Generalization Performance

Statistical Inference with Reproducing Kernel Hilbert Space

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University for Advanced Studies

May 30, 2008 / Statistical Learning Theory II

◆□ > ◆母 > ◆目 > ◆目 > 三日 のへで

Outline

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension

3 Risk bound for SVM

Risk bound for SVM

Risk and empirical risk Concentration inequalities Bound for finite function class

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

2 Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension

Risk and empirical risk I: Terminology

- Supervised learning:
 - $\mathcal{D} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$: data. i.i.d. sample.
 - $X_i \in \mathcal{X}$: input, $Y_i \in \mathcal{Y}$: output.
 - $\mathcal{F} \subset \{f : \mathcal{X} \to \mathcal{Y}\}$: function class.
 - Choose f from \mathcal{F} so that $Y_i \approx f(X_i)$.
- Risk and empirical risk
 - Loss function $\ell(y, f)$: measure discrepancy of Y_i and $f(X_i)$.
 - Risk: the purpose of learning is to minimize the risk;

$$L(f) = E[\ell(Y, f(X))] \qquad (f \in \mathcal{F}).$$

Empirical risk:

$$L_n(f) = \widehat{E}_n[\ell(Y, f(X))] = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)) \qquad (f \in \mathcal{F}).$$

• Learning must be done with data:

$$\widehat{f} = \arg\min_{f\in\mathcal{F}} L_n(f).$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Risk and empirical risk II: Example of loss function

- Mean square error.
 - $\ell(y, f) = (y f)^2$.
 - Empirical risk

 $\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (Y_i - f(X_i))^2$ (least mean square).

- Risk = $E[(Y f(X))^2]$.
- 0-1 loss. $y, f(x) \in \{\pm 1\}.$
 - $\ell(y, f) = \frac{1 yf(x)}{2}$.
 - Empirical risk = ratio of errors: $\widehat{E}_n[\ell(Y, f(X))] = \frac{1}{n} |\{i \mid Y_i \neq f(X_i)\}|.$
 - Risk = mean error rate: $E[\ell(Y, f(X))] = Pr(Y \neq f(X))$.
- Log likelihood
 - $\ell(y, f) = -\log p(y|f).$
 - Empirical risk = Empirical log likelihood.
 - Risk = Expected log likelihood.

Risk and empirical risk Concentration inequalities Bound for finite function class

Risk and empirical risk III: Two approaches

• Goal: What can we say about $L(\widehat{f})$?

$$L(\widehat{f}) - \underbrace{\widehat{L}_n(\widehat{f})}_{\text{known}} = \underbrace{E[\ell(Y,\widehat{f}(X))|\mathcal{D}] - \widehat{E}_n[\ell(Y,\widehat{f}(X))]}_?$$

- Approaches to analysis.
 - Asymptotic expansion of the expectation:

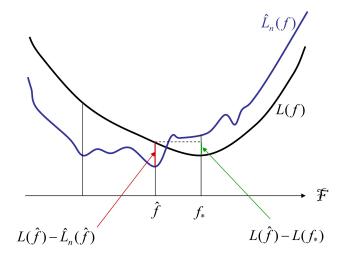
e.g.
$$E_{\mathcal{D}}[E[\ell(Y, \hat{f}(X))] - \hat{E}_n[\ell(Y, \hat{f}(X))]] = \frac{A}{n} + ...$$

 $\Longrightarrow \mathsf{AIC}.$

Bounding risk:

$$\begin{split} \text{e.g.} \quad & \Pr \big(E[\ell(Y, \widehat{f}(X)) | \mathcal{D}] \leq \widehat{E}_n[\ell(Y, \widehat{f}(X))] + \varepsilon \big) \\ & \leq \Pr \Big(\sup_{f \in \mathcal{F}} \big(E[\ell(Y, f(X))] - \widehat{E}_n[\ell(Y, f(X))] \big) \leq \varepsilon \Big) \quad \leq \alpha e^{-\beta \varepsilon^2 n}. \end{split}$$

Risk and empirical risk Concentration inequalities Bound for finite function class



Risk and empirical risk Concentration inequalities Bound for finite function class

Risk and empirical risk IV

- This lecture explains the latter approach
 - The bound applies for all *n*, not asymptotics.
 - Just a bound, but often derives a useful information in its functional form.
 - Can be applied to complex methods, such as SVM, AdaBoost.
 - Note: the loss function of SVM $(1 yf(x))_+$ is not differentiable.
- The techniques explained here use the notion of Rademacher average [BBM02].
 For more classical background, see [Vap98].
- Comment on terminology:¹
 - Risk = generalization error, prediction error, (expected log likelihood), etc.
 - Empirical risk = empirical error, training error, (empirical log likelihood), etc.

1The terminology in statistical learning theory is slightly different from statistics.

