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Working with Graphical Models

Determining structure @ ®
)

o Structure given by modeling
e.g. Mixture model, HMM

o Structure learning structure - Part4
Parameter estimation X 1X
P(X [ X,)
o Parameter given by some knowledge X A\X,| 1 2
o Parameter estimation with data 1 102 |03
such as MLE or Bayesian estimation > los |07
- Part4

parameter

Inference

o Computation of posterior and marginal probabillities
(Already seen in Part 3.)



Parameter Estimation



Statistical Estimation

Estimation from data
Statistical model with a parameter: p(X |0) 6. parameter

li.d. Data: D=(X,,X,,...,Xy)
o Maximum likelihood estimation

N
0 =arg max L(&), L(0) = H P(X; [6)
"' Likelihood function
or
0 = arg max /(6) \
((0)=logL(0) = log p(X;|0)

i=1
Log likelihood function



Statistical Estimation

o Bayesian estimation
Distribution of the parameter 4 is estimated

Prior probability p(¢) = posterior probability p(@| D)
Bayes’ rule (Bayes’ thoerem)

N
p(D|6)p(9) _ [Tp(X;10)p(®)

P®)  [[Tp(x,|0)p(O)I0

p(f|D)=

Maximum a posteriori (MAP) estimation

A

Ouap =argmax, p(6|D)



Contingency Table (73l|F&)

ML estimation for discrete variables
X, e{l,..M} X, e{l..L}

D=(X{",X{"),....( XM, XM ii.d. sample

p(xa’ Xb)
N EEERE XoKa| 1| 2 | 3
1 |12 |18 | 4 ) 1 |Pu |Pi2 |Pis
2 |6 9 14 2 | Por | Pz | Pa
N;: Number of counts Estimation of probabilities

ML estimator pij —_



Bayesian Estimation: Discrete Case

Bayesian estimation for discrete variables

Model: p(X,,X,|6)
p(X, =i, X, =j|O)=06,, 0=(0;)eAy_,

ij

Ay 1—{9€RK |6, 20 (Y1), Z. L0 =1
Prior: m(6) on A, _,

N ..
Likelihnood:  p(D|6)=T]p(X{", X" 10)=[T, ,6;"  Multinomial
n=1

Bayesian estimation:
_p(D,0)_ p(D|o)z®) _ 105" 7(0)
p(@|D)= =
p(D) |, p(D|6)7(6)db jA 0" 7(0)d0

This integral is difficult to compute in general.




Dirichlet Distribution

Dirichlet distribution

o Density function of K-dimensional Dirichlet distribution

(Zjl j)

Dir(0|a,...,ax ) = [167" o Hé’“‘ B
1 ‘ HJ 1F( )Jl
on ={#eR" (6,20, 6,=1}

where
(ay,...,ax) . parameter (g; > 0)

I'(a) : Gamma function () = j;ot“‘le‘tdt

I'a)=(a-DI'(a—1) for a>1
I'(n)=(n-1)! for a positive integer n.



Dirichlet Distribution

a=(6,2,2) a=(3,7,5)

a=(2,3,4)

o Expectation

[Exercise]

YK a
=17 ]
= The mean point is proportional to the vector «.

= The mean point is a stable point (i.e. differential = 0),
and it may be either maximum or minimum.



Dirichlet Distribution

Dir(0|a,,a,,a;) a=.3

K=3. a=b5(,1,1)from b=0.31t0 2.0.

10



Bayesian Inference with Dirichlet Prior

o Dirichlet distribution works as a prior to multinomial distribution.
Posterior is also Dirichlet -- conjugate prior

Data: D=(X",..,X™) N =[i|XV=k}| (k=L...,K)
Posterior:

p(6’|D)=J

A

p(D|O)DIr@|a) ] G Dir(0]e)

: = : =Dir(0|a)
p(D |0)Dir(0|a)d6 L oM Dir (0 | «)d 6

a=(N +a,...Ng +ay)

o WOrks as a prior count.

o MAP estimator

MAP = <K ~
2iab, NA4o+-a

11



Bayesian Inference with Dirichlet Prior

Proof.
p(©| D) < [T}, 6] " Dir(0| @) o« [T, 6,

j=1"]

By the normalization, the right hand side must be Dir(@|@).

