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Convexity I

For the details on convex optimization, see [BV04].

Convex set:
A set C in a vector space is convex if for every x, y ∈ C and
t ∈ [0, 1]

tx+ (1− t)y ∈ C.

Convex function:
Let C be a convex set. f : C → R is called a convex function if for
every x, y ∈ C and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Concave function:
Let C be a convex set. f : C → R is called a concave function if
for every x, y ∈ C and t ∈ [0, 1]

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

4 / 38



A quick course on convex optimization
Optimization in learning of SVM

Convexity and convex optimization
Dual problem for optimization

Convexity II

5 / 38



A quick course on convex optimization
Optimization in learning of SVM

Convexity and convex optimization
Dual problem for optimization

Convexity III
Fact: If f : C → R is a convex function, the set

{x ∈ C | f(x) ≤ α}

is a convex set for every α ∈ R.
If ft(x) : C → R (t ∈ T ) are convex, then

f(x) = supt∈T ft(x)

is also convex.
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Convex optimization I

A general form of convex optimization
f(x), hi(x) (1 ≤ i ≤ `): D → R, convex functions on D ⊂ Rn.
ai ∈ Rn, bj ∈ R (1 ≤ j ≤ m).

min
x∈D

f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
aTj x+ bj = 0 (1 ≤ j ≤ m).

hi: inequality constraints,
rj(x) = aTj x+ bj : linear equality constraints.

Feasible set:

F = {x ∈ D | hi(x) ≤ 0 (1 ≤ i ≤ `), rj(x) = 0 (1 ≤ j ≤ m)}.

The above optimization problem is called feasible if F 6= ∅.
In convex optimization, there are no local minima. It is possible to
find a minimizer numerically.
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Convex optimization II

Fact 1. The feasible set is a convex set.
Fact 2. The set of minimizers

Xopt =
{
x ∈ F | f(x) = inf{f(y) | y ∈ F}

}
is convex.

proof. The intersection of convex sets is convex, which leads
(1).
Let

p∗ = infx∈Ff(x).

Then,
Xopt = {x ∈ D | f(x) ≤ p∗} ∩ F .

Both sets in r.h.s. are convex. This proves (2)
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Examples

Linear program (LP)

min cTx subject to

{
Ax = b,

Gx � h.1

The objective function, the equality and inequality constraints are
all linear.
Quadratic program (QP)

min
1
2
xTPx+ qtx+ r subject to

{
Ax = b,

Gx � h,

where P is a positive semidefinite matrix.
The objective function is quadratic, while the equality and
inequality constraints are linear.

1Gx � h denotes gT
j x ≤ hj for all j, where G = (g1, . . . , gm)T .
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Lagrange duality I

Consider an optimization problem (which may not be convex):

(primal) min
x∈D

f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

Lagrange dual function: g : R` × Rm → [−∞,∞)

g(λ, ν) = inf
x∈D

L(x, λ, ν),

where

L(x, λ, µ) = f(x) +
∑`
i=1λihi(x) +

∑m
j=1νjrj(x).

λi and νj are called Lagrange multipliers.
g is a concave function.
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Lagrange duality II

Dual problem

(dual) max g(λ, ν) subject to λ � 0.

The dual and primal problems have close connection.

Theorem (weak duality)

Let
p∗ = inf{f(x) | hi(x) ≤ 0 (1 ≤ i ≤ `), rj(x) = 0 (1 ≤ j ≤ m)}.

and
d∗ = sup{g(λ, ν) | λ � 0, ν ∈ Rm}.

Then,
d∗ ≤ p∗.

The weak duality does not require the convexity of the primal
optimization problem.
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Lagrange duality III

Proof. Let ∀λ � 0, ν ∈ Rm.
For any feasible point x,∑`

i=1λihi(x) +
∑m
j=1νjrj(x) ≤ 0.

(The first part is non-positive, and the second part is zero.)
This means for any feasible point x,

L(x, λ, ν) ≤ f(x).

By taking infimum,

inf
x:feasible

L(x, λ, ν) ≤ p∗.

Thus,

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ inf
x:feasible

L(x, λ, ν) ≤ p∗

for any λ � 0, ν ∈ Rm.
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Strong duality

We need some conditions to obtain the strong duality d∗ = p∗.
Convexity of the problem: f and hi are convex, rj are linear.

Slater’s condition
There is x ∈ D such that

hi(x) < 0 (1 ≤ ∀i ≤ `), rj(x) = 0 (1 ≤ ∀j ≤ m).