Risk and empirical risk Concentration inequalities Bound for finite function class

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

2 Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension

Risk and empirical risk Concentration inequalities Bound for finite function class

Empirical mean and expectation

Before considering

$$\sup_{f\in\mathcal{F}} E[\ell(Y, f(X))] - \widehat{E}_n[\ell(Y, f(X))],$$

review the behavior of

$$E[\ell(Y, f(X))] - \widehat{E}_n[\ell(Y, f(X))] = E[Z] - \frac{1}{n} \sum_{i=1}^n Z_i.$$

• The law of large numbers (Z_i: i.i.d.)

$$\frac{1}{n}\sum_{i=1}^{n}Z_{i} \longrightarrow E[Z] \quad a.e.(n \to \infty)$$

• Central limit theorem (Z_i: i.i.d.)

$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} Z_i\right) - E[Z] \Longrightarrow N(0, \operatorname{Var}[Z]) \quad (n \to \infty)$$

How about

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}-E[Z]\geq\varepsilon\right)?$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Hoeffding's inequality

Theorem (Hoeffding's inequality)

 X_1, \ldots, X_n : independent random variables, $X_i \in [a_i, b_i]$. Then, for any $\varepsilon > 0$,

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-E[X]>\varepsilon\right)\leq \exp\left(\frac{-2\varepsilon^{2}n^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

and

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-E[X]<-\varepsilon\right)\leq\exp\left(\frac{-2\varepsilon^{2}n^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

- Proof is omitted (see e.g. [vdVW96]), since this is a corollary to McDiamid's inequality).
- Example:

If $\ell(y, f) \in [0, 1]$, then for any $f \in \mathcal{F}$,

$$\Pr(|\hat{L}_n(f) - L(f)| > \varepsilon) \le 2e^{-2\varepsilon^2 n}.$$

Azuma-Hoeffding's/McDiamid's inequality

Theorem (Azuma-Hoeffding's/McDiamid's inequality)

 X_1, \ldots, X_n : independent random variables on \mathcal{X} . $f : \mathcal{X}^n \to \mathbb{R}$: measurable function. Assume for each *i* there exists $c_i > 0$ such that for any x_1, \ldots, x_n, x'_i

$$|f(x_1,\ldots,x_i,\ldots,x_n) - f(x_1,\ldots,x'_i,\ldots,x_n)| \le c_i$$

then

$$\Pr(f(X_1,\ldots,X_n) - E[f(X_1,\ldots,X_n)] > \varepsilon) \le \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

and

$$\Pr(f(X_1,\ldots,X_n) - E[f(X_1,\ldots,X_n)] < -\varepsilon) \le \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Proof I

Remark. $f(x_1, ..., x_n) = \sum_{i=1}^n X_i$ and $c_i = b_i - a_i$ prove Hoeffding's inequality. proof. Let

$$V_{i} = E[f(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{i}] - E[f(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{i-1}]$$

= $E[f(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{i}]$
 $- E_{X_{i}}[E[f(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{i}] | X_{1}, \dots, X_{i-1}]$

Then,

$$\sum_{i=1}^{n} V_i = f - E[f], \text{ and } E[V_i \mid X_1, \dots, X_{i-1}] = 0.$$

By Markov's inequality with e^{tx} (t > 0),

$$\Pr(f - E[f] > \varepsilon) = \Pr(\sum_{i=1}^{n} V_i > \varepsilon)$$

$$\leq \inf_{t>0} e^{-t\varepsilon} E\left[e^{t\sum_{i=1}^{n} V_i}\right]$$

$$= \inf_{t>0} e^{-t\varepsilon} E\left[E_{X_n}\left[e^{t\sum_{i=1}^{n} V_i} \mid X_1, \dots, X_{n-1}\right]\right]$$

$$= \inf_{t>0} e^{-t\varepsilon} E\left[e^{t\sum_{i=1}^{n-1} V_i} E_{X_n}\left[e^{tV_n} \mid X_1, \dots, X_{n-1}\right]\right] \qquad [V_1, \dots, V_{n-1} \perp X_n].$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Proof II

Let

$$L_i \equiv \inf_x V_i(x_1, \dots, x_{i-1}, x) \le V_i \le \sup_x V_i(x_1, \dots, x_{i-1}, x) \equiv U_i.$$

By the assumption, it is easy to see

$$U_i - L_i \le c_i.$$

From the lemma shown below, $E[e^{tV_n} \mid X_1, \ldots, X_{n-1}] \leq e^{t^2 c_n^2/8}$. Thus,

$$\Pr(f - E[f] > \varepsilon) \le \inf_{t>0} e^{-t\varepsilon} E\left[e^{t\sum_{i=1}^{n-1} V_i}\right] e^{-t^2 c_n^2/8}.$$

Repeating the same argument n-1 times,

$$\Pr(f - E[f] > \varepsilon) \le \inf_{t>0} e^{-t\varepsilon} e^{-t^2 \sum_{i=1}^n c_i^2/8}.$$

The optimal choice $t = 4\varepsilon / \sum_{i=1}^{n} c_i^2$ gives

$$\Pr(f(X_1,\ldots,X_n) - E[f(X_1,\ldots,X_n)] > \varepsilon) \le \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right).$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Lemmas

Lemma (Hoeffding's lemma)

Let X be a random variable with E[X] = 0 and $a \le X \le b$. Then for any t > 0,

 $E[e^{tX}] \le e^{t^2(b-a)^2/8}.$

Proof omitted (exercise).

