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Definition of positive definite kernel

Definition. Let X be a set. k : X × X → R is a positive definite kernel
if k(x, y) = k(y, x) and for every x1, . . . , xn ∈ X and c1, . . . , cn ∈ R

n∑
i,j=1

cicjk(xi, xj) ≥ 0,

i.e. the symmetric matrix

(k(xi, xj))ni,j=1 =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, x)


is positive semidefinite.

The symmetric matrix (k(xi, xj))ni,j=1 is often called a Gram
matrix.
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Definition: complex-valued case

Definition. Let X be a set. k : X × X → C is a positive definite kernel
if for every x1, . . . , xn ∈ X and c1, . . . , cn ∈ C

n∑
i,j=1

cicjk(xi, xj) ≥ 0.

Remark. The Hermitian property k(y, x) = k(x, y) is derived from the
positive-definiteness. [Exercise]
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Remarks on the terminology

In the matrix theory, an symmetric matrix A = (Aij) is said to be
positive definite if for any c1, . . . , cn∑n

i,j=1cicjAij > 0,

and A is positive semidefinite (nonnegative definite) if for any
c1, . . . , cn ∑n

i,j=1cicjAij ≥ 0.
The definition of "positive definite" kernel requires only the
positive semidefiniteness (non-negative definiteness) of the
Gram matrix. This unmatched terminology is caused for the
historical reason.

A symmetric kernel k : X × X → R is called strictly positive
definite if for any different x1, . . . , xn ∈ X and c1, . . . , cn ∈ R with
at least one ci non-zero,∑n

i,j=1cicjk(xi, xj) > 0,

that is, the Gram matrix (k(xi, xj))ni,j=1 is positive definite.
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Basic Properties of positive definite kernels

Fact. Assume k : X ×X → C is positive definite. Then, for any x, y in
X ,

1 k(x, x) ≥ 0.
2 |k(x, y)|2 ≤ k(x, x)k(y, y).

Proof. (1) is obvious. For (2), with the fact k(y, x) = k(x, y), the
definition of positive definiteness implies that the eigenvalues of the
hermitian matrix (

k(x, x) k(x, y)
k(x, y) k(y, y)

)
is non-negative, thus, its determinant k(x, x)k(y, y)− |k(x, y)|2 is
non-negative.
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Operations that Preserve Positive Definiteness I

Proposition 1

If ki : X × X → C (i = 1, 2, . . .) are positive definite kernels, then so
are the following:

1 (positive combination) ak1 + bk2 (a, b ≥ 0).
2 (product) k1k2 (k1(x, y)k2(x, y)) .
3 (limit) limi→∞ki(x, y), assuming the limit exists.

Remark. Proposition 1 says that the set of all positive definite kernels
is closed (w.r.t. pointwise convergence) convex cone stable under
multiplication.

Proof.
(1): Obvious.
(3): Just notice that the non-negativity in the definition holds also for
the limit.
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Operations that Preserve Positive Definiteness II

(2): It suffices to show that two Hermitian matrices A and B are
positive semidefinite, so is their component-wise product. This is
done by the following lemma.

Definition. For two matrices A and B of the same size, the matrix C
with Cij = AijBij is called the Hadamard product of A and B.

The Hadamard product of A and B is denoted by A�B.

Lemma 2
Let A and B be non-negative Hermitian matrices of the same size.
Then, A�B is also non-negative.
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Operations that Preserve Positive Definiteness III

Proof.
Let

A = UΛU∗

be the eigendecomposition of A, where
U = (u1, . . . , up): a unitary matrix
Λ: diagonal matrix with non-negative entries (λ1, . . . , λp)
U∗ = U

T
.

Then, for arbitrary c1, . . . , cp ∈ C,

∑
i,j=1

cic̄j(A�B)ij =
p∑
a=1

λacic̄ju
a
i ū
a
jBij =

p∑
a=1

λaξ
aTBξa,

where ξa = (c1ua1 , . . . , cpu
a
p)T ∈ Cp.

Since ξaTBξa and λa are non-negative for each a, so is the sum.
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Basic construction of positive definite kernels I

Proposition 3

Let V be an vector space with an inner product 〈·, ·〉. If we have a map

Φ : X → V, x 7→ Φ(x),

a positive definite kernel on X is defined by

k(x, y) = 〈Φ(x),Φ(y)〉.

