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Generalization ability of SVM Extension of SVM

Risk and empirical risk : Terminology
Supervised learning:
• D = {(X1, Y1), . . . , (Xn, Yn)}: data. i.i.d. sample.
• Xi ∈ X : input, Yi ∈ Y: output.
• F ⊂ {f : X → Y}: function class.

Risk and empirical risk
• Loss function `(y, f) : measure discrepancy of Yi and f(Xi).
• Risk: the purpose of learning is to minimize the risk;

L(f) = E[`(Y, f(X))] (f ∈ F).

• Empirical risk:

Ln(f) = Ên[`(Y, f(X))] =
1
n

∑n
i=1`(Yi, f(Xi)) (f ∈ F).

• Learning must be done with data:

f̂ = arg min
f∈F

Ln(f).
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Loss function
• Mean square error.

• `(y, f) = (y − f)2.
• Empirical risk: minf∈F

∑n
i=1(Yi − f(Xi))

2 (least mean
square).

• Risk = E[(Y − f(X))2].

• 0-1 loss. y, f(x) ∈ {±1}.
• `(y, f) = 1−yf(x)

2
.

• Empirical risk = ratio of errors:
Ên[`(Y, f(X))] = 1

n
|{i | Yi 6= f(Xi)}|.

• Risk = mean error rate: E[`(Y, f(X))] = Pr(Y 6= f(X)).

• Log likelihood
• `(y, f) = − log p(y|f).
• Empirical risk = - Empirical log likelihood.
• Risk = - Expected log likelihood.
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Bounding risk I
• Goal: What can we say about L(f̂) ?

L(f̂)− L̂n(f̂)︸ ︷︷ ︸
known

= E[`(Y, f̂(X))|D]− Ên[`(Y, f̂(X))]︸ ︷︷ ︸
?

.

• Approaches to analysis.
• Asymptotic expansion of the expectation:

e.g. ED
[
E[`(Y, f̂(X))]− Ên[`(Y, f̂(X))]

]
=
A

n
+ ...

=⇒ AIC, GIC.

• Bounding risk:

e.g. Pr
(
E[`(Y, f̂(X))|D] ≤ Ên[`(Y, f̂(X))] + ε

)
≤ Pr

(
sup
f∈F

(
E[`(Y, f(X))]− Ên[`(Y, f(X))]

)
≤ ε
)
≤ αe−βε

2n.
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Bounding risk II

F
f̂

)( fL

)(ˆ fLn

*f

)ˆ(ˆ)ˆ( fLfL n− )()ˆ( *fLfL −
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Techniques

• How can we obtained a bound? (not explained in this course)

• Symmetrization argument
• Concentration inequality (Hoeffding, Azuma’s inequality)
• Complexity bound (e.g. VC-dimension)

• For basic approach, see e.g. [Vap98].

• More recent approach by Rademacher average [BBM02, BM02].
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Surrogate loss I
• Risk is often evaluated by 0-1 loss (error rate)

`01(y, f) = (1− y sgn(f))/2.

L(f) = E[`01(y, f(X))] = E[Y 6= sgn(f(X))].

• SVM uses hinge loss for learning:

`hinge(y, f) = φ(fy), φ(t) = (1− t)+

min Ên[φ(Yif(Xi))] +
λ

2
‖f‖2.

• Hinge loss is a surrogate loss function.

`01(y, f(x)) ≤ φ(yf(x)).
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Surrogate loss II

0 yf1

1

φ

0-1
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Uniform risk bound for SVM I

• Recall margin = 1/‖w‖ (w: weight of linear classifier).

• Let R > 0. Consider

Ên[φ(Y f(X))] subj. to ‖f‖Hk
≤ R.

Note: Slightly different from the original SVM.

Theorem 1
Let FR = {f ∈ Hk | ‖f‖Hk

≤ R}. For any δ > 0,

Pr
(

sup
f∈FR

∣∣∣L(f)− 1
n

n∑
i=1

(1− Yif(Xi))+
∣∣∣ ≤

2R

√
E[k(X,X)]

n
+

√
log(1/δ)

2n

)
≥ 1− δ
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Uniform risk bound for SVM II

Theorem 2
Let FR = {f ∈ Hk | ‖f‖Hk

≤ R}. With probability ≥ 1− δ,

L(f) ≤ 1
n

n∑
i=1

(1− Yif(Xi))+ + 2R

√
E[k(X,X)]

n
+

√
log(1/δ)

2n

for any f ∈ Fr.

• The risk is smaller for a class of larger margin (smaller R), given
that the empirical error is the same.

• The complexity term of the function class does not depend on the
dimensionality (≈ number of parameters), but only on the norm.
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More on the bound for SVM.

• The previous theorem does not reflect the learning of SVM
rigorously:
The margin (norm) is determined as a result of learning, not a
priori.

• More rigorous approaches to the risk bound of SVM:

• Bound by fat shattering dimension [BST99].
• Luckiness framework [Her01].
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Multiclass classification - overview - I

• Multiclass classification:
(X1, Y1), . . . , (XN , YN ): data

• Xi: explanatory variable
• Yi ∈ {C1, . . . , CL}: labels for L classes.

Make a classifier: h : X → {1, 2, . . . , L}.

• The original SVM is applicable only to binary classification
problems.

• There are some approaches to extending SVM to multiclass
classification.