Lemma (Markov's inequality)

Let X be a random variable such that $X \ge 0$. Then, for any $\varepsilon > 0$

$$\Pr(X \ge \varepsilon) \le \frac{E[X]}{a}.$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

2 Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension

Bound for finite function class I

The simplest case: $|\mathcal{F}| < \infty$ (finite class). $\ell(y, f) \in [0, 1]$.

• For each $f \in \mathcal{F}$,

$$\Pr\left(E[\ell(Y, f(X))] - \widehat{E}_n[\ell(Y, f(X))] \ge \varepsilon\right) \le e^{-2\varepsilon^2 n}$$

• From
$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$
,

 $\Pr\Bigl(\sup_{f\in\mathcal{F}}\bigl\{E[\ell(Y,f(X))]-\widehat{E}_n[\ell(Y,f(X))]\bigr\}\ge \varepsilon\Bigr)\le |\mathcal{F}|e^{-2\varepsilon^2n}.$

• Let $\delta = |\mathcal{F}|e^{-2\varepsilon^2 n}$. With probability at least $1 - \delta$,

$$\sup_{f \in \mathcal{F}} \left\{ E[\ell(Y, f(X))] - \widehat{E}_n[\ell(Y, f(X))] \right\} \le \sqrt{\frac{\log |\mathcal{F}| + \log(1/\delta)}{2n}}$$

Risk and empirical risk Concentration inequalities Bound for finite function class

Bound for finite function class II

Two results:

• Estimation of the risk by the empirical risk. With probability at least $1 - \delta$,

$$L(\widehat{f}) \le \widehat{L}_n(\widehat{f}) + \sqrt{\frac{\log |\mathcal{F}| + \log(1/\delta)}{2n}}.$$

• The difference from the optimal risk. $f_* = \arg \min_{f \in \mathcal{F}} L(f)$. With probability at least $1 - 2\delta$,

$$L(\widehat{f}) \le L(f_*) + \sqrt{\frac{\log(1/\delta)}{2n}} + \sqrt{\frac{\log|\mathcal{F}| + \log(1/\delta)}{2n}}$$

Proof.

$$\begin{split} L(\widehat{f}) &= (L(\widehat{f}) - \widehat{L}_n(\widehat{f})) + (\widehat{L}_n(\widehat{f}) - \widehat{L}_n(f_*)) + (\widehat{L}_n(f_*) - L(f_*)) + L(f_*) \\ &\leq (\text{uniform bound}) + (\leq 0) + (\text{Hoeffding}). \end{split}$$

1

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

2 Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension

Extension of risk bound to infinite classes

We wish to extend the uniform bound to an infinite function class \mathcal{F} ;

$$\sup_{f \in \mathcal{F}} \left\{ E[\ell(Y, f(X))] - \widehat{E}_n[\ell(y, f(X))] \right\}.$$

Consider in general $\mathcal{G} \subset \{g: \mathcal{Z} \rightarrow [0,1]\}$ and

$$\sup_{g \in \mathcal{G}} \{ E[g(Z)] - \widehat{E}_n[g(Z)] \}.$$

$$\mathsf{Ex.}\ \mathcal{Z} = \mathcal{X} \times \mathcal{Y} \text{ and } \mathcal{G} = \ell_{\mathcal{F}} = \{\ell(y, f(x)) \mid f \in \mathcal{F}\}.$$

The method consists of three steps:

- Concentration by Azuma-Hoeffding's inequality.
- **2** Symmetrization for removing E[g].
- Bounding Rademacher average.

Step 1: Concentration

Define

$$h(z_1,\ldots,z_n) = \sup_{g \in \mathcal{G}} \left\{ E[g(Z)] - \frac{1}{n} \sum_{i=1}^n g(z_i) \right\}.$$

• h satisfies the condition

$$|h(z_1,\ldots,z_{i-1},z_i,\ldots,z_n) - h(z_1,\ldots,z_{i-1},z'_i,\ldots,z_n)| \le 1/n.$$

• Apply Azuma-Hoeffding's inequality to h: With probability $\geq 1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left\{ E[g(Z)] - \widehat{E}_n[g(Z)] \right\} \le E \left[\sup_{g \in \mathcal{G}} \left\{ E[g(Z)] - \widehat{E}_n[g(Z)] \right\} \right] + \sqrt{\frac{\log(1/\delta)}{2n}}$$

Step 2: Symmetrization - (1)

We wish to have

$$E\left[\sup_{g\in\mathcal{G}}\left\{E[g(Z)]-\widehat{E}_n[g(Z)]\right\}\right]$$

converge to zero.