Proof. Let x1, . . . , xn in X and c1, . . . , cn ∈ C.∑n
i,j=1cicjk(xi, xj) =

∑n
i,j=1cicj〈Φ(xi),Φ(xj)〉

=
〈∑n

i=1ciΦ(xi),
∑n
j=1cjΦ(xj)

〉
=
∥∥∥∑n

i=1ciΦ(xi)
∥∥∥2

≥ 0.
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Basic construction of positive definite kernels II

Proposition 4

Let k : X × X → C be a positive definite kernel and f : X → C be an
arbitrary function. Then,

k̃(x, y) = f(x)k(x, y)f(y)

is positive definite. In particular,

f(x)f(y)

is a positive definite kernel.

Proof is left as an exercise.
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Examples
Real valued positive definite kernels on Rn:

- Linear kernel
k0(x, y) = xT y

- Exponential
kE(x, y) = exp(βxT y) (β > 0)

- Gaussian RBF (radial basis function) kernel

kG(x, y) = exp
(
− 1

2σ2
‖x− y‖2

)
(σ > 0)

- Laplacian kernel

kL(x, y) = exp
(
−α
∑n
i=1|xi − yi|

)
(α > 0)

- Polynomial kernel

kP (x, y) = (xT y + c)d (c ≥ 0, d ∈ N)
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Proof.
Linear kernel: Proposition 3
Exponential:

exp(βxT y) = 1 + βxT y +
β2

2!
(xT y)2 +

β3

3!
(xT y)3 + · · ·

Use Proposition 1.
Gaussian RBF kernel:

exp
(
− 1

2σ2
‖x− y‖2

)
= exp

(
−‖x‖

2

2σ2

)
exp
(xT y
σ2

)
exp
(
−‖y‖

2

2σ2

)
.

Apply Proposition 4.
Laplacian kernel: The proof is shown later.
Polynomial kernel: Just sum and product.
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Vector space with inner product
Definition. Let V be a vector space over a field K = R or C. V is
called an inner product space if it has an inner product (or scalar
product, dot product) (·, ·) : V × V → K such that the following rules
hold for every x, y, z ∈ V and α ∈ K;

1 (Strong positivity) (x, x) ≥ 0, and (x, x) = 0 if and only if x = 0,
2 (Addition) (x+ y, z) = (x, z) + (y, z),
3 (Scalar multiplication) (αx, y) = α(x, y),
4 (Hermitian) (y, x) = (x, y).

If (V, (·, ·)) is an inner product, the norm of x ∈ V is defined by
‖x‖ = (x, x)1/2,

and the metric is induced by d(x, y) = ‖x− y‖.

Cauchy-Schwarz inequality

|(x, y)| ≤ ‖x‖‖y‖.

Remark: Cauchy-Schwarz inequality holds without requiring
‖x‖ = 0⇔ x = 0.
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Hilbert space I

Definition. A vector space with inner product (H, (·, ·)) is called Hilbert
space if the induced metric is complete, i.e. every Cauchy sequence
converges to an element in H.

Remark 1:
Let (X, d) be a metric space. A sequence {xn}∞n=1 in X is called
Cauchy sequence if d(xn, xm)→ 0 for n,m→∞.

Remark 2:
A Hilbert space may be either finite or infinite dimensional.

Example 1.
Rn and Cn are finite dimensional Hilbert space with the ordinary inner
product

(x, y)Rn =
∑n
i=1xiyi or (x, y)Cn =

∑n
i=1xiyi.
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Hilbert space II

Example 2. L2(Ω, µ).
Let (Ω,B, µ) is a measure space.

L =
{
f : Ω→ C

∣∣∣ ∫ |f |2dµ <∞}.
The inner product on L is define by

(f, g) =
∫
fgdµ.

L2(Ω, µ) is defined by the equivalent classes identifying f and g if
their values differ only on a measure-zero set.

- L2(Ω, µ) is complete. [See e.g. [Rud86] for the proof.]

- L2(Rn, dx) is infinite dimensional.
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Orthogonality

Orthogonal complement.
Let H be a Hilbert space and V be a closed subspace.

