Support Vector Machine II

Statistical Data Analysis with Positive Definite Kernels

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University for Advanced Studies

October 6-10, 2008, Kyushu University

Extension of SVM 000 0000 0000

Outline

Generalization ability of SVM

Framework of risk bound Risk bound of SVM

Extension of SVM

Multiclass classification with SVM Combination of binary classifiers Structured output and others

Extension of SVM 000 0000 0000

Generalization ability of SVM Framework of risk bound Risk bound of SVM

Extension of SVM

Multiclass classification with SVM Combination of binary classifiers Structured output and others

Risk and empirical risk : Terminology Supervised learning:

- $\mathcal{D} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$: data. i.i.d. sample.
- $X_i \in \mathcal{X}$: input, $Y_i \in \mathcal{Y}$: output.
- $\mathcal{F} \subset \{f : \mathcal{X} \to \mathcal{Y}\}$: function class.

Risk and empirical risk

- Loss function $\ell(y, f)$: measure discrepancy of Y_i and $f(X_i)$.
- Risk: the purpose of learning is to minimize the risk;

$$L(f) = E[\ell(Y, f(X))] \qquad (f \in \mathcal{F}).$$

• Empirical risk:

$$L_n(f) = \widehat{E}_n[\ell(Y, f(X))] = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)) \qquad (f \in \mathcal{F}).$$

• Learning must be done with data:

$$\widehat{f} = \arg\min_{f\in\mathcal{F}} L_n(f).$$

Loss function

- Mean square error.
 - $\ell(y, f) = (y f)^2$.
 - Empirical risk: $\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (Y_i f(X_i))^2$ (least mean square).
 - Risk = $E[(Y f(X))^2]$.
- 0-1 loss. $y, f(x) \in \{\pm 1\}.$

•
$$\ell(y,f) = \frac{1-yf(x)}{2}$$
.

- Empirical risk = ratio of errors: $\widehat{E}_n[\ell(Y, f(X))] = \frac{1}{n} |\{i \mid Y_i \neq f(X_i)\}|.$
- Risk = mean error rate: $E[\ell(Y, f(X))] = \Pr(Y \neq f(X))$.
- Log likelihood
 - $\ell(y, f) = -\log p(y|f).$
 - Empirical risk = Empirical log likelihood.
 - Risk = Expected log likelihood.

Bounding risk I

• Goal: What can we say about $L(\widehat{f})$?

$$L(\widehat{f}) - \underbrace{\widehat{L}_n(\widehat{f})}_{\text{known}} = \underbrace{E[\ell(Y,\widehat{f}(X))|\mathcal{D}] - \widehat{E}_n[\ell(Y,\widehat{f}(X))]}_?.$$

- Approaches to analysis.
 - Asymptotic expansion of the expectation:

e.g.
$$E_{\mathcal{D}}\left[E[\ell(Y,\widehat{f}(X))] - \widehat{E}_n[\ell(Y,\widehat{f}(X))]\right] = \frac{A}{n} + \dots$$

 \Longrightarrow AIC, GIC.

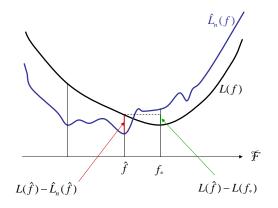
Bounding risk:

e.g.
$$\Pr\left(E[\ell(Y, \hat{f}(X))|\mathcal{D}] \le \hat{E}_n[\ell(Y, \hat{f}(X))] + \varepsilon\right)$$

 $\le \Pr\left(\sup_{f \in \mathcal{F}} \left(E[\ell(Y, f(X))] - \hat{E}_n[\ell(Y, f(X))]\right) \le \varepsilon\right) \le \alpha e^{-\beta \varepsilon^2 n}$

Extension of SVM 000 0000 0000

Bounding risk II



Techniques

• How can we obtained a bound? (not explained in this course)

- Symmetrization argument
- Concentration inequality (Hoeffding, Azuma's inequality)
- Complexity bound (e.g. VC-dimension)
- For basic approach, see e.g. [Vap98].
- More recent approach by Rademacher average [BBM02, BM02].