• Symmetrization. Z'_1, \ldots, Z'_n : an i.i.d. sample with the same distribution as Z_i .

$$\begin{split} &E\left[\sup_{g\in\mathcal{G}}\left\{E[g(Z)]-\widehat{E}_{n}[g(Z)]\right\}\right]=E\left[\sup_{g\in\mathcal{G}}\left\{E\left[\frac{1}{n}\sum_{i=1}^{n}g(Z_{i}')\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right]\right\}\\ &=E\left[\sup_{g\in\mathcal{G}}E\left[\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\mid Z\right]\right]\\ &\leq E\left[E\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\}\mid Z\right]\right] \qquad \text{[convexity of sup]}\\ &=E\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\}\right]\end{split}$$

• This removes the *infinite sample E*[*g*], and makes a bound with a finite sample.

Step 2: Symmetrization - (2)

- We wish to remove the double sample Z_i and Z'_i .
- Rademacher variables: i.i.d. random variable $\sigma_i \in \{\pm 1\}$ with probability 1/2 for each value.
- Note: By the symmetry,

$$\sum_{i=1}^{n} (g(Z'_i) - g(Z_i))$$
 and $\sum_{i=1}^{n} \sigma_i (g(Z'_i) - g(Z_i))$

have the same law. Hence,

$$\begin{split} &E\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z'_{i})-g(Z_{i}))\right\}\right]\\ &=E\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}(g(Z'_{i})-g(Z_{i}))\right\}\right]\\ &\leq E\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}g(Z'_{i})\right]+E\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}g(Z_{i})\right]\\ &=2E\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}g(Z_{i})\right]. \end{split}$$

Step 3: Rademacher average

$$E\left[\sup_{g\in\mathcal{G}}\left\{E[g(Z)] - \widehat{E}_n[g(Z)]\right\}\right] \le 2E\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^n \sigma_i g(Z_i)\right].$$

• Rademacher average:

$$R_n(\mathcal{G}) \equiv E\left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(Z_i)\right].$$

• Empirical Rademacher average:

$$\widehat{R}_n(\mathcal{G}) \equiv E \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(Z_i) \mid Z_1, \dots, Z_n \right].$$

- Note: $E[\sigma_i g(Z_i)] = 0$. Thus, $\frac{1}{n} \sum_i \sigma_i g(Z_i)$ must be small.
- $R_n(\mathcal{G})$ $(\widehat{R}_n(\mathcal{G}))$ represents the complexity of the function class \mathcal{G} . Example: $\mathcal{G} \subset \{g : \{Z_1, \dots, Z_n\} \to \{\pm 1\}\}$. Regard σ_i as a label of Z_i . $\frac{1}{n} \sum_{i=1}^n \sigma_i g(Z_i) = \frac{1}{n} \sum_{i=1}^n (1 - 2I_{\{\sigma_i \neq g(Z_i)\}}) = 1 - 2\widehat{L}_n(g)$. $R_n(\mathcal{G}) = 1 - 2 \times$ (expected minimum empirical loss).

Risk bound for infinite classes

We have obtained: With probability $\geq 1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left\{ E[g(Z)] - \widehat{E}_n[g(Z)] \right\} \le 2R_n(\mathcal{G}) + \sqrt{\frac{\log(1/\delta)}{2n}}$$

Two consequences:

 $\ell(y, f) \in [0, 1]$, and let $\ell_{\mathcal{F}} = \{\ell(y, f(x)) \mid f \in \mathcal{F}\}.$

• Estimation of the risk by the empirical risk. With probability at least $1 - \delta$,

$$L(\widehat{f}) \leq \widehat{L}_n(\widehat{f}) + 2R_n(\ell_{\mathcal{F}}) + \sqrt{\frac{\log(1/\delta)}{2n}}.$$

The difference from the best possible risk.
 f_{*} = arg min_{f∈F} L(f). With probability at least 1 − 2δ,

$$L(\widehat{f}) \le L(f_*) + 2R_n(\ell_{\mathcal{F}}) + 2\sqrt{\frac{\log(1/\delta)}{2n}}$$

Relations between $R_n(\ell_F)$ and $R_n(F)$

The bound includes $R_n(\ell_{\mathcal{F}})$.

It is often related to $R_n(\mathcal{F})$, which is easier to analyze.

- 0-1 loss: $\mathcal{F} \subset \{f : \mathcal{X} \to \{\pm 1\}\}, \, \ell(y, f) = \frac{1-yf}{2}.$
- Fact: for 0-1 loss,

$$R_n(\ell_{\mathcal{F}}) = \frac{1}{2}R_n(\mathcal{F}).$$

Proof.

$$\begin{split} R_n(\ell_{\mathcal{F}}) &= E \Big[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i \frac{1 - Y_i f(X_i)}{2} \Big] \\ &= \frac{1}{2} E \Big[\sup_{f \in \mathcal{F}} \sum_{i=1}^n (-\sigma_i Y_i) f(X_i) \Big] \\ &= \frac{1}{2} R_n(\mathcal{F}) \qquad [(-\sigma_i Y_i) \text{ works as a Rademacher variable}] \end{split}$$

1

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

2 Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension

Bounding Rademacher average I

How to bound the Rademacher average ?

$$R_n(\mathcal{G}) = E\left[\sup_{g \in \mathcal{G}} \sum_{i=1}^n \sigma_i g(Z_i)\right]$$

Assume $\mathcal{G} \subset \{g : \mathcal{Z} \to \{\pm 1\}\}.$

Note: \mathcal{G} affects on $R_n(\mathcal{G})$ only through $(g(Z_1), \ldots, g(Z_n)) \in \{\pm 1\}^n$.