12



EM Algorithm
for Models with Hidden Variables

13



ML Estimation with Hidden Variable

Statistical model with hidden variables

o Suppose we can assume hidden (unobservable) variables in
addition to observable variables.

X: observable variable
P(X,Z|0) Z: hidden variable
¢. parameter

o We have data only for observable variables: D =(X,, X,,..., Xy)
The ML estimation must be done with X

ilog p(xn | 9) — ilog[; p(xnazn | e)j

But, this maximization is often difficult.

o Probability of (X, Z) is sometimes easier to handle than that of X.

14



ML Estimation with Hidden Variable

o Example: Gaussian mixture model

With hidden variable:  p(X,Z[8)= p(Z | 7)¢(X| 1;,%)

: C Z takes values in {1,...,K}: component

gz(ﬁ,ﬂlgzla-naﬂK)ZK)
K
Marginal of X: p(X|0) =2 7;d(X| u;,2;)
-1
ML estimation
N N K
man 2 log p(X |6) =max ) log| 226X, 4.,
n=1 n=1 )=

m and (u, ;) are coupled - difficult to solve analytically.

15



Estimation with Complete Data

Complete data

o Suppose Z,, ..., Z,, were known.
D. ={(X,,4,),...,(X\,Zy)} :complete data

ML estimation with D, is often easier than estimation with D.
max /. (D, | 0),

where

N
¢.(D,|0)=>logp(X,,Z,|6) Complete log likelihood

n=l1

16



Estimation with Complete Data

o Example: Mixture of Gaussian

Redefine the hidden variable Z by K dimensional binary vector:

P(X,Z]6)= 15_[1{7{51¢(X | /uaﬂza)}za

Z=(Z,,...,Zy) takes values in
{(1,0,0,...,0), (0,1,0,...,0), == (0,0,0,...,1) }  Kclass

Note: P(X[6)=3p(X.Z|0) = > T (X | 1, 2,)

17



Estimation with Complete Data

ML estimation with complete data:

K

ilog p(xnazn | 9) — ilog(n{ﬂ|¢(xn | ﬂiaZi)}Zinj

=1

= %izin{log”i +logp(X, |:uiazi)}

n=l1=1

7 and (y, X;) are decoupled - they can be maximized separately.

— N K K
max » > Z'logz, subj.to Y.z =1 o
T p=li=l i=1 Maximization
IS easy.

N K
maXZZZi” loga( X, | 44,2;)

HX noli=]

But, the complete data is not available in practice!
18



Expected Complete Log Likelihood

o Use expected complete log likelinood instead of complete log
likelihood.

o Complete log likelihood
N
t.(D;16)= Zlog P(X,,Z,160)
n=1

o Expected complete log likelihood
Suppose we have a current guess 9

Use expectation w.r.t. P(Z, | X,,0")

N A
<€c(Dc |9)>é(t) — ZZ p(Zn | Xnae(t))log p(xnazn |9)

n=172Z,

Maximize & of (¢ (D |6)),,
19



EM Algorithm

Initialization
Initialize 6=6Y by some method.
t=0.

Repeat the following steps until stopping criterion is satisfied.
E-step
Compute the expected complete log likelihood <€C(DC |9)>
M-step
Maximize @of (£.(D,]8))

v

Ot — arg mgx<€C(DC | 9)>0"(t)

o Computational difficulty of M-step depends on the model.

H®

20



EM Algorithm for Gaussian Mixture

o Complete log likelihood

0,(D,16) =33 ZMlogm, +log d( X, | 1.5}

n=li=l1
o Expected complete log likelihood

j A "_1190
MO E[ZM X, 001=pZ" =1|X,,00) = p(X,,Z' =1|6"")

p(X, [6)

2 (1) A (0D (D)
_ ApKg LA ET) Ratio of contribution of X,

le(:17%§t)¢(xn | 29,289)  to the i-th component.

o E-step

<€(Dc |‘9)>9<t> = %ifin(t){log”i +log (X, |:ui92i)}

n=li=1

21



EM Algorithm for Gaussian Mixture

o M-step

A(t+1) . Zz_n(t)

