Introduction: Overview of Kernel Methods Statistical Data Analysis with Positive Definite Kernels

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University for Advanced Studies

October 6-10, 2008, Kyushu University

Some examples of kernel methods

Outline

Basic idea of kernel methods

Linear and nonlinear Data Analysis Essence of kernel methodology

Some examples of kernel methods

Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization

Some examples of kernel methods

Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology

Essence of kernel methodology

Some examples of kernel methods

Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization

Nonlinear Data Analysis I

- Classical linear methods
 - Data is expressed by a matrix.

$$X = \begin{pmatrix} X_1^1 & X_1^2 & \cdots & X_1^m \\ X_2^1 & X_2^2 & \cdots & X_2^m \\ & & \vdots \\ X_N^1 & X_N^2 & \cdots & X_N^m \end{pmatrix}$$

(m dimensional, N data)

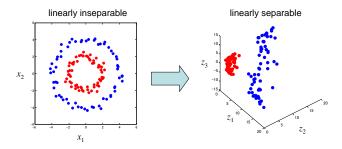
- Linear operations (matrix operations) are used for data analysis. *e.g.*
 - Principal component analysis (PCA)
 - Canonical correlation analysis (CCA)
 - Linear regression analysis
 - Fisher discriminant analysis (FDA)
 - Logistic regression, etc.

Nonlinear Data Analysis II

Are linear methods sufficient?

Nonlinear transform can help.

• Example 1: classification



 $(x_1, x_2) \mapsto (z_1, z_2, z_3) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

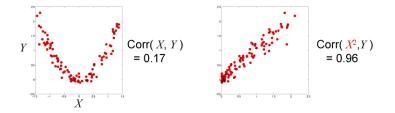
(Unclear? watch http://jp.youtube.com/watch?v=3liCbRZPrZA)

Some examples of kernel methods

Example 2: dependence of two data

Correlation

$$\rho_{XY} = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} = \frac{E[(X - E[X])(Y - E[Y])]}{\sqrt{E[(X - E[X])^2]E[(Y - E[Y])^2]}}$$



 Transforming data to incorporate high-order moments seems attractive.

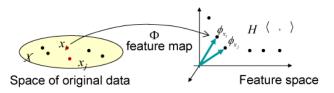
Basic idea of kernel methods Linear and nonlinear Data Analysis Essence of kernel methodology

Some examples of kernel methods

Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization

Feature space for transforming data

• Kernel methodology = a systematic way of analyzing data by transforming them into a high-dimensional feature space.



Apply linear methods on the feature space.

- Which type of space serves as a feature space?
 - The space should incorporate various nonlinear information of the original data.
 - The inner product of the feature space is essential for data analysis (seen in the next subsection).

Computational problem of inner product

• For example, how about this?

 $(X, Y, Z) \mapsto (X, Y, Z, X^2, Y^2, Z^2, XY, YZ, ZX, \ldots).$

• But, for high-dimensional data, the above expansion makes the feature space very huge!

e.g. If X is 100 dimensional and the moments up to the third order are used, the dimensionality of feature space is

 $_{100}C_1 + _{100}C_2 + _{100}C_3 = 166750.$

 This causes a serious computational problem in working on the inner product of the feature space.
We need a cleverer way of computing it. ⇒ Kernel method.

Inner product by positive definite kernel

A positive definite kernel gives efficient computation of the inner product:

With special choice of the feature space, we have a function k(x,y) such that

 $\langle \Phi(X_i), \Phi(X_j) \rangle = k(X_i, X_j),$ positive definite kernel

where

 $\mathcal{X} \ni x \quad \mapsto \quad \Phi(x) \in \mathcal{H} \quad (\text{feature space}).$

• Many linear methods use only the inner product without necessity of the explicit form of the vector $\Phi(X)$.

Some examples of kernel methods OO OOOO

Basic idea of kernel methods

Linear and nonlinear Data Analysis Essence of kernel methodology

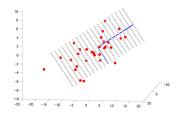
Some examples of kernel methods Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization

Review of PCA I

 X_1, \ldots, X_N : *m*-dimensional data.

Principal Component Analysis (PCA)

- Find *d*-directions to maximize the variance.
- Purpose: represent the structure of the data in a low dimensional space.



Review of PCA II

The first principal direction:

$$u_{1} = \arg \max_{\|u\|=1} \frac{1}{N} \left\{ \sum_{i=1}^{N} u^{T} (X_{i} - \frac{1}{N} \sum_{j=1}^{N} X_{j}) \right\}^{2} = \arg \max_{\|u\|=1} u^{T} V u,$$

where V is the variance-covariance matrix:

$$V = \frac{1}{N} \sum_{i=1}^{N} (X_i - \frac{1}{N} \sum_{j=1}^{N} X_j) (X_i - \frac{1}{N} \sum_{j=1}^{N} X_j)^T.$$

- Eigenvectors u_1, \ldots, u_m of V (in descending order).
- The *p*-th principal axis $= u_p$.
- The *p*-th principal component of $X_i = u_p^T X_i$

Observation: PCA can be done if we can compute the inner product

- covariance matrix V,
- inner product between the unit eigenvector and the data.