We can use the following lemma.

Lemma (Massart [Mas])

A: finite subset of \mathbb{R}^n . Assume $\max_{a \in A} ||a|| \le R$. Then

$$E\left[\max_{a\in A}\sum_{i=1}\sigma_i a_i\right] \le R\sqrt{2\log|A|},$$

where σ_i are Rademacher variables.

Bounding Rademacher average II

For
$$Z_1^n = (Z_1, \dots, Z_n) \in \mathcal{Z}^n$$
, define
 $\mathcal{G}_{|Z_1^n} = \left\{ \left(g(Z_1), \dots, g(Z_n) \right) \in \{\pm 1\}^n \mid g \in \mathcal{G} \right\}.$

Fact:

$$R_n(\mathcal{G}) \le \sqrt{\frac{2E[\log |\mathcal{G}_{|Z_1^n}|]}{n}} \le \sqrt{\frac{2\log E[|\mathcal{G}_{|Z_1^n}|]}{n}}.$$

Proof.

$$\begin{aligned} R_n(\mathcal{G}) &= E\left[\sup_{a \in \mathcal{G}_{|Z_1^n}} \frac{1}{n} \sum_{i=1}^n \sigma_i a_i\right] \\ &= E\left[E\left[\sup_{a \in \mathcal{G}_{|Z_1^n}} \frac{1}{n} \sum_{i=1}^n \sigma_i a_i \mid Z_1^n\right]\right] \\ &\leq \frac{1}{\sqrt{n}} E\left[\sqrt{2 \log |\mathcal{G}_{|Z_1^n}|}\right] \qquad \text{[Massart's lemma]} \\ &\leq \sqrt{\frac{2E[\log |\mathcal{G}_{|Z_1^n}|]}{n}} \qquad \text{[concavity of } \sqrt{-}] \\ &\leq \sqrt{\frac{2 \log E[|\mathcal{G}_{|Z_1^n}|]}{n}} \qquad \text{[concavity of } \log] \end{aligned}$$

Proof of Massart's lemma

Proof.

Let s > 0.

$$\begin{split} \exp(sE[\max_a\sum_i\sigma_ia_i]) &\leq E[\exp(s\max_a\sum_i\sigma_ia_i)] \qquad [\text{convexity of } \exp(sz)] \\ &= E[\max_a\exp(s\sum_i\sigma_ia_i)] \qquad [\max \longrightarrow \sum] \\ &\leq E[\sum_a\exp(s\sum_i\sigma_ia_i)] \qquad [\max \longrightarrow \sum] \\ &= \sum_a E[\prod_{i=1}^n e^{s\sigma_ia_i}] \qquad [\text{independence of } \sigma_i] \\ &= \sum_{a \in A} \prod_{i=1}^n E[e^{s\sigma_ia_i}] \\ &\leq \sum_{a \in A} \prod_{i=1}^n \exp(s^24a_i^2/8) \\ \qquad \qquad [\text{Hoeffding's lemma, } \sigma_ia_i \in [-a_i,a_i]] \\ &= |A|\exp(s^2R^2/2). \end{split}$$
Take the optimal $s = \sqrt{\frac{2\log|A|}{R^2}}$. Then,
 $E[\max_a\sum_i\sigma_ia_i] \leq R\sqrt{2\log|A|}.$

Distribution-free bound: Growth function

Let $\mathcal{G} \subset \{g : \mathcal{Z} \to \{\pm 1\}\}$. Definition. Growth function

 $\Pi_{\mathcal{G}}(n) = \max\{|\mathcal{G}_{|Z_1^n}| \in \mathbb{N} \mid Z_1^n = (Z_1, \dots, Z_n) \in \mathcal{Z}^n\}.$

 $\Pi_{\mathcal{G}}(n)$ is monotonically decreasing w.r.t. n.