Extension of SVM 000 0000 0000

Generalization ability of SVM Framework of risk bound Risk bound of SVM

Extension of SVM

Multiclass classification with SVM Combination of binary classifiers Structured output and others

Surrogate loss I

Risk is often evaluated by 0-1 loss (error rate)

$$\ell_{01}(y, f) = (1 - y \operatorname{sgn}(f))/2.$$
$$L(f) = E[\ell_{01}(y, f(X))] = E[Y \neq \operatorname{sgn}(f(X))].$$

• SVM uses hinge loss for learning:

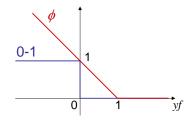
$$\ell_{hinge}(y, f) = \phi(fy), \quad \phi(t) = (1 - t)_+$$
$$\min \widehat{E}_n[\phi(Y_i f(X_i))] + \frac{\lambda}{2} ||f||^2.$$

• Hinge loss is a surrogate loss function.

 $\ell_{01}(y, f(x)) \le \phi(yf(x)).$

Extension of SVM 000 0000 0000

Surrogate loss II



Uniform risk bound for SVM I

- Recall margin = 1/||w|| (w: weight of linear classifier).
- Let R > 0. Consider

$$\widehat{E}_n[\phi(Yf(X))] \qquad \text{subj. to } \|f\|_{\mathcal{H}_k} \leq R.$$

Note: Slightly different from the original SVM.

Theorem 1 Let $\mathcal{F}_R = \{f \in \mathcal{H}_k \mid ||f||_{\mathcal{H}_k} \leq R\}$. For any $\delta > 0$, $\Pr\left(\sup_{f \in \mathcal{F}_R} \left| L(f) - \frac{1}{n} \sum_{i=1}^n (1 - Y_i f(X_i))_+ \right| \leq 2R\sqrt{\frac{E[k(X,X)]}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}\right) \geq 1 - \delta$

Uniform risk bound for SVM II

Theorem 2 Let $\mathcal{F}_R = \{f \in \mathcal{H}_k \mid ||f||_{\mathcal{H}_k} \leq R\}$. With probability $\geq 1 - \delta$, $L(f) \leq \frac{1}{n} \sum_{i=1}^n (1 - Y_i f(X_i))_+ + 2R \sqrt{\frac{E[k(X,X)]}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}$ for any $f \in \mathcal{F}_r$.

- The risk is smaller for a class of larger margin (smaller *R*), given that the empirical error is the same.
- The complexity term of the function class does not depend on the dimensionality (≈ number of parameters), but only on the norm.

More on the bound for SVM.

• The previous theorem does not reflect the learning of SVM rigorously:

The margin (norm) is determined as a result of learning, not *a priori*.

- More rigorous approaches to the risk bound of SVM:
 - Bound by fat shattering dimension [BST99].
 - Luckiness framework [Her01].

Generalization ability of SVM

Framework of risk bound Risk bound of SVM

Extension of SVM

Multiclass classification with SVM

Combination of binary classifiers Structured output and others

Multiclass classification - overview - I

- Multiclass classification: $(X_1, Y_1), \ldots, (X_N, Y_N)$: data
 - X_i: explanatory variable
 - $Y_i \in \{C_1, \ldots, C_L\}$: labels for L classes.

Make a classifier: $h : \mathcal{X} \to \{1, 2, \dots, L\}$.

- The original SVM is applicable only to binary classification problems.
- There are some approaches to extending SVM to multiclass classification.
 - Direct construction of a multiclass classifier.
 - Combination of binary classifiers.

Multiclass classification - overview - II

Various methods (incomplete list).

- Direct approach:
 - Multiclass SVM ([CS01],[WW98], [BB99], [LLW] etc.)
 - Kernel logistic regression ([ZH02], K.Tanabe, [KDSP05])
 - and others
- Combination approach:
 - How to divide the problem
 - one-vs-rest (one-vs-all)
 - one-vs-one
 - Error correcting output code (ECOC) [DB95]
 - · How to combine the binary classifiers
 - Hamming decoding
 - Bradly-Terry model ([HT98], [HWL06])
 - Learning of combiner (stacking [Shi08])

Multiclass SVM I

Multiclass SVM (Crammer & Singer 2001)

- Large margin criterion is generalized to multiclass cases.
- Efficient optimization.
- Implemented in SVM^{*light*}.
- Linear classifier for L-class classification
 - Data: $(X_1, Y_i), \dots, (X_N, Y_N), X_i \in \mathbb{R}^m, Y_i \in \{1, \dots, L\}.$
 - Classifier:

$$h(x) = \arg \max_{\ell=1,\dots,L} w_{\ell}^T x.$$

L linear classifiers are used.