Kernel PCA I

 X_1, \ldots, X_N : *m*-dimensional data.

Transform the data by a feature map Φ into a feature space \mathcal{H} :

 $X_1,\ldots,X_N \quad \mapsto \Phi(X_1),\ldots,\Phi(X_N)$

Assume that the feature space has the inner product \langle , \rangle .

Apply PCA to the transformed data:

• Maximize the variance of the projection onto the unit vector f.

$$\max_{\|f\|=1} \operatorname{Var}[\langle f, \Phi(X) \rangle] = \max_{\|f\|=1} \frac{1}{N} \sum_{i=1}^{N} \left(\langle f, \Phi(X_i) - \frac{1}{N} \sum_{j=1}^{N} \Phi(X_j) \rangle \right)^2$$

• Note: it suffices to use $f = \sum_{i=1}^{n} a_i \tilde{\Phi}(X_i)$, where

$$\tilde{\Phi}(X_i) = \Phi(X_i) - \frac{1}{N} \sum_{j=1}^{N} \Phi(X_j).$$

The direction orthogonal to $\text{Span}\{\tilde{\Phi}(X_1),\ldots,\tilde{\Phi}(X_N)\}$ does not contribute.

Kernel PCA II

• The PCA solution:

 $\max a^T \tilde{K}^2 a \qquad \text{subject to} \quad a^T \tilde{K} a = 1,$ where \tilde{K} is $N \times N$ matrix with $\tilde{K}_{ij} = \langle \tilde{\Phi}(X_i), \tilde{\Phi}(X_j) \rangle.$ Note:

$$\frac{1}{N}\sum_{i=1}^{N}\langle f,\tilde{\Phi}(X_i)\rangle^2 = \frac{1}{N}\sum_{i=1}^{N}\langle \sum_{j=1}^{N}a_j\tilde{\Phi}(X_j),\tilde{\Phi}(X_i)\rangle^2 = \frac{1}{N}a^T\tilde{K}^2a,$$
$$\|f\|^2 = \langle \sum_{i=1}^{n}a_i\tilde{\Phi}(X_i), \sum_{i=1}^{n}a_i\tilde{\Phi}(X_i)\rangle = a^T\tilde{K}a.$$

• The first principal component of the data X_i is

$$\langle \tilde{\Phi}(X_i), \hat{f} \rangle = \sum_{i=1}^N \sqrt{\lambda_1} u_i^1,$$

where $\tilde{K} = \sum_{i=1}^{N} \lambda_i u^i u^{iT}$ is the eigen decomposition.

Kernel PCA III

Observation:

- PCA in the feature space can be done if we can compute $\langle \tilde{\Phi}(X_i), \tilde{\Phi}(X_j) \rangle$ or

$$\langle \Phi(X_i), \Phi(X_j) \rangle = k(X_i, X_j).$$

• The principal direction is obtained in the form $f = \sum_{i} a_i \tilde{\Phi}(X_i)$, *i.e.*, in the linear hull of the data.

Note:

$$\begin{split} \tilde{K}_{ij} &= \langle \tilde{\Phi}(X_i), \tilde{\Phi}(X_j) \rangle \\ &= \langle \Phi(X_i), \Phi(X_j) \rangle - \frac{1}{N} \sum_{b=1}^{N} \langle \Phi(X_i), \Phi(X_b) \rangle \\ &- \frac{1}{N} \sum_{a=1}^{N} \langle \Phi(X_a), \Phi(X_j) \rangle + \frac{1}{N^2} \sum_{a=1}^{N} \langle \Phi(X_a), \Phi(X_b) \rangle \\ &= k(X_i, X_j) - \frac{1}{N} \sum_{b=1}^{N} k(X_i, X_b) - \frac{1}{N} \sum_{a=1}^{N} k(X_a, X_j) + \frac{1}{N^2} \sum_{a=1}^{N} k(X_a, X_b) \end{split}$$

Some examples of kernel methods

Basic idea of kernel methods

Linear and nonlinear Data Analysis Essence of kernel methodology

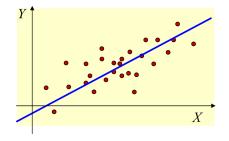
Some examples of kernel methods Kernel PCA: Nonlinear extension of PCA Ridge regression and its kernelization

Review: Linear Regression I

Linear regression

- Data: $(X_1, Y_1), ..., (X_N, Y_N)$: data
 - X_i: explanatory variable, covariate (m-dimensional)
 - Y_i: response variable, (1 dimensional)
- · Regression model: find the best linear relation

$$Y_i = a^T X_i + \varepsilon_i$$



Some examples of kernel methods

.

