#### Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

#### Kenji Fukumizu

Institute of Statistical Mathematics, ROIS

Department of Statistical Science, Graduate University for Advanced Studies

September 26, 2008 / Statistical Learning Theory II

### Outline

- 1. Relation to functional data analysis
- 2. Spline smoothing
- 3. Relation to random process

### Outline

- 1. Relation to functional data analysis
- 2. Spline smoothing
- 3. Relation to random process

### Functional data analysis

For functional data analysis, see Ramsay & Silverman (2005)

### What are functional data?

Data:  $f_1(t), f_2(t), \dots, f_N(t)$  -- functions on an interval [a, b]

Example: Berkeley Growth Study

See http://www.psych.mcgill.ca/misc/fda/index.html

### Converting raw data into functional form

- Data are often given by a set of  $\{(t_j, y_i(t_j)) | i = 1, ..., N, j = 1, ..., m_i\}$ .

- Converting data by smoothing

For each *i*, fit a curve  $\phi_i(t)$  to individual data { $(t_j, y_i(t_j)) | j = 1, ..., m_i$ } by smoothing (e.g. B-spline)

- The converted data are of the form

 $\phi(t) = c_1 \theta_1(t) + \dots + c_\ell \theta_\ell(t), \qquad \theta_1(t), \dots, \theta_\ell(t)$ : basis functions

### Analysis on functional data

- Apply linear methods to the "converted data" in a function space (typically  $L^2$ ).
- Examples:
  - Functional PCA
  - Functional CCA
  - Functional linear modeling, etc.

### **Functional PCA**

Functional data:  $\phi_1(t), ..., \phi_N(t)$  (already converted) Find a function to maximize

$$\operatorname{Var}_{emp}\left[\int \phi_i(t)f(t)dt\right]$$
 subj.to  $\int f(t)^2 dt = 1.$ 

Variance of the projections on the direction of f

If basis functions  $\theta_1(t), \dots, \theta_\ell(t)$  are used,

$$\phi_i(t) = \sum_{j=1}^{\ell} c_{ij} \theta_j(t), \qquad f(t) = \sum_{j=1}^{\ell} \beta_j \theta_j(t)$$

Solve:  $\max_{\beta} \beta^T V \beta$  subj.to  $\beta^T R \beta = 1$ .

where 
$$V_{jk} = \frac{1}{N} \sum_{i=1}^{N} \sum_{s,t=1}^{\ell} c_{is} c_{it} R_{js} R_{kt}$$
,  $R_{jk} = \int \theta_j(t) \theta_k(t) dt$ .

The integral in *R* is computed numerically, or by the property of the basis

# Kernel method v.s. functional data analysis

### Similarity

- Both the methods extends linear methods to "functional data".

#### Difference

- In kernel methods, the data conversion is given by a positive definite kernel, while in FDA the data are assumed to be functional.
- Kernel methods use RKHS as a function space, while the FDA uses L2 space in principle.

### Roughness penalty in FDA

– In FDA, smoothness is sometimes imposed on the solution.

$$\int f(t)^2 = 1 \implies \int f(t)^2 + \lambda \int |Df(t)|^2 dt = 1$$

This is essentially the Sobolev norm (RKHS).

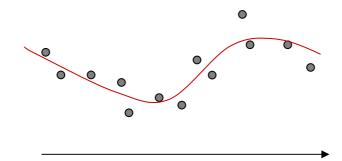
With roughness penalty, FDA is more similar to kernel methods,

### Outline

- 1. Relation to functional data analysis
- 2. Spline smoothing
- 3. Relation to random process

### Spline smoothing

 $(X_1, Y_1), ..., (X_N, Y_N) : X_i \in \mathbf{R}^n, Y_i \in \mathbf{R}$ *P*: differential operator on  $\mathbf{R}^n$ 



Spline smoothing:

$$\min_{f} \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda \int |Pf(x)|^{2} dx$$
  
Roughness penalty

### Laplacian and Green function

Laplacian 
$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$$

Self-adjoint: if  $|f(x)|, |g(x)| \rightarrow 0 \quad (x \rightarrow \infty)$  $\int \Delta f(x)g(x)dx = \int f(x)\Delta g(x)dx$ 