Definition. Vapnik-Chervonenkis (VC) dimension

$$\dim_{VC}(\mathcal{G}) = \max\{n \in \mathbb{N} \mid \Pi_{\mathcal{G}}(n) = 2^n\}$$

Example: linear threshold functions on \mathbb{R}^d .

$$\mathcal{G} = \{ sgn(w^T x + b) \mid w \in \mathbb{R}^d, b \in \mathbb{R} \},\$$

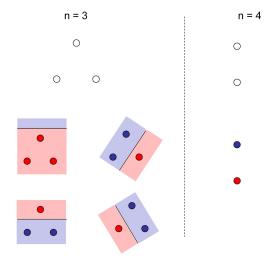
$$\dim_{VC}(\mathcal{G}) = d + 1.$$

Risk bound for infinite function class Risk bound for SVM

0

Ο

d = 2



ク Q (や 32/50

Techniques for infinite function class Rademacher average, growth function, and VC-dimension

Sauer's lemma

Theorem (Sauer's lemma)

$$\mathcal{G} \subset \{g: \mathcal{Z} \rightarrow \{\pm 1\}\}$$
. dim $_{VC}(\mathcal{G}) = d$. Then,

$$\Pi_{\mathcal{G}}(n) \le \sum_{i=0}^{d} \binom{n}{i}$$

and for $n \ge d$,

$$\Pi_{\mathcal{G}}(n) \le \left(\frac{en}{d}\right)^d.$$

Corollary (Distribution-free bound of Rademacher average)

 $\mathcal{G} \subset \{g : \mathcal{Z} \rightarrow \{\pm 1\}\}.$ dim $_{VC}(\mathcal{G}) = d.$ Then,

$$R_n(\mathcal{G}) \le \sqrt{\frac{2\log \Pi_{\mathcal{G}}(n)}{n}} \le \sqrt{\frac{2d(\log n + \log(e/d))}{n}}.$$

For the proof of Sauer's lemma, see [Vap98].

Bound of risk I

$$\mathcal{F} \subset \{f : \mathcal{X} \to \{\pm 1\}\}. \ \dim_{VC}(\mathcal{F}) = d.$$

Recall $R_n(\ell_{\mathcal{F}}) = \frac{1}{2}R_n(\mathcal{F}) \leq \frac{1}{2}\sqrt{\frac{2d\log n + 2d\log(e/d))}{n}} \text{ for } n \geq d.$

Distribution-free bound of risk.

• Estimation of the risk by the empirical risk. With probability at least $1 - \delta$,

$$L(\widehat{f}) \le \widehat{L}_n(\widehat{f}) + \sqrt{\frac{2d\log n + 2d\log(e/d))}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}.$$

• The difference from the best possible risk. $f_* = \arg \min_{f \in \mathcal{F}} L(f)$. With probability at least $1 - 2\delta$,

$$L(\widehat{f}) \le L(f_*) + \sqrt{\frac{2d\log n + 2d\log(e/d))}{n}} + 2\sqrt{\frac{\log(1/\delta)}{2n}}.$$

Bound of risk II

• Risk bound: With Probability $\geq 1 - \delta$,

$$L(\widehat{f}) \leq \widehat{L}_n(\widehat{f}) + \sqrt{\frac{2d\log n}{n} + \frac{2d\log(e/d))}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}$$

AIC:

$$E_{\mathcal{D}}[L(\widehat{f})] \approx E_{\mathcal{D}}[L(\widehat{f})] + \frac{\text{\# parameters}}{n}$$

MDL:

$$\mathsf{MDL} = E_{\mathcal{D}}[L(\widehat{f})] + \frac{\# \operatorname{parameters} \log n}{n}.$$

Techniques for infinite function class Rademacher average, growth function, and VC-dimension

Properties of Rademacher average I

1	
	$\mathcal{F} \subset \mathcal{G} \implies R_n(\mathcal{F}) \subset R_n(\mathcal{G}).$
2	$R_n(c\mathcal{F}) = c R_n(\mathcal{F}),$
	where $c \in \mathbb{R}$ and $c\mathcal{F} = \{cf \mid f \in \mathcal{F}\}.$
3	For $F + g = \{f + g \mid f \in \mathcal{F}\},\$
	$R_n(\mathcal{F}+g) = R_n(\mathcal{F}).$
4	Assume $-\mathcal{F}=\mathcal{F}$. Then,
	$R_n(\mathbf{co}\mathcal{F}) = R_n(\mathcal{F}),$

where $\operatorname{co}\mathcal{F} = \{\sum_{i=1}^{m} a_i f_i \mid f_i \in \mathcal{F}, a_i \ge 0, \sum_{i=1}^{n} a_i = 1\}.$

Properties of Rademacher average II

So Let $\phi_i : \mathbb{R} \to \mathbb{R}$ (i = 1, ..., n) be Lipschitz continuous with Lipschitz constant *b*, i.e.,

$$|\phi_i(x) - \phi_i(y)| \le b|x - y| \qquad (\forall x, y).$$

Then,

$$E\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}\phi_{i}(f(X_{i}))\right] \leq bE\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(X_{i})\right] = bR_{n}(\mathcal{F}),$$

where σ_i are Rademacher constants.

Proof is omitted. For (5), see [LT91], Th.4.12.

Rademacher average vs distribution-free bound

How to measure the complexity of function classes.

- VC-dimension is simple and easy to compute or bound for many function classes.
- VC-dimension does not take the distribution of X into account.
- Rademacher average includes the distribution of *X*.
- It may not be easy to compute.
- Various useful properties. (For Rademacher averages, see [BM02], [LT91].)

Mini-summary on risk bound

• With probability $\geq 1 - \delta$,

(Risk) \leq (Empirical risk) + (Complexity of \mathcal{F}) + $\Theta(1/\delta)$.