V ⊥ := {x ∈ H | (x, y) = 0 for all y ∈ V }

is a closed subspace, and called the orthogonal complement.

Orthogonal projection.
Let H be a Hilbert space and V be a closed subspace. Every
x ∈ H can be uniquely decomposed

x = y + z, y ∈ V and z ∈ V ⊥,

that is,
H = V ⊕ V ⊥.
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Boundedness I

Let H1 and H2 be Hilbert spaces. A linear transform T : H1 → H2 is
often called operator.

Definition. A linear operator H1 and H2 is called bounded if

sup
‖x‖H1=1

‖Tx‖H2 <∞.

The operator norm of a bounded operator T is defined by

‖T‖ = sup
‖x‖H1=1

‖Tx‖H2 = sup
x 6=0

‖Tx‖H2

‖x‖H1

.

Fact. If T : H1 → H2 is bounded,

‖Tx‖H2 ≤ ‖T‖‖x‖H1 .
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Boundedness II

Proposition 5

A linear transform is bounded if and only if it is continuous.

Proof. Assume T : H1 → H2 is bounded. Then,

‖Tx− Tx0‖ ≤ ‖T‖‖x− x0‖

means continuity of T .
Assume T is continuous. For any ε > 0, there is δ > 0 such that
‖Tx‖ < ε for all x ∈ {y ∈ H1 | ‖y‖ < 2δ}.
Then,

sup
‖x‖=1

‖Tx‖ ≤ sup
‖x‖=δ

δ‖Tx‖ ≤ δε.
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Riesz lemma
Definition. A linear functional is a linear transform from H to C (or R).
The vector space of all the bounded linear functionals called the dual
space of H, and is denoted by H∗.

Theorem 6 (Riesz lemma)

For each φ ∈ H∗, there is a unique yφ ∈ H such that

φ(x) = (x, yφ) (∀x ∈ H).

Proof. If φ(x) = 0 for all x, take y = 0. Otherwise, let

V = {x ∈ H | φ(x) = 0}.

Since φ is a bounded linear functional, V is a closed subspace, and not equal
to H. Take z ∈ V ⊥ with ‖z‖ = 1, then obviously for any x ∈ H,

φ(x)z − φ(z)x ∈ V.

The inner product with z shows φ(x)(z, z)− φ(z)(x, z) = 0, which gives

φ(x) = φ(x)(z, z) = φ(z)(x, z)

Thus, y = φ(z)z gives the expression in the theorem.
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CONS I

ONS and CONS.
A subset {ui}i∈I of H is called an orthonormal system (ONS) if
(ui, uj) = δij (δij is Kronecker’s delta).

A subset {ui}i∈I of H is called a complete orthonormal system
(CONS) if it is ONS and if (x, ui) = 0 (∀i ∈ I) implies x = 0.

Theorem 7

Let {ua}a∈A be an ONS in a Hilbert space. Then, there is a CONS of
H that contains {ua}a∈A. In particular, every Hilbert space has a
CONS.

Proof is omitted. (Use Zorn’s lemma.)
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CONS II
Theorem 8

Let H be a Hilbert space and {ui}i∈I be a CONS. Then, for each
x ∈ H,

x =
∑
i∈I(x, ui)ui, (Fourier expansion)

and
‖x‖2 =

∑
i∈I |(x, ui)|

2. (Parseval’s equality)

Proof omitted. The first equality means that R.H.S. converges to x in
H independent of order.

Example: CONS of L2([0 2π], dx)

un(t) = 1√
2π
e
√
−1nt (n = 0, 1, 2, . . .)

Then,
f(t) =

∑∞
n=0anun(t)

is the (ordinary) Fourier expansion of a periodic function.
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CONS III

Definition. A metric space is called separable if it has a countable
dense subset.

Theorem 9
A Hilbert space is separable if and only if it has a countable CONS.

Sketch of proof. For only if part, apply Gram-Schmidt procedure. For
the other direction, use the Fourier expansion with rational
coefficients.

Assumption

In this course, a Hilbert space is assumed to be separable unless
otherwise stated.
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Completion of inner product space

Theorem 10
Let H0 be an inner product space. Then, there is a Hilbert space H
such that H0 is isomorphic to a dense subspace of H. H is unique up
to isomorphism, and called the completion of H0.