N _n()
~ (t+1) _ Zn:l (4 X n

N t ~ (t NON .
$(t41) _ Dot ”( )(X ,u( ))(X ,ui( ) weighted
I ZN 1T_n(t) covariance matrix
N= |

(Proof omitted. Exercise)

22



EM Algorithm for Gaussian Mixture

o Meaning of 7

Z.! (if observed)

0.2

0.2

0.5

0.8

0.05

0.05

1 2 3
1101110
210 1010

N3/ 11010
NI 0O | 0] O

0.13

0.11

0.06

0.7

SUM
- 1

= 1

= 1

= 1
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Properties of EM Algorithm

o EM converges quickly for many problems.
2 Monotonic increase of likelihood of X is guaranteed (discussed later).
o EM may be trapped by local optima.

o The solution depends strongly on the initial state.

o EM algorithm can be applied to any model with hidden variables.
Missing value, etc.

24



Demonstration

o Web site for Gaussian mixture demo:
http://staff.aist.qo.|p/s.akaho/MixtureEM|.html

25



Theoretical Justification of EM

26



Theoretical Justification of EM

EM as likelihood maximization

The goal is to maximize the (incomplete) log likelihood, not the
expected complete log likelihood.

q(Z| X): arbitrary p.d.f. of Z, may depend on X.
Define an auxiliary function L(q,6) by

L(q>9)=§Q(Z | X)log

p(X,Z|6)
4Z | X)

Theorem 1

E-step:

q

(t+1)

= argmax L(q,é(t)) (and compute <€C(DC |<9)>q<t+1))
q

M-step: 9t — arg max L(q(”l),@)
0

Alternating optimization w.r.t. g and 6.

27



Theoretical Justification of EM

Proposition 1 (L and likelihood of X)
For any q(Z | X) and &, the log likelihood of X is decomposed as

(X 10)=L(q,0)+KL@(Z | X)[ p(£ | X,0))

In particular,
(X|6)>L(g,0) forallgqand g

and the equality holds if and only if 4= p(Z]X,0).

Proof) 46| X)~L(q.6)
= 3a(Z| X)log p(X |6) - Z4(Z | X log

=1
p(X |6)4(Z | X)
= Z | X)1
2921 X0)log ™= " 1)

q(Z[X)
p(Z]X,0)

p(X,Z]0)
q(Z | X)

=§Q(Z|X)10g

28



Theoretical Justification of EM

Proposition 2 (L and expected complete likelihood)

L(9,0)=(£:(X,Z10)), —;CJ(Z | X)logq(Z | X)

proof)
(U(X,210)), =§q(z | X)log p(X,Z]6)
p(X,Z[0)a(Z|X)
q(Z | X)

_ p(X,Z|0)
—;CI(Z | X)log 0z [ X) +§Q(Z | X)logq(Z | X)

= L(q,9)+§Q(Z | X)logq(Z | X)

=§Q(Z|X)10g

29



Theoretical Justification of EM

Proof of Theorem 1
o E-step:
From Proposition 1,
(X109 =1L(q,0")+KL@(Z | X)|I p(Z | X,0V))

independentofq  maximize <& minimize

=)  p(Z|X,0)=argmax L(q,0")
q

o M-step:
From Proposition 2,

L(q"™,0)=(¢,(X,Z|0))
M-step is

0(Z|X. 60y ~ (const. w.r.t.0)

max L(q“",0)

30



‘Theoretical Justification of EM

= Monotonic increase of likelihood by EM

Theorem
(X 10V) < o(X 6T for all t .
Proof)
(X 16My=L(q",o0") (E-step, Prop.1)

< L(q(t+1), é(t+1)) (M'Step)

<X |0"D) (Prop.1)

31



Remarks on EM Algorithm

o EM always increases the likelihood of observable variables, but there
are no theoretical guarantees of global maximization.
In general, it can converge only to a local maximum.

o There Is a sufficient condition of convergence by Wu (1983).
o Practically, EM converges very quickly.

o For Gaussian mixture model,

If the mean and variance are its parameters, the likelihood
function can take an arbitrary large value. There is no global
maximum of likelihood.