- The bound applies to all *n*, but usually meaningful for large *n*.
- The functional form of the complexity term reflects the property of the function class and learning method.
- Rademacher average represents the complexity term. It is upper bounded by using VC dimension.

Bounding risk

- Risk and empirical risk
- Concentration inequalities
- Bound for finite function class

2 Risk bound for infinite function class

- Techniques for infinite function class
- Rademacher average, growth function, and VC-dimension
- Risk bound for SVM
 Risk bound for SVM

Review of risk bound I

- Assume loss function $\ell(y, f) \in [0, 1]$, and let $\ell_{\mathcal{F}} = \{\ell(y, f(x)) \mid f \in \mathcal{F}\}.$
- Risk: the purpose of learning is to minimize the risk;

$$L(f) = E[\ell(Y, f(X))] \qquad (f \in \mathcal{F}).$$

Empirical risk:

$$\widehat{L}_n(f) = \widehat{E}_n[\ell(Y, f(X))] = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)) \qquad (f \in \mathcal{F}).$$

• Learning:

$$\widehat{f} = \arg\min_{f\in\mathcal{F}} L_n(f).$$

Review of risk bound II

• Estimation of the risk by the empirical risk. With probability at least $1 - \delta$,

$$L(\widehat{f}) \leq \widehat{L}_n(\widehat{f}) + 2R_n(\ell_{\mathcal{F}}) + \sqrt{\frac{\log(1/\delta)}{2n}}.$$

• The difference from the best possible risk. $f_* = \arg \min_{f \in \mathcal{F}} L(f)$. With probability at least $1 - 2\delta$,

$$L(\widehat{f}) \le L(f_*) + 2R_n(\ell_{\mathcal{F}}) + 2\sqrt{\frac{\log(1/\delta)}{2n}}$$

• Rademacher average $R_n(\mathcal{G})$ expresses the complexity of \mathcal{G} .

$$R_n(\mathcal{G}) = E\left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(Z_i)\right],$$

where $\sigma_i \in \{\pm 1\}$ are Rademacher variables (i.i.d. and $\Pr(\sigma_i = 1) = 1/2$.

Hinge loss and 0-1 loss I

Binary classification. $y \in \{\pm 1\}$.

• 0-1 loss:

$$\ell_{01}(y,f) = (1 - y \operatorname{sgn}(f))/2.$$

Risk is often evaluated with 0-1 loss in classification.

$$L(f) = E[\ell_{01}(y, f(X))] = E[Y \neq \operatorname{sgn}(f(X))]$$

• Hinge loss (soft margin loss)

$$\ell_{hinge}(y,f) = \phi(fy), \quad \phi(t) = (1-t)_+$$

used for representing the constraints of soft-margin SVM.*c.f.* SVM

$$\min \widehat{E}_n[\phi(Y_i f(X_i))] + \frac{\lambda}{2} ||f||^2.$$

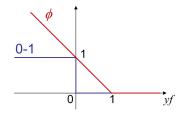
Hinge loss and 0-1 loss II

Truncated hinge loss:

$$\tilde{\phi}(t) = \min(1, \phi(t)).$$

- $\tilde{\phi}$ satisfies $\tilde{\phi}(yf) \in [0,1]$. The results on the uniform bound are applicable.
- Relation:

$$\ell_{01}(y, f(x)) \le \tilde{\phi}(yf(x)) \le \phi(yf(x)).$$



Uniform bound with hinge loss

۲

$$L(f) = E[\ell_{01}(Y, f(X))] \le E[\tilde{\phi}(Yf(X))].$$

• With probability $\geq 1 - \delta$,

$$\sup_{f\in\mathcal{F}}\left\{E[\tilde{\phi}(Yf(X))] - \widehat{E}_n[\tilde{\phi}(Yf(X))]\right\} \le 2R_n(\ell_{\tilde{\phi},\mathcal{F}}) + \sqrt{\frac{\log(1/\delta)}{2n}},$$

where $\ell_{\tilde{\phi},\mathcal{F}} = \{\tilde{\phi}(yf(x)) \mid f \in \mathcal{F}\}.$

• As a result, With probability $\geq 1 - \delta$,

$$L(f) \leq \underbrace{\widehat{E}_n[\phi(Yf(X))]}_{\text{empirical hinge loss}} + 2R_n(\ell_{\tilde{\phi},\mathcal{F}}) + \sqrt{\frac{\log(1/\delta)}{2n}}$$

for any $f \in \mathcal{F}$.

Uniform bound for SVM

- Recall margin = 1/||w|| (*w*: weight of linear classifier).
- Set the function class

$$\mathcal{F}_r = \{ f \in \mathcal{H}_k \mid \|f\|_{\mathcal{H}_k} \le r \}$$

and consider

$$\min_{f \in \mathcal{H}_k} \widehat{E}_n[\phi(Yf(X))] \qquad \text{subj. to } f \in \mathcal{F}_r.$$

(Slightly different from the original SVM.)