Outline of the proof.
1 X =

{
{un}∞n=1 ⊂ H0 | {un}∞n=1is a Cauchy sequence of H

}
.

2 Define an equivalence relation on X by

{un} ∼ {vn} ⇔ ‖un − vn‖ → 0 (n→∞).

3 Show X̃ := X/ ∼ is an inner product space by defining

([{un}], [{vn}]) := limn→∞(un, vn).

4 Show that the map J : X → X̃, u 7→ [{u, u, u, . . .}] is isometric,
and the image is a dense subspace.

5 Show X̃ is complete. (This part is the most technical.)
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Reproducing kernel Hilbert space I
Definition. Let X be a set. A reproducing kernel Hilbert space
(RKHS) (over X ) is a Hilbert space H consisting of functions on X
such that for each x ∈ X there is a function kx ∈ H with the property

〈f, kx〉H = f(x) (∀f ∈ H) (reproducing property).

Write k(·, x) = kx(·). The function k is called a reproducing kernel of
H.

Proposition 11 (RKHS⇒ positive definite kernel)

A reproducing kernel of a RKHS is a positive definite kernel on X .

Proof.∑n
i,j=1cicjk(xi, xj) =

∑n
i,j=1cicj〈k(·, xi), k(·, xj)〉

= 〈
∑n
i=1cik(·, xi),

∑n
j=1cjk(·, xj)〉 ≥ 0
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Reproducing kernel Hilbert space II

Fact. The reproducing kernel on a Hilbert space is unique, if exists.

Proof. Suppose k and k̃ are reproducing kernels. Then,

〈k̃(x, y) = 〈k̃(·, y), k(·, x)〉 = 〈k(·, x), k̃(·, y)〉 = k(y, x) = k(x, y).

.

Fact.
‖k(·, x)‖ =

√
k(x, x).

Proof. ‖k(·, x)‖2 = 〈k(·, x), k(·, x)〉 = k(x, x).
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Reproducing kernel Hilbert space III
Proposition 12

Let H be a Hilbert space consisting of functions on a set X . Then, H
is a RKHS if and only if the evaluation map

ex : H → K, ex(f) = f(x),

is a continuous linear functional for each x ∈ X .

Proof. Assume H is a RKHS. The boundedness of ex is obvious from

|ex(f)| = |〈f, kx〉| ≤ ‖kx‖‖f‖.

Conversely, assume the evaluation map is continuous. By Riesz
lemma, there is kx ∈ H such that

〈f, kx〉 = ex(f) = f(x).
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Positive definite kernel and RKHS I

Theorem 13 (positive definite kernel⇒ RKHS)

Let k : X × X → C (or R) be a positive definite kernel on a set X .
Then, there uniquely exists a RKHS Hk consisting of functions on X
such that

1 k(·, x) ∈ Hk for every x ∈ X ,
2 Span{k(·, x) | x ∈ X} is dense in Hk,
3 k is a reproducing kernel on Hk, i.e.

〈f, k(·, x)H〉 = f(x) (∀x ∈ X ,∀f ∈ Hk).

Remark. If we define
Φ : X → Hk, x 7→ k(·, x),

then,
〈Φ(x),Φ(y)〉 = 〈k(·, x), k(·, y)〉 = k(x, y).

RKHS associated with a pos. def. kernel k gives a desired feature
space!
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Positive definite kernel and RKHS II

One-to-one correspondence between positive definite kernels
and RKHS.

k ←→ Hk

Theorem 13 gives an injective map from the positive definite
kernels to RKHS.
Conversely, the reproducing kernel of a RKHS is a positive definite
kernel (Proposition 11).
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Proof of Theorem 13

Proof. (Described in R case.)
Construction of an inner product space:

H0 := Span{k(·, x) | x ∈ X}.

Define an inner product on H0:
for f =

∑n
i=1 aik(·, xi) and g =

∑m
j=1 bjk(·, yj),

〈f, g〉 :=
∑n
i=1

∑m
j=1aibjk(xi, yj).

This is independent of the way of representing f and g from the
expression

〈f, g〉 =
∑m
j=1bjf(yj) =

∑n
i=1aig(xi).
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Reproducing property on H0:

〈f, k(·, x)〉 =
∑n
i=1aik(xi, x) = f(x).

