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How to Work with Graphical Models



How to Work with Graphical
Models?

Determining structure

o Structure given by modeling
e.g. Mixture model, HMM
o Structure learning - Part4

Parameter estimation

o Parameter given by some knowledge

o Parameter estimation with data such as MLE or Bayesian
estimation - Part4

Inference
o Computation of posterior and marginal probabilities - Part 3



Finite Mixture Model



Mixture Model
Graphical model of finite mixture model

Hidden variable (unobservable)

The distribution of X depends

Observable variable on the hidden variable Z.

Z. discrete variable taking value in {1,2,...,K}
X: either discrete or continuous

fConvention in this course: N
() blank circle — hidden variable

O colored circle — observable
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Mixture Model

Probability density of finite mixture model
o Joint probability
p(X,Z)=p(Z)p(X|Z2) i {1.2....K}

o Marginal of X
p(X) =§ p(Z)p(X|Z)

=ép<2=k)p<><|Z=k)

3 7P (X) 7= p(Z
— T
k=1 P P = pP(X|Z

K
General form: p(X)=> 7, p.(X)
k=1

Z:leﬂk =1, 7, 20, px): density of X
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Examples of Mixture Model

o The components p, are often taken from a popular parametric family
of probabilities.

o Gaussian mixture model
K
p(x) =2 7;p(X| ;,Z;)
j=1

where o(X| 1, Z) : density function of normal distribution

with mean x and covariance matrix
l.e.

x| ) = eXp(—%(X—ﬂ)Til(X—ﬂ)j

1
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o Mixture of binomials, mixture of chi-squares, etc



‘ Gaussian Mixture Model
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P.d.f . of Gaussian mixture

1 dimensional, 2 components.
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l.i.d. sample from Gaussian Mixture
2 dimensional, 3 components,
200 data.



Application of Mixture Model

Gaussian Mixture

o Modeling of clustered data
o Statistical foundation of analyzing clustering
o Outlier detection, etc....

Others

o  Mixture of binomial distributions:
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The ratio of combination may be different over

S.
different groups.

Estimation of the parameter from data (EM algorithm) will be
discussed later (Part 4).



Hidden Markov Model
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Hidden Markov Model (HMM)

Graphical model of HMM

Z;: hidden state, often discrete
Xi:: observable

X, X, X, Xy X

Probabllity density of HMM
p(X,Z)= p(Zo)ﬁ1 P(Zi | Zi4)P(X [ Zy)

p(X) =33 P P, 1 Ze)P(X, | Z,)
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Hidden Markov Model

State transition p(X)— Z p(Z, )H p(Z,1Z,)p(X|Z,)

o The probability p(Z,| Z,,) is
the transition probabilities of K states.

Afi_l) pP(Z, =k|Z,,=])
AD >0, X5, A 1

They are often time-invariant: Xo o X X X X
(1) _
Ajk N Ajk

o Transition diagram

}'
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Hidden Markov Model

o Example
Gaussian hidden Markov model P—
pP(X;| Z,=]) is Gaussian C\« S : /D
ff%}}j fﬁ it .
p(X|Z = J)=$(x| 1, ) ol o

o If the hidden state is generated independently,
HMM is equal to a mixture model.

o If the state is continuous, the model is often called state-space
model.
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Applications of HMM

Speech signal processing

o Speech signals are often modeled by HMM.
Speech recognition etc.

(See, e.qg., tutorial: Rabiner. Proc. IEEE, 77(2), 257-286, 1989.)

Genome seguence
o DNA: symbol sequence of {A, T, G, C}
o Protein sequence: symbol sequence of 20 amino acids

(See, e.qg., Durbin, Eddy, Krogh, Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1999.)

Natural language processing
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Prediction, Smoothing, Filtering

Inference with HMM

o Prediction:
P(Zi [ X1 Xg) (s<1)

o Smoothing:
P(Zi [ X1 X)) (U>1)

o Filtering:
P(Z, | Xg 0o X)

Xo X X, X3 X,
prediction

Xo Xi X Xg X,
smoothing

Xo Xi X X3 X
filtering
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Prediction, Smoothing, Filtering

Computational difficulty

To obtain
Z., Xgy.o0y X
p(zslxo,...,xt)z p( S 0 t)
0(Xg..s X,)

we need to compute

P(Xgro X)) =T33 p(zo)g D(Z,1Z.)P(X, 1 Z))

Zy 4y Zy

Direct computation requires Kt operations — exponential on t.

Efficient algorithms  (discussed later in Part 3 and 4)

o Computation of p(X): forward-backward algorithm
o Computation of most likely hidden sequence: Viterbi algorithm
o Estimation of parameters: Baum-Welch algorithm
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