Theorem (Strong duality)

Suppose the primal problem is convex, and Slater’s condition holds.
Then, there is λ∗ ≥ 0 and ν∗ ∈ Rm such that

g(λ∗, ν∗) = d∗ = p∗.

Proof is omitted (see [BV04] Sec.5.3.2.).
There are also other conditions to guarantee the strong duality.
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Geometric interpretation of duality

G = {(h(x), r(x), f(x)) ∈ R` × Rm × R |
x ∈ Rn}.
p∗ = inf{(u, 0, t) ∈ G | u ≤ 0}.
For λ ≥ 0 (neglecting ν),

g(λ) = inf{(λ, 1)T (u, t) | (u, t) ∈ G}.

(λ, 1)T (u, t) = g(λ) is a non-vertical
hyperplane, which intersects with t-axis
at g(λ).
Weak duality d∗ = sup g(λ) ≤ p∗ is easy
to see.
Strong duality d∗ = p∗ holds under some
conditions.

Figure
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Complementary slackness I

Consider the (not necessarily convex) optimization problem:

min f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

Assumption: the optimum of the primal and dual problems are
attained by x∗ and (λ∗, ν∗), and they satisfy the strong duality;

g(λ∗, ν∗) = f(x∗).

Observation:

f(x∗) = g(λ∗, ν∗) = inf
x∈D

L(x, λ∗, ν∗) [definition]

≤ L(x∗, λ∗, ν∗)

= f(x∗) +
∑`
i=1λ

∗
i hi(x

∗) +
∑m
j=1ν

∗
j rj(x

∗)

≤ f(x∗) [2nd ≤ 0 and 3rd = 0]

The two inequalities are in fact equalities.
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Complementary slackness II

Consequence 1:

x∗ minimizes L(x, λ∗, ν∗)

Consequence 2:

λ∗i hi(x
∗) = 0 for all i.

This is called complementary slackness.
Equivalently,

λ∗i > 0 ⇒ hi(x∗) = 0,

or
hi(x∗) < 0 ⇒ λ∗i = 0.
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Solving primal problem via dual

If the dual problem is easier to solve, then we can sometimes solve
the primal using the dual.

Assumption: strong duality holds (e.g., Slater’s condition), and
we have the dual solution (λ∗, ν∗).
The primal solution x∗, if it exists, should give minx∈D L(x, λ∗, ν∗)
(previous slide).
If a solution of

min
x∈D

f(x) +
∑`
i=1λ

∗
i hi(x) +

∑m
j=1ν

∗
j rj(x)

is obtained and it is primary feasible, then it must be the primal
solution.
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KKT condition I

KKT conditions give useful relations between the primal and dual
solutions.

Consider the convex optimization problem. Assume D is open
and f(x), hi(x) are differentiable.

min f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

x∗ and (λ∗, ν∗): any optimal points of the primal and dual
problems.
Assume the strong duality holds.
Since

x∗ minimizes L(x, λ∗, ν∗),

∇f(x∗) +
∑`
i=1λ

∗
i∇gi(x∗) +

∑m
j=1ν

∗
j∇rj(x∗) = 0.
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KKT condition II

The following are necessary conditions.
Karush-Kuhn-Tucker (KKT) conditions:

hi(x∗) ≤ 0 (i = 1, . . . , `) [primal constraints]
rj(x∗) = 0 (j = 1, . . . ,m) [primal constraints]
λ∗i ≥ 0 (i = 1, . . . , `) [dual constraints]
λ∗i hi(x

∗) = 0 (i = 1, . . . , `) [ complementary slackness]

∇f(x∗) +
∑`
i=1λ

∗
i∇gi(x∗) +

∑m
j=1ν

∗
j∇rj(x∗) = 0.

Theorem (KKT condition)

For a convex optimization problem with differentiable functions, x∗

and (λ∗, ν∗) are the primal-dual solutions with strong duality if and
only if they satisfy KKT conditions.
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KKT condition III

Proof.
x∗ is primal-feasible by the first two conditions.
From λ∗i ≥ 0, L(x, λ∗, ν∗) is convex (and differentiable).
The last condition ∇xL(x∗, λ∗, ν∗) = 0 implies x∗ is a minimizer.
It follows

g(λ∗, ν∗) = inf
x∈D

L(x, λ∗, ν∗) [by definition]

= L(x∗, λ∗, ν∗) [x∗: minimizer]

= f(x∗) +
∑`

i=1λ
∗
i hi(x

∗) +
∑m

j=1ν
∗
j rj(x

∗)

= f(x∗) [complementary slackness and rj(x
∗) = 0].