Well-defined as an inner product:
It is easy to see 〈·, ·〉 is bilinear form, and

‖f‖2 =
∑n
i,j=1aiajk(xi, xj) ≥ 0

by the positive definiteness of f .
If ‖f‖ = 0, from Cauchy-Schwarz inequality,1

|f(x)| = |〈f, k(·, x)〉| ≤ ‖f‖‖k(·, x)‖ = 0

for all x ∈ X ; thus f = 0.

1Note that Cauchy-Schwarz inequality holds without assuming strong positivity of
the inner product.
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Completion:
Let H be the completion of H0.

H0 is dense in H by the completion.
H is realized by functions:
Let {fn} be a Cauchy sequence in H. For each x ∈ X , {fn(x)} is
a Cauchy sequence, because

|fn(x)− fm(x)| = |〈fn − fm, k(·, x)〉| ≤ ‖fn − fm‖‖k(·, x)‖.

Define f(x) = limn fn(x).
This value is the same for equivalent sequences, because
{fn} ∼ {gn} implies

|fn(x)− gn(x)| = |〈fn − gn, k(·, x)〉| ≤ ‖fn − gn‖‖k(·, x)‖ → 0.

Thus, any element [{fn}] in H can be regarded as a function f on
X .
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Continuity of functions in RKHS

The functions in a RKHS are "nice" functions under some
conditions.

Proposition 14

Let k be a positive definite kernel on a topological space X , and Hk
be the associated RKHS. If Re[k(x, x)] is continuous for every x ∈ X ,
then all the functions in Hk are continuous.

Proof. Let f be an arbitrary function in Hk.

|f(x)− f(y)| = |〈f, k(·, x)− k(·, y)〉| ≤ ‖f‖‖k(·, x)− k(·, y)‖.

The assertion is easy from

‖k(·, x)− k(·, y)‖2 = k(x, x) + k(y, y)− 2Re[k(x, y)].

It is also known ([BTA04]) that if k(x, y) is differentiable, then all
the functions in Hk are differentiable.
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RKHS of polynomial kernel
Polynomial kernel on R:

k(x, y) = (xy + c)d (c > 0, d ∈ N).

Fact

Hk is d+ 1 dimensional vector space with a basis {1, x, x2, . . . , xd}.

Proof. Let G = Span{1, x, x2, . . . , xd}.
Span{k(·, z) | z ∈ Rm} ⊂ G from

k(x, z) = zdxd+dC1cz
d−1xd−1+dC2c

2zd−2xd−2+· · ·+dCd−1c
d−1zx+cd.

Any polynomial of degree d belongs to Hk, because for any (a0, . . . , ad)
the linear equation

zd0 · · · z0 1

zd1 · · · z1 1
...

. . .
...

zdd · · · zd 1



b0
b1
...
bd

 =


a0/c

d

a1/c
d−1

dCd−1

...
ad

 .

is solvable. Then,
∑d
i=0 bik(x, zi) =

∑d
i=0 aix

i.
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RKHS as a Hilbertian subspace

X : set.
CX : all functions on X with the pointwise-convergence topology2.
G = L2(T , µ), where (T ,B, µ) is a measure space.

Suppose
H(·;x) ∈ L2(T , µ) for all x ∈ X .

Construct a continuous embedding

j : L2(T , µ)→ CX ,

F 7→ f(x) =
∫
F (t)H(t;x)dµ(t) = (F,H(·;x))G .

Assume Span{H(t;x) | x ∈ X} is dense in L2(T , µ). Then, j is
injective.

2fn → f ⇔ fn(x) → f(x) for every x.
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RKHS as a Hilbertian subspace II

Define H := Imj.
Define an inner product on H by

〈f, g〉H := (F,G)G where f = j(F ), g = j(G).

We have j : L2(T , µ) ∼= H (isomorphic) as Hilbert spaces, and

H =
{
f ∈ CX

∣∣∣ ∃F ∈ L2(T , µ), f(x) =
∫
F (t)H(t;x)dµ(t)

}
.

Proposition 15

H is a RKHS, and its reproducing kernel is

k(x, y) = 〈j(H(·;x)), j(H(·; y))〉H =
∫
H(t;x)H(t; y)dµ(t).