Lemma $R_n(\ell_{\tilde{\phi},\mathcal{F}_r}) \leq R_n(\mathcal{F}_r) \leq r\sqrt{\frac{E[k(X,X)]}{n}}.$

Risk bound for SVM

Risk bound for SVM

Theorem

Let
$$\mathcal{F}_r = \{f \in \mathcal{H}_k \mid ||f||_{\mathcal{H}_k} \leq r\}.$$

With probability $\geq 1 - \delta$,

$$L(f) \le \frac{1}{n} \sum_{i=1}^{n} (1 - Y_i f(X_i))_+ + 2r \sqrt{\frac{E[k(X,X)]}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}$$
 for any $f \in \mathcal{F}_r$.

- The risk is smaller for a class of larger margin (smaller *r*), assuming that the empirical error is the same.
- The complexity term of the function class does not depend on the dimensionality (≈ number of parameters), but only on the norm.

Proof of Lemma I

$$R_n(\ell_{\tilde{\phi},\mathcal{F}_r}) \leq R_n(\mathcal{F}_r).$$

By definition,

$$R_n(\ell_{\tilde{\phi},\mathcal{F}_r}) = E\bigg[\sup_{f\in\mathcal{F}_r} \frac{1}{n} \sum_{i=1}^n \sigma_i \tilde{\phi}(Y_i f(X_i))\bigg].$$

Since $\tilde{\phi}$ is Lipschitz continuous

$$|\tilde{\phi}(t_1) - \tilde{\phi}(t_2)| \le |t_1 - t_2|,$$

(see Properties of Rademacher averages (5))

$$E\left[\sup_{f\in\mathcal{F}_r}\frac{1}{n}\sum_{i=1}^n\sigma_i\tilde{\phi}(Y_if(X_i))\right] \le E\left[\sup_{f\in\mathcal{F}_r}\frac{1}{n}\sum_{i=1}^n\sigma_iY_if(X_i)\right] = R_n(\mathcal{F}_r).$$

The last equality holds because $\sigma_i Y_i$ are Rademacher variables.

Proof of Lemma II

$$R_n(\mathcal{F}_r) \le r\sqrt{E[k(X,X)]/n}.$$

 $\frac{1}{n}\sum_{i=1}^{n}\sigma_i f(X_i) = \left\langle \frac{1}{n}\sum_{i=1}^{n}\sigma_i k(\cdot, X_i), f \right\rangle \le \|f\| \left\| \frac{1}{n}\sum_{i=1}^{n}\sigma_i k(\cdot, X_i) \right\|.$

Thus,

$$R_n(\mathcal{F}_r) \le rE \left\| \frac{1}{n} \sum_{i=1}^n \sigma_i k(\cdot, X_i) \right\|.$$

$$\begin{split} & \left(E \left\| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} k(\cdot, X_{i}) \right\| \right)^{2} \\ & \leq E \left\| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} k(\cdot, X_{i}) \right\|^{2} \qquad [E|\varphi| \leq (E|\varphi|^{2})^{1/2}] \\ & = E \left[\frac{1}{n^{2}} \sum_{i,j=1}^{n} \sigma_{i} \sigma_{j} k(X_{i}, X_{j}) \right] \\ & = \frac{1}{n^{2}} \sum_{i=1}^{n} E \left[k(X_{i}, X_{i}) \right] + \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j \neq i} E[\sigma_{i}] E[\sigma_{j}] E[k(X_{i}, X_{j})] \\ & = \frac{1}{n} E[k(X, X)] + 0. \end{split}$$

More on the bound for SVM etc.

- The previous theorem does not reflect the learning of SVM rigorously; the bound is determined as a result of learning, not a priori.
- More rigorous approaches:
 - Bound by fat shattering dimension [BST99].
 - Luckiness framework [Her01].
- Other topics:
 - Generalization of boosting.
 - Relation to the uniform convergence of empirical process (covering number, entropy integral, etc.).

References I

- P. Bartlett, O. Bousquet, and S. Mendelson.
- Localized rademacher complexities.
- In Proceedings of the 15th annual conference on Computational Learning Theory, pages 44–58, 2002.
- Peter L. Bartlett and Shahar Mendelson.
 - Rademacher and gaussian complexities: Risk bounds and structural results.
 - Jounral of Machine Learning Research, 3:463–482, 2002.
- Peter Bartlett and John Shawe-Taylor.
- Generalization performance of support vector machines and other pattern classifiers.
- pages 43-54, 1999.

Ralf Herbrich.

Learning Kernel Classifiers: Theory and Algorithms. Cambridge, MA, USA, 2001.

References II

Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces.* Springer-Verlag, 1991.

Pascal Massart.

Some applications of concentration inequalities to statistics. Annales de la faculté des sciences de Toulouse Sér. 6, 9(2):245–303.

Vladimir N. Vapnik.

Statistical Learning Theory. Wiley-Interscience, 1998.

Ard van der Vaart and Jon A. Wellner. Weak convergence and empirical processes. Springer Verlag, 1996.