## Green function for Laplacian $\Delta G(x,\xi) = \delta(x-\xi)$ *i.e.* $\int \Delta G(x,\xi) f(x) d\xi = f(\xi)$

- Green function solves a differential equation:  $\Delta f = \varphi$  given  $\varphi$ .  $\implies f(x) = \int G(x, y)\varphi(y)dy$  $\therefore f(\xi) = \int f(x)\Delta G(x,\xi)dx = \int \Delta f(x)G(x,\xi)dx = \int \varphi(x)G(x,\xi)dx$  10

### Smoothing penalty

#### Regularization term

Consider functions on  $\mathbf{R}^n$  for simplicity (no boundary)

$$J_m^n(f) = \sum_{\alpha_1 + \dots + \alpha_n = m} \frac{m!}{\alpha_1! \alpha_2! \cdots \alpha_n!} \|D^\alpha f\|_{L^2}^2 \qquad L^2 \text{ norm of } m\text{-th derivative}$$
$$= \sum_{\alpha_1 + \dots + \alpha_n = m} \frac{m!}{\alpha_1! \alpha_2! \cdots \alpha_n!} \int \left|\frac{\partial^m f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}\right|^2 dx$$

- example (n = m = 2)

$$J_2^2(f) = \int \left\{ \left| \frac{\partial^2 f}{\partial x_1^2} \right|^2 + 2 \left| \frac{\partial^2 f}{\partial x_1 \partial x_2} \right|^2 + \left| \frac{\partial^2 f}{\partial x_2^2} \right|^2 \right\} dx$$

#### Smoothing

$$\min_{f} \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda \sum_{m=0}^{\infty} a_{m} J_{m}^{n}(f) \qquad (a_{m} \ge 0)$$

#### Expression by Laplacian

Partial integral shows

$$J_m^n(f) = \left(-1\right)^m \left(f, \Delta^m f\right)_{L^2}$$

The smoothing problem is expressed by

$$\min_{f} \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda \left( f, Af \right)_{L^{2}}$$
  
where  $A = \sum_{m=0}^{\infty} (-1)^{m} a_{m} \Delta^{m}$ 

### Two cases

### **Case** $a_0 \neq 0$

- The Green function is a positive definite kernel.
- The penalty term is equal to the squared RKHS norm.

### **Case** $a_0 = 0$

- Spline smoothing
- The Green functions is conditionally positive definite.
- The functional space is RKHS + polynomial of some order
- The penalty term is equal to the squared RKHS norm of the projection of f onto the RKHS.

$$a_0 \neq 0$$
: RKHS regularization

Solution

$$\min_{f} \quad \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda \left( f, Af \right)_{L^{2}}$$

Variational calculus

$$\sum_{i=1}^{N} \left( Y^{i} - f(x) \right) \delta(x - X^{i}) + \lambda A f = 0$$
$$A f = -\frac{1}{\lambda} \sum_{i=1}^{N} \left( Y^{i} - f(x) \right) \delta(x - X^{i})$$

If we have the Green function *G* for *A i.e.*  $AG = \delta$ 

$$f(\xi) = -\frac{1}{\lambda} \sum_{i=1}^{N} \int (Y^{i} - f(x)) \delta(x - X^{i}) G(x, \xi) dx$$
$$= -\frac{1}{\lambda} \sum_{i=1}^{N} (Y^{i} - f(X^{i})) G(\xi, X^{i})$$
Note:  $f(X_{i})$  unknown

The solution is to have the form:

$$f = \sum_{i=1}^{N} c_i G(\cdot, X^i)$$

Plug it into the original problem:

$$\min_{c \in \mathbf{R}^{N}} \sum_{i=1}^{N} \left( Y^{i} - \sum_{j=1}^{N} c_{j} G(X^{i}, X^{j}) \right)^{2} + \lambda \sum_{i,j=1}^{N} c_{i} c_{j} G(X^{i}, X^{j})$$
  
$$\therefore (Af, f)_{L^{2}} = \sum_{i,j} c_{i} c_{j} (AG(\cdot, X_{i}), G(\cdot, X_{j}))_{L^{2}} = \sum_{i,j} c_{i} c_{j} G(X_{i}, X_{j})$$