EM often finds a reasonable local optimum by a good choice of
Initialization.
The results depend much on the initialization.

o Further readings:

The EM Algorithm and Extensions (McLachlan & Krishnan 1997)
Finite Mixture Models (McLachlan & Peel 2000) 32



EM Algorithm for Hidden
Markov Model

33



Maximum Likelihood for HMM

Parametric model of Gaussian HMM

XO X1 X2 XT
T-1 T .
P(X,Y)= p(XO)H P(Xyy | Xt)H P(Y: | Xy)
t=0 t=0
p(X,=])= 7T Initial probability Yo Yoo Y, Yo
P(Xy = ][ Xy =)= A transition matrix (time invariant)

P(Yy | Xy =1)=¢(Y; 44,2 ) Gaussian with mean g and covariance %,

parameter: 6= (7z,(Ay)s Hysees My s Zy5eer 2 )
T-1 T
p(Y |0) = Z"'ZﬂxOHAxt_lxtHﬂYt | px > 2x,)
X Xy o t=0 t=0

max log p(Y | @) is difficult.
34



EM for HMM

Complete likelihood
(.Y, X |6)=logp(Y,X|6)

T-I T
= log(ﬂxo l_g A X 1_£¢(Yt | Hx > 2x, )) log (I1; ¢y ) Is easy.
t= t=

T-1
= log 7Z-X0 + Z AXtXt+1
t=0

l')\t

+i{—%(Y —ruAt) _At(Y — Ly )—llogdetZ —Elog(27r)l

K T-1

K
=Y 5y logm+ > D S S A

j=1 I, j=1t=0
K

U _ 1 m
+ Zéjxt {——(Yt —yj)TZjl(Yt — u;)——logdetX, ——10g(27z)}
i t=o 2 2 2

35



EM for HMM

Expected complete likelihood
Suppose we already have an estimate 4™ (n: index for iteration)

<€c(Y9X |9)>é(n) :; p(x |Y9é(n))10g p(Y,X |8)

It requires
S g = Z pX, [Y,0™)5, = p(X, = jIY,0™) =x""

<5iXt5th+1>é(n) = Z Z p(xt9Xt+1 |Y99(n))5ixt5jxt+1

Xe=1 Xi41=1

=p(X, =i, X, =j|Y,0™) =&

J(n) =p(X,=]1Y, H(n)) and gtlt{i-(ln) P(Xy =1, X, =JIY, e(n))

can be computed by the forward-backward algorithm.

36



EM for HMM - Baum-Welch Algorithm

E-step
o Forward-backward to compute 7" and g
o Expected complete log likelihood

(LY, X[0))gm = Zm‘(”) log, + Y. YELOA

I, j=1t=0

j(n - 1 m
+ZZ7t’( ){_E(Yt _/uj)szl(Yt _ﬂj)_zlogdetzj _Elog@”)}

j=1t=0

M-step A0 i(n) > '”1”) e
_7/0 , A|(n+1) t=0 Ot t+ t=0 2t,t+

Zk th ) tltli(ln) t—o7tl(n)

I(n i(n) (n+1) (n+1)
AN+ Zt O}/t( )Y (n+1) t= 0?/t (Y — K, )(Yt H; )
i —

T-1_i(n) ° T-1 i)
t=0/"t Zt 0/t

c.f. EM for Gaussian mixture
37




Summary: Parameter learning

o Discrete variables without hidden variables
Maximum likelihood estimation is easy by frequencies.
Bayesian estimation is often done with Dirichlet prior.

o Discrete variables with hidden variables
Maximum likelihood estimation can be done with EM algorithm.

Bayesian approach - computational difficulty.
Some technique is needed, e.qg. variational method.

38



Structure Learning

39



Working with Graphical Models

Determining structure @ ®
o Structure given by modeling @‘
e.g. Mixture model, HMM

o Structure learning structure - Part4
Parameter estimation X 1X
p(X¢ | X,)
o Parameter given by some knowledge X A\X,| 1 2
o Parameter estimation with data 1 o2 |03 |loa
such as MLE or Bayesian estimation > los |07 loe
- Part4
parameter
Inference

o Computation of posterior and marginal probabillities
(Already seen in Part 3.)
40



How to determine a network?