Review: Linear Regression II

· Least square method:

$$\min_{a} \sum_{i=1}^{N} \|Y_i - a^T X_i\|^2.$$

Matrix expression

$$X = \begin{pmatrix} X_1^1 & X_1^2 & \cdots & X_1^m \\ X_2^1 & X_2^2 & \cdots & X_2^m \\ & & \vdots \\ X_N^1 & X_N^2 & \cdots & X_N^m \end{pmatrix}, \qquad Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{pmatrix}$$

• Solution:

$$\widehat{a} = (X^T X)^{-1} X^T Y$$
$$\widehat{y} = \widehat{a}^T x = Y^T X (X^T X)^{-1} x.$$

Observation: Linear regressio can be done if we can compute the inner product $X^T X$, $\hat{a}^T x$ and so on.

Some examples of kernel methods

Ridge Regression

Ridge regression:

• Find a linear relation by

$$\min_{a} \sum_{i=1}^{N} \|Y_i - a^T X_i\|^2 + \lambda \|a\|^2.$$

 λ : regularization coefficient.

Solution

$$\widehat{a} = (X^T X + \lambda I_N)^{-1} X^T Y$$

For a general x,

$$\widehat{y}(x) = \widehat{a}^T x = Y^T X (X^T X + \lambda I_N)^{-1} x.$$

• Ridge regression is useful when $(X^T X)^{-1}$ does not exist, or inversion is numerically unstable.

Kernelization of Ridge Regression I

 $(X_1, Y_1) \dots, (X_N, Y_N)$ (Y_i : 1-dimensional)

Transform X_i by a feature map Φ into a feature space \mathcal{H} :

 $X_1,\ldots,X_N \quad \mapsto \Phi(X_1),\ldots,\Phi(X_N)$

Assume that the feature space has the inner product \langle , \rangle .

Apply ridge regression to the transformed data:

• Find the vector *f* such that

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{N} |Y_i - \langle f, \Phi(X_i) \rangle_{\mathcal{H}}|^2 + \lambda ||f||_{\mathcal{H}}^2.$$

• Similarly to kernel PCA, we can assume $f = \sum_{j=1}^{n} c_j \Phi(X_j)$.

$$\min_{c} \sum_{i=1}^{N} |Y_i - \langle \sum_{j=1}^{N} c_j \Phi(X_j), \Phi(X_i) \rangle_{\mathcal{H}} |^2 + \lambda \| \sum_{j=1}^{N} c_j \Phi(X_j) \|_{\mathcal{H}}^2$$

Kernelization of Ridge Regression II

• Solution:

 $\widehat{c} = (K + \lambda I_N)^{-1} Y,$ where $K_{ij} = \langle \Phi(X_i), \Phi(X_j) \rangle_{\mathcal{H}} = k(X_i, X_j).$

For a general x,

$$\begin{split} \widehat{y}(x) &= \langle \widehat{f}, \Phi(x) \rangle_{\mathcal{H}} \quad = \langle \sum_{j} \widehat{c}_{j} \Phi(X_{j}), \Phi(x) \rangle_{\mathcal{H}} \\ &= Y^{T} (K + \lambda I_{N})^{-1} \mathbf{k}, \end{split}$$

where

$$\mathbf{k} = \begin{pmatrix} \langle \Phi(X_1), \Phi(x) \rangle \\ \vdots \\ \langle \Phi(X_N), \Phi(x) \rangle \end{pmatrix} = \begin{pmatrix} k(X_1, x) \\ \vdots \\ k(X_N, x) \end{pmatrix}.$$

Kernelization of Ridge Regression III

Proof.

Matrix expression gives

$$\sum_{i=1}^{N} |Y_i - \langle \sum_{j=1}^{N} c_j \Phi(X_j), \Phi(X_i) \rangle_{\mathcal{H}}|^2 + \lambda \| \sum_{j=1}^{N} c_j \Phi(X_j) \|_{\mathcal{H}}^2$$
$$= (Y - Kc)^T (Y - Kc) + \lambda c^T Kc$$
$$= c^T (K^2 + \lambda K) c - 2Y^T Kc + Y^T Y.$$

It follows that the optimal c is given by

$$\widehat{c} = (K + \lambda I_N)^{-1} Y.$$

Inserting this to $\widehat{y}(x) = \langle \sum_j \widehat{c}_j \Phi(X_j), \Phi(x) \rangle_{\mathcal{H}}$, we have the claim.

Kernelization of Ridge Regression IV

Observation:

• Ridge regression in the feature space can be done if we can compute the inner product

 $\langle \Phi(X_i), \Phi(X_j) \rangle = k(X_i, X_j).$

• The resulting coefficient is of the form $f = \sum_i c_i \Phi(X_i)$, i.e., in the linear hull of the data.

The orthogonal directions do not contribute to the objective function.

Some examples of kernel methods

Kernel methodology

- A feature space \mathcal{H} with inner product \langle , \rangle .
- Mapping of the data into a feature space:

$$X_1,\ldots,X_N\mapsto\Phi(X_1),\ldots,\Phi(X_N)\in\mathcal{H}.$$

- If the computation of the inner product (Φ(X_i), Φ(X_i)) is tractable, various linear methods can be extended to the feature space.
- Give Methods of nonlinear data analysis.

How can we prepare such a feature space? \Rightarrow Positive definite kernel!