By differentiation,

$$c = (G + \lambda I)^{-1} \mathbf{Y}$$
  
where  $G_{ij} = G(X^i, X^j) \quad \mathbf{Y} = (Y^1, \dots, Y^N)^T$ 

The solution:

$$f(x) = \mathbf{Y}^T (G + \lambda I)^{-1} g(x) \qquad \text{where} \quad g_i(x) = G(x, X^i)$$

#### Green function

#### <u>Theorem</u>

If  $a_0 \neq 0, a_j \neq 0 (\exists j \ge 1)$ , the Green function of *A* is a positive definite kernel.

Proof.

Since *A* is shift invariant, so is *G*. Thus,

$$\sum_{m=0}^{\infty} (-1)^m a_m \Delta^m G(z) = \delta(z)$$

By Fourier transform

$$\sum_{m=0}^{\infty} a_m \|u\|^{2m} \widehat{G}(u) = \frac{1}{(2\pi)^{n/2}}$$
$$\widehat{G}(u) = \frac{1}{(2\pi)^{n/2} (a_0 + \sum_{m=1}^{\infty} a_m \|u\|^{2m})}$$

If  $a_0 \neq 0$ ,  $a_j \neq 0$  ( $\exists j \ge 1$ ), the Fourier inversion is possible. Use Bochner's theorem.

#### Regularization by RKHS norm

- Assume  $a_0 \neq 0, a_1 \neq 0$
- G: Green function of A.
- $H_G$ : RKHS w.r.t. G.

$$\min_{f} \quad \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda \sum_{m=0}^{\infty} a_{m} J_{m}^{n}(f)$$

The solution is given by  $f = \sum_{i=1}^{N} c_i G(\cdot, X^i)$ 

The penalty term is, then,

$$\sum_{m=0}^{\infty} a_m J_m^n(f) = \sum_{i,j} c_i c_j G(X_i, X_j) = \|f\|_{H_G}^2.$$

The above regularization is equivalent to the kernel ridge regression

$$\min_{f} \quad \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda \| f \|_{H_{G}}^{2}$$

17

$$a_0 = 0$$
: Spline smoothing

Thin-plate spline

$$\min_{f} \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda J_{m}^{n}(f)$$
$$J_{m}^{n}(f) = \sum_{\alpha_{1} + \dots + \alpha_{n} = m} \frac{m!}{\alpha_{1}!\alpha_{2}!\cdots\alpha_{n}!} \left\| D^{\alpha} f \right\|_{L^{2}}^{2}$$

- The Green function of  $J_m^n$  is not necessarily positive definite, but conditionally positive definite
- The function space for f is

$$B_m^n$$
:  $D^{\alpha} f \in L^2(\mathbf{R}^n)$   $(|\alpha| = m)$ 

and

$$\begin{split} J_m^n(f) = 0 & \Leftrightarrow \quad f \in \mathcal{P}_{m-1} \\ \mathcal{P}_{m-1} & : \text{Polynomials of degree at most } m - 1 \end{split}$$

Let  $B_m^n = \mathcal{P}_{m-1} \oplus H_*$  be decomposition by direct sum.

<u>Theorem</u> (Meinguet 1979) If m > n/2, the subspace  $H_*$  is a RKHS with inner product  $\langle f, g \rangle_{H_*} = \sum_{|\alpha|=m} \frac{m!}{\alpha_1! \cdots \alpha_n!} (D^{\alpha} f, D^{\alpha} g)_{L^2} = ((-1)^m \Delta^m f, g)_{L^2}$ In particular, the norm is given by  $\|f\|_{H_*}^2 = J_m^n(f)$ 

$$\min_{f} \sum_{i=1}^{N} \left( Y^{i} - f(X^{i}) \right)^{2} + \lambda J_{m}^{n}(f)$$

$$\iff \min_{g \in H_{*}, p \in \mathcal{P}_{m-1}} \sum_{i=1}^{N} \left( Y^{i} - \left(g(X^{i}) + p(X^{i})\right) \right)^{2} + \lambda \parallel g \parallel_{H_{*}}^{2}$$