• Direct construction of a multiclass classifier.
• Combination of binary classifiers.
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Multiclass classification - overview - II

Various methods (incomplete list).

• Direct approach:
• Multiclass SVM ([CS01],[WW98], [BB99], [LLW] etc.)
• Kernel logistic regression ([ZH02], K.Tanabe, [KDSP05])
• and others

• Combination approach:
• How to divide the problem

• one-vs-rest (one-vs-all)
• one-vs-one
• Error correcting output code (ECOC) [DB95]

• How to combine the binary classifiers
• Hamming decoding
• Bradly-Terry model ([HT98], [HWL06])
• Learning of combiner (stacking [Shi08])
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Multiclass SVM I

Multiclass SVM (Crammer & Singer 2001)

• Large margin criterion is generalized to multiclass cases.
• Efficient optimization.
• Implemented in SVMlight.

• Linear classifier for L-class classification
• Data: (X1, Yi), . . . , (XN , YN ), Xi ∈ Rm, Yi ∈ {1, . . . , L}.
• Classifier:

h(x) = arg max
`=1,...,L

wT` x.

L linear classifiers are used.
(The bias term b` is omitted for simplicity.)

• wT` x (` = 1, . . . , L) is the similarity score for the class `. The class
of the largest similarity is the answer of the classifier.

18 / 29



Generalization ability of SVM Extension of SVM

Multiclass SVM II
• Margin for multiclass problem:

Margini = wTYi
Xi −max

` 6=Yi

wT` Xi.

• W = (w1, . . . , wL) correctly classifies the data (Xi, Yi), if and only
if Margini ≥ 0.

• The scale of the margin must be fixed.

• Primal problem of multiclass SVM:

min
W,ξ

β

2
‖W‖2+

N∑
i=1

ξi subj. to wTYi
Xi+δ`Yi

−wT` Xi ≥ 1−ξi (∀`, i).

Note: ξi represents the break of separability.

• # dual variable = NL. Computational cost must be reduced by
some methods.
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Multiclass SVM III

Meaning of margin
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Combination of binary classifiers

• Base classifiers: make use of strong binary classifiers, and
combine their outputs. e.g. SVM, AdaBoost, etc.

• Decomposition of a multiclass classification into binary
classifications

• 1-vs-rest
i-class vs the other classes – L problems

• 1-vs-1
i-class vs j-class (∀i, j ∈ {1, . . . , L}) – L(L− 1)/2 problems

• More general approach = Error correcting output code (ECOC).
ECOC attributes a code for each class.

class f1 f2 f3 f4 f5 f6
C1 -1 -1 -1 1 1 1
C2 -1 1 1 -1 -1 1
C3 1 -1 1 -1 1 -1
C4 1 1 -1 -1 1 1
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Combining base classifiers
• Hamming decoding for ECOC:

Let W`a be the code of ECOC for the class ` and classifier fa
(1 ≤ ` ≤ L, 1 ≤ a ≤M ).

h(x) = arg min
`
‖w` − f(x)‖Hamming,

where f(x) = (f1(x), . . . , fM (x)) ∈ {±1}M .
This is equivalent to

h(x) = arg max
`

∑M
a=1W`afa(x).

• In the case of one-vs-one, Hamming decoding coincides with
majority vote, which returns the class with the most "votes".

• Bradly-Terry model:
A probabilistic model for paired comparison. It can be applied
when the output of fi(x) is continuous.
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Learning combiner

• Given base classifiers {fi(x)}Ma=1, consider a linear combination
function

h(x) = arg max
`

∑M
a=1v`afa(x).

• It is reasonable to expect that adapting v by the data increases
the classification accuracy.

• A better combination is possible, if we avoid overfitting caused by
reusing the data for both of base classifiers and combiner.
Stacking via cross-validation ([Shi08]):

min
v

N∑
i=1

∥∥Yi −∑M
a=1vaf

[−i]
a (Xi)

∥∥2 + λ‖v‖2.
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Structured output
• The output of prediction may be structured object, such as label

sequences (strings), trees, and graphs.
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Large margin approach to structured output I
References
• Application to natural language processing [Col02].
• Max-Margin Markov Network (M3N) [TGK04].
• Hidden Markov support vector machine [ATH03].

Approach
• (X1, Y1), . . . , (XN , YN ): data

• Xi: input variable,
• Yi ∈ Y: structured object.

• Feature vector

F (x, y) = (f1(x, y), . . . , fM (x, y))

Make a classifier: h : X → Y

h(x) = arg max
y∈Y

wTF (x, y).
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Large margin approach to structured output II
Formulate the problem as a multiclass classification.
Each y ∈ Y is regarded as a class.

• Multiclass SVM gives

min
W,ξ

β

2
‖w‖2 +

∑N
i=1ξi

subj. to wTF (Xi, Yi) + δyYi
− wTF (Xi, y) ≥ 1− ξi (∀i, y ∈ Y).

• Problem:
# constrains (= # dual variables) = |Y|. This is prohibitive in
many cases!
e.g. for label sequence

|Y| = |Alphabet|length.

• The computational cost must be reduced by some methods (e.g.
[TGK04, ATH03]).
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Other topics

• Support vector regression. [MM00]

• ν-SVM: Another formulation of soft margin. [SSWB00]
• ν = an upper bound on the fraction of margin errors.
• ν = the lower bound on the fraction of support vectors.

• One-class SVM: (similar to estimating a level set of density
function.)

• Large margin approach to ranking.
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