(The bias term b_ℓ is omitted for simplicity.)

• $w_{\ell}^T x$ ($\ell = 1, ..., L$) is the similarity score for the class ℓ . The class of the largest similarity is the answer of the classifier.

Multiclass SVM II

• Margin for multiclass problem:

$$Margin_i = w_{Y_i}^T X_i - \max_{\ell \neq Y_i} w_\ell^T X_i.$$

- $W = (w_1, \ldots, w_L)$ correctly classifies the data (X_i, Y_i) , if and only if $Margin_i \ge 0$.
- The scale of the margin must be fixed.
- Primal problem of multiclass SVM:

$$\min_{W,\xi} \frac{\beta}{2} \|W\|^2 + \sum_{i=1}^N \xi_i \qquad \text{subj. to} \quad w_{Y_i}^T X_i + \delta_{\ell Y_i} - w_\ell^T X_i \ge 1 - \xi_i \quad (\forall \ell, i).$$

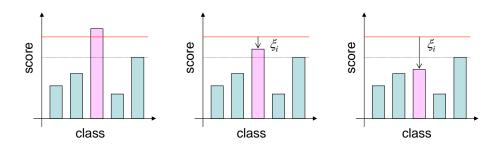
Note: ξ_i represents the break of separability.

• # dual variable = *NL*. Computational cost must be reduced by some methods.

Extension of SVM

Multiclass SVM III

Meaning of margin



Extension of SVM

Generalization ability of SVM

Framework of risk bound Risk bound of SVM

Extension of SVM

Multiclass classification with SVM Combination of binary classifiers Structured output and others

Combination of binary classifiers

- Base classifiers: make use of strong binary classifiers, and combine their outputs. *e.g.* SVM, AdaBoost, etc.
- Decomposition of a multiclass classification into binary classifications
 - 1-vs-rest

i-class vs the other classes -L problems

• 1-vs-1

i-class vs *j*-class ($\forall i, j \in \{1, \dots, L\}$) – L(L-1)/2 problems

• More general approach = Error correcting output code (ECOC). ECOC attributes a code for each class.

class	f_1	f_2	f_3	f_4	f_5	f_6
C_1	-1	-1	-1	1	1	1
C_2	-1	1	1	-1	-1	1
C_3	1	-1	1	-1	1	-1
C_4	1	1	-1	-1	1	1

Combining base classifiers

 Hamming decoding for ECOC: Let W_{ℓa} be the code of ECOC for the class ℓ and classifier f_a (1 ≤ ℓ ≤ L, 1 ≤ a ≤ M).

$$h(x) = \arg\min_{\ell} \|w_{\ell} - f(x)\|_{Hamming},$$

where
$$f(x) = (f_1(x), \dots, f_M(x)) \in \{\pm 1\}^M$$
.
This is equivalent to

$$h(x) = \arg\max_{\ell} \sum_{a=1}^{M} W_{\ell a} f_a(x).$$

- In the case of one-vs-one, Hamming decoding coincides with majority vote, which returns the class with the most "votes".
- Bradly-Terry model:

A probabilistic model for paired comparison. It can be applied when the output of $f_i(x)$ is continuous.

Learning combiner

- Given base classifiers $\{f_i(x)\}_{a=1}^M$, consider a linear combination function

$$h(x) = \arg\max_{\ell} \sum_{a=1}^{M} v_{\ell a} f_a(x).$$

- It is reasonable to expect that adapting *v* by the data increases the classification accuracy.
- A better combination is possible, if we avoid overfitting caused by reusing the data for both of base classifiers and combiner.

Stacking via cross-validation ([Shi08]):

$$\min_{v} \sum_{i=1}^{N} \left\| Y_i - \sum_{a=1}^{M} v_a f_a^{[-i]}(X_i) \right\|^2 + \lambda \|v\|^2.$$

Extension of SVM

Generalization ability of SVM

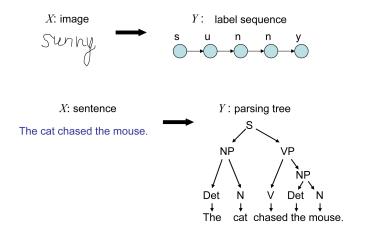
Framework of risk bound Risk bound of SVM

Extension of SVM

Multiclass classification with SVM Combination of binary classifiers Structured output and others

Structured output

• The output of prediction may be structured object, such as label sequences (strings), trees, and graphs.