#### Solution of spline smoothing

By the representer theorem, the solution is to be of the form:

$$f(x) = \sum_{i=1}^{N} c_i K(x - X_i) + \sum_{\ell=1}^{M} b_{\ell} \phi_{\ell}(x)$$

By plugging it,

$$\min_{c,b} (Y - Kc - Hb)^T (Y - Kc - Hb) + \lambda c^T Kc$$

The solution:

$$(K + \lambda I)c + Hb = Y, \qquad H^T c = 0.$$

$$\Rightarrow \begin{cases} c = (I_N - H(H^T H)^{-1} H^T)(K + \lambda I)^{-1}Y \\ b = (H^T H)^{-1} H^T (K + \lambda I)^{-1}Y \end{cases}$$

### Conditionally positive definite

<u>Definition</u>.  $K(x,y) : \Omega \ge \Omega \rightarrow \mathbf{R}$  is said to be conditionally positive definite of order *m* if

- **1.** K(x,y) = K(y,x)
- 2. If points  $x_1, ..., x_n$  in  $\Omega$  and real numbers  $c_1, ..., c_n$  satisfy

 $\sum_{i=1}^n c_i p(x_i) = 0$ 

for any polynomial  $p(x) \in \mathcal{P}_{m-1}$  (generalized increment of order *m*), then  $\sum_{n=0}^{n} \mathcal{L}(x, x) \ge 0$ 

$$\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) \ge 0$$

- A positive definite kernel is conditionally positive definite of order 0.
- A negative definite kernel is negation of a conditionally positive definite kernel of order 1.
- Intuition: the above c<sub>1</sub>,..., c<sub>n</sub> is a generalization of the *m*-th order difference. Thus, the definition intuitively says that the *m*-th derivative of *K* is positive definite.

1st order diff.: 
$$\frac{f(t_{i+1}) - f(t_i)}{t_{i+1} - t_i}$$
  
Coeff. of  $f(t_i)$   $C_1$   $C_2$   $C_3$   
 $\frac{-1}{t_2 - t_1}$   $\frac{1}{t_2 - t_1}$   $0$   
 $0$   $\frac{-1}{t_3 - t_2}$   $\frac{1}{t_3 - t_2}$   $\cdots$   
 $c_1 + c_2 + \cdots + c_n = 0$   $\rightarrow$  coefficients of 1st order difference  
2nd order diff.:  $\left\{\frac{f(t_{i+2}) - f(t_{i+1})}{t_{i+2} - t_{i+1}} - \frac{f(t_{i+1}) - f(t_i)}{t_{i+1} - t_i}\right\} / t_{i+2} - t_{i+1}$   
Coeff. of  $f(t_i)$   $C_1$   $C_2$   $C_3$   $C_4$   
 $\frac{1}{t_2 - t_1} / t_3 - t_2$   $\frac{-1}{t_2 - t_1} + \frac{-1}{t_3 - t_2} / t_3 - t_2$   $\frac{1}{t_3 - t_2} / t_3 - t_2$   $0$   
 $0$   $\frac{1}{t_3 - t_2} / t_4 - t_3$   $\frac{-1}{t_3 - t_2} + \frac{-1}{t_4 - t_3} / t_4 - t_3$   
 $\left\{\begin{array}{c} c_1 + c_2 + \cdots + c_n = 0 \\ c_1 \times t_1 + c_2 \times t_2 + \cdots + c_n \times t_n = 0 \end{array}\right\}$   $\rightarrow$  coefficients of 2nd order difference