Prior knowledge

A graphical model may be given by the prior knowledge on the problem.
e.g.1) Diagnosis system

The problem is to estimate
the probabilities (parameters).

e.g.2) HMM m @

Structure learning

If it Is difficult to assume an appropriate model,
the graph structure must be /earned from data.

41



Structure Learning

Variables: X, ..., X,
Data: (X,™, ..., X. M), ..., (X, M), ..., X_(N)

Output of structure learning = a directed / undirected graph associated
with the probability of (X, ..., X.).

@ ® @  ®
(©) I::::ZI Data :>

()
@® @ structure learning QAQ

Difficulty: the number of possible directed graphs = 3mm-1)/2
The search space is very large.

42



Learning of Directed Graph

Score-based method

Use a global score to match a graph and data.
Problem: Optimization in huge search space.
Able to use informative prior on graphs.

Usually, discrete variables are assumed.

Often referred to as Bayesian structure learning.

o o o o o

Constraint-based method

o Determine the conditional independence of the underlying
probability by statistical tests.

o Problem: Many statistical tests are required.
o Often referred to as causal learning.

43



Score-based Structure Learning: Example

Discrete variables: X, ..., X
Data: D = {(X,, ..., X, D), ..., (X, N, ..., X M)}
o Model:

When a directed graph G is specified, multinomial distribution is
assumed with Dirichlet prior.

DX 18) =TT P(Xo | X paro-6h) (6) ®

b=1
6, = (eb{i) i multi-index for pa(b)
p(D|0)= HH P(XE™ | X et 6) °

n=1 b=1

pa(b) ~

Dirichlet prior:
bh; :(eg,io"'aeblfib) ~ Dir(6,; |al:1),i9 L b|)

(ZJ bl) abl
H 1_‘(Olbl)}_ll( bl)



Score-based Structure Learning: Example

o Marginal likelihood:
Score(G) = Log Marginal Likelihood of G.
:logIP(D|9,G)p(9|G,a)d9 a:(atii)

(ZJ bl) al 1
> dd
b=1 il J=1 H [(a bl)}_[l( %) ™

—logF(Z a, I)+ZlogF(ab, }

where @) = NJ; + o4,

Ng,i : number of data s.t. X, =j and X, =i
45



Score-based Structure Learning

o Prior to the models
We can use a prior distribution P(G) on the graphs.

Score(G)=1logP(D|G)+1ogP(G)

o Optimization over the graphs
The space is very huge - greedy search.
Start from a graph G, and repeat the following process:
Update the graph by deleting, inserting, or reversing an edge.
Accept the new graph G’ if Score(G’) > Score(G).

o Many others
Score by MDL (minimum description length) / BIC (Bayesian
information criterion)

MCMC, etc.

See D. Heckerman “A tutorial on learning with Bayesian networks”
in Learning in Graphical Models (M. Jordan ed. 1998). 46



Marginal Likelihood / ABIC

Bayesian method for model selection
Maximum a posteriori model given data

N

G =argmax P(G| D)

Note:

oDy PPIGPE)

P(D)

o P(D|G)P(G) as a function of model

= :
G = argmax|logP(D|G) +1og P(G)]

If P(G) is uniform over the models,

A

G =argmaxlogP(D|G) —— Marginal log likelihood
(ABIC: Akaike’s Bayesian
= argmax logj P(D[8,G)P(0|G)déd information criterion)

47



Mini-Summary on score-based method

o Use a global score to match a graph and data.
Marginal log likelihood (ABIC), MDL, etc.

o Optimization in huge search space.
Some techniques are needed. e.g. greedy search.

o Able to use informative prior on graphs.

o Usually, discrete or Gaussian variables are assumed.

For non-Gaussian continuous variables, we need some
techniques such as discretization.

o Also known as Bayesian structure learning

48



Causal Learning

Directed graph as causal graph

o A directed graph can be regarded as the expression of causal
relationships among variables.

Causal direction = Edge-direction

P(X)=p(X)P(Xp)P(X, | Xy, Xy)
X p(xd | Xbaxc)p(xe | wad)

o Causal learning: learning of the directed graph from data.

