda_i \varphi_i(x).$$

Theorem 14 (Mercer)

$$K(x,y) = \sum_{i=1}^{\infty} \lambda_i \varphi_i(x) \overline{\varphi_i(y)},$$

where the convergence is absolute and uniform over $\Omega \times \Omega$.

Proof is omitted. See [RSN65], Section 98, or [Ito78], Chapter 13.

References I

[BCR84] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic Analysis on Semigroups. Springer-Verlag, 1984.

[lto78] Seizo Ito.

Kansu-Kaiseki III (Iwanami kouza Kiso-suugaku).

Iwanami Shoten, 1978.

[RSN65] Frigyes Riesz and Béla Sz.-Nagy.
Functional Analysis (2nd ed.).
Frederick Ungar Publishing Co, 1965.