- -

### Outline

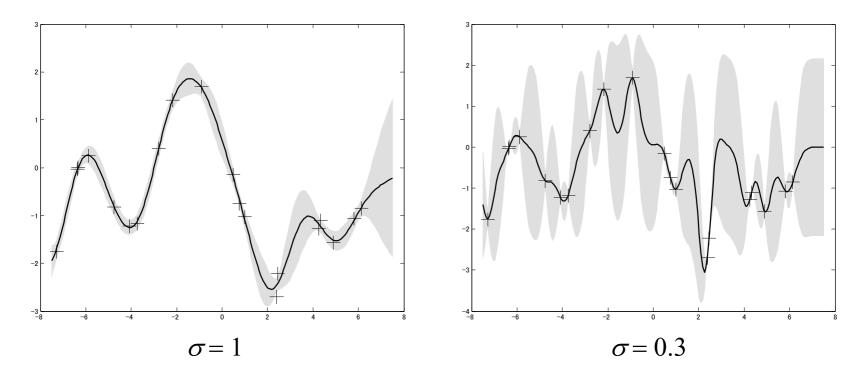
- 1. Relation to functional data analysis
- 2. Spline smoothing
- 3. Relation to random process

### Gaussian process

- A Gaussian process is a random process  $\{X_t\}_{t\in\Omega}$  (random variables with index  $\Omega$ ) such that for any finite subset  $\{t_1, ..., t_n\}$  of  $\Omega$ , the random vector  $(X_{t_1}, ..., X_{t_n})$  is a Gaussian random vector.
- Mean function  $\mu(t) = E[X_t]$
- Covariance function  $R(t,s) = Cov[X_t, X_s]$
- A Gaussian process is uniquely determined by the mean and covariance function.

$$\mathbf{X} = (X_{t_1}, \dots, X_{t_n}) \sim N(\mu_{\mathbf{X}}, \Sigma_{\mathbf{X}})$$

$$\mu_{\mathbf{X}} = (\mu(t_1), \dots, \mu(t_n)), \qquad \Sigma_{\mathbf{X}} = \begin{pmatrix} R(t_1, t_1) & R(t_1, t_2) & \cdots & R(t_1, t_n) \\ R(t_2, t_1) & R(t_2, t_2) & \cdots & R(t_2, t_n) \\ \vdots & \vdots & \ddots & \vdots \\ R(t_n, t_1) & R(t_n, t_2) & \cdots & R(t_n, t_n) \end{pmatrix}$$
24



mean zero covariance function  $R(s,t) = \exp\left(-\frac{1}{2\sigma^2}(s-t)^2\right)$ 

Generated by Matlab gpml toolbox (Rasmussen and Williams)

# Random process and positive definite kernel

#### Covariance function is a positive definite kernel

<u>Theorem</u>

The covariance function R(s, t) of a random process  $\{X_t\}_{t \in \Omega}$  is a positive definite kernel.

:.) For simplicity, mean = 0.  

$$\sum_{i,j=1}^{n} c_i c_j R(t_i, t_j) = \sum_{i,j=1}^{n} c_i c_j E[X_{t_i}, X_{t_j}]$$

$$= E\left[\sum_{i=1}^{n} c_i X_{t_i}, \sum_{j=1}^{n} c_j X_{t_j}\right] = E\left[\left(\sum_{i=1}^{n} c_i X_{t_i}\right)^2\right] \ge 0$$

– A random process on  $\Omega$  determines a RKHS on  $\Omega$ .

## Solution Positive definite kernel defines Gaussian process k(s,t): positive definite kernel on $\Omega$ .

For any finite subset  $\mathbf{t} = (t_1, ..., t_n)$  of  $\Omega$ , the Gram matrix  $\Sigma_{\mathbf{t}} = (k(t_i, t_j))$  is always positive semidefinite.

By Kolmogorov extension theorem, there is a Gaussian process with index set  $\Omega$  such that

$$\mathbf{X} = (X_{t_1}, ..., X_{t_n}) \sim N(0, \Sigma_t)$$

The covariance function = k(s,t).