Strong duality holds, and x∗ and (λ∗, ν∗) must be the optimizers.
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Example

Quadratic minimization under equality constraints.

min
1
2
xTPx+ qTx+ r subject to Ax = b,

where P is (strictly) positive definite.
KKT conditions:

Ax∗ = b, [primal constraint]

∇xL(x∗, ν∗) = 0 =⇒ Px∗ + q +AT ν∗ = 0

The solution is given by(
P AT

A O

)(
x∗

ν∗

)
=
(
−q
b

)
.

22 / 38



A quick course on convex optimization
Optimization in learning of SVM

Dual problem and support vectors
Sequential Minimal Optimization (SMO)
Other approaches

1 A quick course on convex optimization
Convexity and convex optimization
Dual problem for optimization

2 Optimization in learning of SVM
Dual problem and support vectors
Sequential Minimal Optimization (SMO)
Other approaches

23 / 38



A quick course on convex optimization
Optimization in learning of SVM

Dual problem and support vectors
Sequential Minimal Optimization (SMO)
Other approaches

Lagrange dual of SVM I

The QP for SVM can be solved in the primal form, but the dual
form is easier.
SVM: primal problem

min
wi,b,ξi

1
2
∑N
i,j=1wiwjk(Xi, Xj) + C

∑N
i=1ξi,

subj. to

{
Yi(
∑N
j=1k(Xi, Xj)wj + b) ≥ 1− ξi,

ξi ≥ 0.

Lagrange function of SVM:

L(w, b, ξ, α, β) =
1
2
∑N
i,j=1wiwjk(Xi, Xj) + C

∑N
i=1ξi

+
∑N
i=1αi(1− Yif(Xi)− ξi) +

∑N
i=1βi(−ξi),

where f(Xi) =
∑N
j=1 wjk(Xi, Xj) + b.
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Lagrange dual of SVM II
SVM Dual problem:

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjYiYjKij subj. to

{
0 ≤ αi ≤ C,∑N
i=1αiYi = 0.

Notation: Kij = k(Xi, Xi).

Derivation.
Lagrange dual function

g(α, β) = min
w,b,ξ

L(w, b, ξ, α, β)

The minimizer (w∗, b∗, ξ∗) is given by

∇w :
∑n
j=1Kijw

∗
j +

∑n
j=1αjYjKij (∀i)

,∇b :
∑n
j=1αjYj = 0,

∇ξ : C − αi − βi = 0 (∀i).
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Lagrange dual of SVM III

From these relations,

1
2
∑N
i,j=1w

∗
iw
∗
jKij =

1
2
∑N
i,j=1αiαjYiYjKij ,∑n

j=1(C − αi − βi) = 0,∑N
i=1αi(1− Yi(

∑
jKijw

∗
j + b)) =

∑N
i=1αi −

∑N
i,j=1αiαjYiYjKij .

Thus,

g(α, β) = L(w∗, b∗, ξ∗, α, β)

=
∑N
i=1αi −

1
2
∑N
i,j=1αiαjYiYjKij .

From αi ≥ 0 and βi ≥ 0, The constraints of αi is given by

0 ≤ αi ≤ C (∀i).

26 / 38



A quick course on convex optimization
Optimization in learning of SVM

Dual problem and support vectors
Sequential Minimal Optimization (SMO)
Other approaches

KKT conditions of SVM

KKT conditions
(1) 1− Yif∗(Xi)− ξ∗i ≤ 0 (∀i),
(2) −ξ∗i ≤ 0 (∀i),
(3) α∗i ≥ 0, (∀i),
(4) β∗i ≥ 0, (∀i),
(5) α∗i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i),
(6) β∗i ξ

∗
i = 0 (∀i),

(7) ∇w :
∑n
j=1Kijw

∗
j +

∑n
j=1α

∗
jYjKij ,

∇b :
∑n
j=1α

∗
jYj = 0,

∇ξ : C − α∗i − β∗i = 0 (∀i).

27 / 38



A quick course on convex optimization
Optimization in learning of SVM

Dual problem and support vectors
Sequential Minimal Optimization (SMO)
Other approaches

Support vectors I

Complementary slackness

α∗i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i),

(C − α∗i )ξ∗i = 0 (∀i).

If α∗i = 0, then ξ∗i = 0, and

Yif
∗(Xi) ≥ 1. [well separated]

Support vectors
If 0 < α∗i < C, then ξ∗i = 0 and

Yif
∗(Xi) = 1.