Proof.
f(x) = (F,H(·, x))G = 〈f, j(H(·, x))〉H.
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Explicit realization of RKHS by Fourier transform

Special case given by Fourier transform.
X = T = R.
G = L2(R, ρ(t)dt). ρ(t): continuous, ρ(t) > 0,

∫
ρ(t)dt <∞.

H(t;x) = e−
√
−1xt.

Note: Span{H(t;x) | x ∈ X} is dense L2(R, ρ(t)dt).

- Fact.

H =
{
f ∈ L2(R, dx)

∣∣∣ ∫ |f̂(t)|2

ρ(t)
dt <∞

}
.

〈f, g〉H =
∫
f̂(t)ĝ(t)
ρ(t)

dt.

k(x, y) =
∫
e−
√
−1(x−y)tρ(t)dt.3

3We can directly confirm this a positive definite kernel.
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Explicit realization of RKHS by Fourier transform II
Proof. Let f = j(F ). By definition,

f(x) =
∫
F (t)e

√
−1txρ(t)dt. (Fourier transform)

Since F (t)ρ(t) ∈ L1(R, dt) ∩ L2(R, dt)4, the Fourier isometry of
L2(R, dt) tells

f(x) ∈ L2(R, dx) and f̂(t) = 1
2π

∫
f(x)e−

√
−1xtdx = F (t)ρ(t).

Thus,

F (t) =
f̂(t)
ρ(t)

.

By the definition of the inner product, for f = j(F ) and g = j(G),

〈f, g〉H = (F,G)G =
∫ f̂(t)
ρ(t)

ĝ(t)
ρ(t)ρ(t)dt =

∫ f̂(t)ĝ(t)
ρ(t) dt.

In addition,

F ∈ L2(R, ρ(t)dt) ⇔ f̂(t)
ρ(t) ∈ L

2(R, ρ(t)dt) ⇔
∫ |f̂(t)|2

ρ(t) dt <∞.
4Because ρ(t) is bounded, F ∈ L2(R, ρ(t)dt) means |F (t)|2ρ(t)2 ∈ L1(R, dt)
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Explicit realization of RKHS by Fourier transform III

Examples.

Gaussian RBF kernel: k(x, y) = exp
{
− 1

2σ2 |x− y|2
}

.

Let ρ(t) = 1
2π

exp{−σ
2

2
t2},

i.e. G = L2(R, 1

2π
e−

σ2
2 t2dt).

Reproducing kernel = Gaussian RBF kernel:

k(x, y) =
1

2π

∫
e
√
−1(x−y)te−

σ2
2 t2dt =

1

σ
exp
(
− 1

2σ2
(x− y)2

)

H =
{
f ∈ L2(R, dx)

∣∣∣ ∫ |f̂(t)|2 exp
(σ2

2
t2
)
dt <∞

}
.

〈f, g〉 =

∫
f̂(t)ĝ(t) exp

(σ2

2
t2
)
dt
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Explicit realization of RKHS by Fourier transform IV

Laplacian kernel: k(x, y) = exp
{
−β|x− y|

}
.

Let ρ(t) = 1
2π

1
t2+β2 ,

i.e. G = L2(R, dt

2π(t2 + β2)
).

Reproducing kernel = Laplacian kernel:

k(x, y) =
1

2π

∫
e
√
−1(x−y)t 1

t2 + β2
dt =

1

2β
exp
(
−β|x− y|

)
[Note: the Fourier image of exp(|x− y|) is 1

2π(t2+1)
.]

H =
{
f ∈ L2(R, dx)

∣∣∣ ∫ |f̂(t)|2(t2 + β2)dt <∞
}
.

〈f, g〉 =

∫
f̂(t)ĝ(t)(t2 + β2)dt
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Summary of Chapter 1 and 2

We would like to use a feature vector Φ : X → H to incorporate
higher order moments.
The inner product in the feature space must be computed
efficiently. Ideally,

〈Φ(x),Φ(y)〉 = k(x, y).

To satisfy the above relation, the kernel k must be positive
definite.
A positive definite kernel k defines an associated RKHS, where k
is the reproducing kernel;

〈k(·, x), k(·, y)〉 = k(x, y).

Use the RKHS as a feature space, and Φ : x 7→ k(·, x) as the
feature map.
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