49



Causal Leaning from Data

With manipulation — intervention
X is a cause of Y?

s Y Easier. (do-calculus, Pearl 1995)

manipulate observation

No manipulation / with temporal information
X(t) Y() :observed time series

X(1), ..., X(t) are a cause of Y(t+1)?
No manipulation / no temporal information

X
Causal inference is harder.

50



Addendum: Causality and Correlation

Correlation (dependence) and causality
Do not confuse causality with dependence (or correlation)!

Example)
A study shows:
Young children who sleep with the light on are much more likely
to develop myopia in later life. (Nature 1999)

Parental myopia

light on  short-sight
(Nature 2000)

Hidden common cause 1



Causal Learning without Manipulation

Difficulty of causal inference from non-

experimental data

o Widely accepted view till 80’s

Causal inference is impossible without manipulating some
variables.

e.g.) “No causation without manipulation” (Holland 1986, JASA)

o Temporal information is very helpful, but not decisive.

e.g.) The barometer falls before it rains, but it does not cause
the rain.

o Many philosophical discussions, but not discussed here.
See Pearl (2009) and the references therein.

52



Causal Learning without Manipulation

Why is it possible?
o DAGofchain X-Z-Y
V-structure

X Y X 1LY
G\bf ::/'\ and
Z XYLY|Z

o This is the only detectable directed graph of three variables.

o The following structures cannot be distinguished from the
probability.

X1UyYl|z zZ
X Z Y X Z \
xg/o\bv OO0 O—0—0

pP(X,y,.z) = p(X|2)p(ylz)p(z) = p(X|Z)p(zly)p(y) = pXIZ)p(zly)p(X) 53



Causal Learning without Manipulation

Fundamental assumptions

o Causal Markov condition
The probability generating data is associated with a DAG.

POX) =T P(X; [pa(i) 2 b
P(X) = p(X) p(Xp) (X, | X, X)) p(Xy [ X,)

o Causal Faithfulness Condition

The inferred DAG (causal structure) must express all the
independence relations.

a b a b
c c This includes the true probability
as a special case, but the structure
d d does not expressa 1l b

true unfaithful 54



Constraint-based Causal Learning

|IC algorithm (Vermaé&Pearl 90)

Input — V: set of variables, D: dataset of the variables.
Output — Partial DAG (specifies an equivalence class, directed partially)

1. Foreach (a,b)eV xV (a=b), searchfor S,; cV\{a,b}
such that X, 1L Xy | Sa

Construct an undirected graph (skeleton) by making an edge
between a and b if and only if no set S, can be found.

2. For each nonadjacent pair (a,b) with a — ¢ — b, direct the edges
by a—>c<«b if C&S,

3. Orient as many of undirected edges as possible on condition that
neither new v-structures nor directed cycles are created.

- Implemented in PC algorithm (Spirtes & Glymour) efficiently.
55



Constraint-based Causal Learning

Example
True structure The output from each step of IC algorithm
a 1) a 2) a 3) a
b c b c b c b c

d d d d

€ e e e
Sad — {b,C} For (b,C), d & SbC
Sae — {d}
Spe =18} Direction of some edges

Spe = See = {d} may be left undetermined.

For other pairs,
S does not exist. 56



Mini-summary on constraint-based
method

o Determine the conditional independence of the underlying
probability by statistical tests.

o Many statistical tests are required.
Problems:
Errors in statistical tests.
Computational costs.
Multiple comparison — difficult to set critical regions

o Effects of hidden variables are important to consider (not
discussed here).

o Often discussed in the context of causal learning.

57



Summary: Structure learning

o Two major approaches
Score-based Bayesian structure learning
There are many methods how to define score function.
Marginal likelihood, MDL, etc.
Constraint-based causal learning
Testing conditional independence.

o More recent approach

Sparse network by Lasso
Meinshausen and Buhimann [Ann. Statist. 34 (2006) 1436—-1462]

o Further readings

D. Heckerman. A tutorial on learning with Bayesian networks. in Learning in
Graphical Models. (ed. M.Jordan) pp.301-354. MIT Press (1999)

This book contains various advanced topics.
J. Pearl. Causality. 2nd ed. Cambridge University Press (2009)
ZIHE MRsteoRR R IS EE(2004)
ZIHE T5S5T74HILETILT 1 BIEENE(1997) 58