Large margin approach to structured output I References

- Application to natural language processing [Col02].
- Max-Margin Markov Network (M³N) [TGK04].
- Hidden Markov support vector machine [ATH03].

Approach

- $(X_1, Y_1), \dots, (X_N, Y_N)$: data
 - X_i: input variable,
 - $Y_i \in \mathcal{Y}$: structured object.
- Feature vector

$$F(x,y) = (f_1(x,y), \dots, f_M(x,y))$$

Make a classifier: $h : \mathcal{X} \to \mathcal{Y}$

$$h(x) = \arg \max_{y \in \mathcal{Y}} w^T F(x, y).$$

Large margin approach to structured output II Formulate the problem as a multiclass classification.

Each $y \in \mathcal{Y}$ is regarded as a *class*.

Multiclass SVM gives

$$\begin{split} & \min_{W,\xi} \frac{\beta}{2} \|w\|^2 + \sum_{i=1}^N \xi_i \\ & \text{subj. to} \quad w^T F(X_i,Y_i) + \delta_{yY_i} - w^T F(X_i,y) \geq 1 - \xi_i \quad (\forall i,y \in \mathcal{Y}). \end{split}$$

• Problem:

constrains (= # dual variables) = $|\mathcal{Y}|$. This is prohibitive in many cases!

e.g. for label sequence

 $|\mathcal{Y}| = |Alphabet|^{length}.$

• The computational cost must be reduced by some methods (e.g. [TGK04, ATH03]).

Other topics

- Support vector regression. [MM00]
- ν-SVM: Another formulation of soft margin. [SSWB00]
 - ν = an upper bound on the fraction of margin errors.
 - ν = the lower bound on the fraction of support vectors.
- One-class SVM: (similar to estimating a level set of density function.)
- Large margin approach to ranking.

References I

 [ATH03] Y. Altun, I. Tsochantaridis, and T. Hofmann.
 Hidden markov support vector machines.
 In Proceedings of the 20th International Conference on Machine Learning, 2003.

[BB99] Erin J. Bredensteiner and Kristin P. Bennett. Multicategory classification by support vector machines. Computational Optimizations and Applications, 12, 1999.

 [BBM02] P. Bartlett, O. Bousquet, and S. Mendelson.
 Localized rademacher complexities.
 In Proceedings of the 15th annual conference on Computational Learning Theory, pages 44–58, 2002.

[BM02] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results.

Jounral of Machine Learning Research, 3:463–482, 2002.

References II

[BST99] Peter Bartlett and John Shawe-Taylor.

Generalization performance of support vector machines and other pattern classifiers.

pages 43-54, 1999.

[Col02] Michael Collins.

Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2002.

[CS01] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based vector machines.

Journal of Machine Learning Research, 2:265–292, 2001.

[DB95] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output codes. *Journal of Artificial Intelligence Research*, 2:263–286, 1995.

References III

[Her01] Ralf Herbrich. Learning Kernel Classifiers: Theory and Algorithms. Cambridge, MA, USA, 2001.

- [HT98] T. Hastie and R. Tibshirani.
 Classification by pairwise coupling.
 The Annals of Statistics, 26(1):451–471, 1998.
- [HWL06] Tzu-Kuo Huang, Ruby C. Weng, and Chih-Jen Lin. Generalized Bradly-Terry models and multi-class probability estimates. *Journal of Machine Learning Research*, 7:85–115, 2006.
- [KDSP05] S. S. Keerthi, K. B. Duan, S. K. Shevade, and A. N. Poo. A fast dual algorithm for kernel logistic regression. *Machine Learning*, 61(1–3):151–165, 2005.

[LLW] Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. *Journal of the American Statistical Association*, 99.

References IV

[MM00] O. L. Mangasarian and D. R. Musicant.
 Robust linear and support vector regression.
 IEEE Trans. Pattern Analysis Machine Intelligence, 22, 2000.

[Shi08] Yuichi Shiraishi.

Game-theoretical and statistical study on combination of binary classifiers for multi-class classification.

Ph.D. thesis, Department of Statistical Science, The Graduate University for Advanced Studies, 2008.

[SSWB00] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12:1207–1245, 2000.

[TGK04] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks.

In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, *Advances in Neural Information Processing Systems 16*. MIT Press, Cambridge, MA, 2004.

References V

[Vap98]	Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.
[WW98]	J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, 1998.
[ZH02]	Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine. 14:1081–1088, 2002.