If α∗i = C,
Yif
∗(Xi) ≤ 1.
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Support vectors II

Sparse representation
The optimum classifier is expressed only with the support
vectors:

f(x) =
∑

i:support vector

α∗i Yik(x,Xi) + b∗
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How to solve b

The optimum value of b is given by the complementary
slackness.
For any i with 0 < α∗i < C,

Yi
(∑

jk(Xi, Xj)Yjα∗j + b
)

= 1.

Use the above relation for any of such i, or take the average over
all of such i.
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Computational problem in solving SVM

The dual QP problem of SVM has N variables, where N is the
sample size.
If N is very large, say N = 100, 000, the optimization is very hard.
Some approaches have been proposed for optimizing subsets of
the variables sequentially.

Chunking [Vap82]
Osuna’s method [OFG]
Sequential minimal optimization (SMO) [Pla99]
SVMlight (http://svmlight.joachims.org/)
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Sequential minimal optimization (SMO) I

Solve small QP problems sequentially for a pair of variables
(αi, αj).
How to choose the pair? – Intuition from the KKT conditions is
used.

After removing w, ξ, and β, the KKT conditions of SVM are
equivalent to

0 ≤ α∗i ≤ C,
N∑

i=1

Yiα
∗
i = 0,

(∗)


α∗i = 0 ⇒ Yif

∗(Xi) ≥ 1,

0 < α∗i < C ⇒ Yif
∗(Xi) = 1,

α∗i = C ⇒ Yif
∗(Xi) ≤ 1.

(shown later.)
The conditions can be checked for each data point.
Choose (i, j) such that at least one of them breaks the KKT
conditions.
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Sequential minimal optimization (SMO) II

The QP problem for (αi, αj) is analytically solvable!

For simplicity, assume (i, j) = (1, 2).
Constraint of α1 and α2:

α1 + s12α2 = γ, 0 ≤ α1, α2 ≤ C,

where s12 = Y1Y2 and γ = ±
∑
`≥3 Y`α` is constat.

Objective function:

α1 + α2 −
1
2
α2

1K11 −
1
2
α2

2K22 − s12α1α2K12

− Y1α1

∑
j≥3YjαjK1j − Y2α2

∑
j≥3YjαjK2j + const.

This optimization is a quadratic optimization of one variable on
an interval. Directly solved.
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KKT conditions revisited I

β and w can be removed by

∇ξ : β∗i = C − α∗i = 0 (∀i),
∇w :

∑n
j=1Kijw

∗
j = −

∑n
j=1αjYjKij (∀i).

From (4) and (6),

α∗i ≥ C, ξ∗i (C − α∗i ) = 0 (∀i).

The KKT conditions are equivalent to
(a) 1− Yif

∗(Xi)− ξ∗i ≤ 0 (∀i),
(b) ξ∗i ≥ 0 (∀i),
(c) 0 ≤ α∗i ≤ C (∀i),
(d) α∗i (1− Yif

∗(Xi)− ξ∗i ) = 0 (∀i),
(e) ξ∗i (C − α∗i ) = 0 (∀i),
(f)

∑N
i=1 Yiα

∗
i = 0.
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KKT conditions revisited II

We can further remove ξ.
Case α∗i = 0:

From (e), ξ∗i = 0. Then, from (a), Yif
∗(Xi) ≥ 1.

Case 0 < α∗i < C:
From (e), ξ∗i = 0. From (d), Yif

∗(Xi) = 1.
Case α∗i = C:

From (d), ξ∗i = 1− Yif
∗(Xi).

Note in all cases, (a) and (b) are satisfied.

The KKT conditions are equivalent to

0 ≤ α∗i ≤ C (∀i),∑N
i=1Yiα

∗
i = 0,

α∗i = 0 ⇒ Yif
∗(Xi) ≥ 1, (ξ∗i = 0)

0 < α∗i < C ⇒ Yif
∗(Xi) = 1, (ξ∗i = 0)

α∗i = C ⇒ Yif
∗(Xi) ≤ 1, (ξ∗i = 1− Yif∗(Xi)).
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Recent studies (not a compete list).

Solution in primal.
O. Chapelle [Cha07]
T. Joachims, SVMperf [Joa06]
S. Shalev-Shwartz et al. [SSSS07]

Online SVM.
Tax and Laskov [TL03]
LaSVM [BEWB05]
http://leon.bottou.org/projects/lasvm/

Parallel computation
Cascade SVM [GCB+05]
Zanni et al [ZSZ06]

Others
Column generation technique for large scale problems [DBS02]
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