### **RKHS** by random process

 $\{X_t\}_{t\in\Omega}$  : random process on  $\Omega$  with mean zero and finite 2nd moments.  $X_t: \Xi \rightarrow \mathbf{R}$  random variable defined by a probability space.

$$X_t \in L^2(\Xi, \mathcal{B}, P)$$

 $\overline{\mathcal{L}}(X) \equiv \overline{LH\{X_t \in L^2(\Xi) \mid t \in \Omega\}} \quad \text{closed subspace of } L^2(\Xi)$ 

Hilbert space generated by  $\{X_t\}_{t \in \Omega}$ 

Inner product

 $\Rightarrow$ 

$$(U,V)_{\overline{\mathcal{L}}(\Xi)} = E[UV]$$
  $U,V \in \overline{\mathcal{L}}(X)$   
(inner product of  $L^2(\Xi)$ )

#### RKHS and random process

#### <u>Theorem</u>

- k: positive definite kernel on a set  $\Omega$
- $\{X_t\}_{t\in\Omega}$  : random process with mean 0 and covariance function k

$$\begin{array}{l} & \overbrace{\mathcal{L}}(X) \cong H_k \quad (\text{isomorphic as Hilbert space}) \\ & X_t \iff k(\cdot, t) \\ & (U,V)_{\overline{\mathcal{L}}(\Xi)} = \langle f,g \rangle \qquad U \iff f, \ V \iff g \end{array}$$

注)  $(X_t, X_s)_{\overline{\mathcal{L}}(\Xi)} = E[X_t X_s] = k(t, s) = \langle k(\cdot, t), k(\cdot, s) \rangle_{H_k}$ (inner product) (cov) (reproducing)

### Stationary process and shiftinvariant kernel

### Stationary case

 $\{X_t\}_{t\in\mathbb{R}^m}$ : random process on  $\mathbf{R}^m$ 

stationary process

$$E[X_{t+h}X_{s+h}] = E[X_tX_s] \qquad (\forall t, s, h \in \mathbf{R}^m)$$

covariance function is given by

$$R(t,s) \equiv R(t-s)$$

- Positive definite kernel for a stationary process is given by

$$K(t,s) = K(t-s)$$

Bochner's theorem ⇔ Wiener-Khinchine's theorem
 (covariance function of a stationary process on R<sup>m</sup> is the inverse Fourier transform of the power spectral.)

### Inference with random process

### Estimation of random process

- Modeling by a random process
  - $X_t$ : random process on  $\Omega$  with mean zero and finite 2nd moments

$$Y_t = X_t + \mathcal{E}_t$$

 $\varepsilon_t$ : noise indep. with  $X_t = E[\varepsilon_t] = 0$ ,  $Cov[\varepsilon_t, \varepsilon_s] = \sigma^2 \delta(t-s)$ 

 $R(t,s) = \text{Cov}[X_t, X_s]$ : known.  $\sigma^2$ : known

- Estimation

Estimate  $X_{t_0}$  for  $t_0$  given the observation  $Y_{t_1}, \ldots, Y_{t_n}$ 

### Minimizing mean square error

#### Linear estimator for random process

- Linear estimator

$$\hat{X}_{t_0} = \sum_{j=1}^n \alpha_j Y_{t_j}$$

- Mean square error

$$\min E |X_{t_0} - \hat{X}_{t_0}|^2 = \min_{\alpha} E |X_{t_0} - \sum_{j=1}^n \alpha_j Y_{t_j}|^2$$

- Least square error estimator

$$\hat{X}_{t_0} = \hat{\alpha}^T Y_{\mathbf{t}} = r^T (K + \sigma^2 I_n)^{-1} Y_{\mathbf{t}}$$
  
$$\therefore \quad \min_{\alpha} \alpha^T (K + \sigma^2 I_n) \alpha - 2r^T \alpha$$
  
$$\Rightarrow \quad \hat{\alpha} = (K + \sigma^2 I_n)^{-1} r$$

# Bayesian estimation of Gaussian process

– Joint probability

$$\begin{pmatrix} Y_{\mathbf{t}} \\ X_{t_0} \end{pmatrix} \sim N \left( 0, \begin{pmatrix} K + \sigma^2 I_n & r \\ r^T & R(t_0, t_0) \end{pmatrix} \right)$$

where  $K = (R(t_i, t_j)) \in \mathbf{R}^{n \times n}$   $r = (R(t_i, t_0)) \in \mathbf{R}^n$  $\therefore$ )  $E[Y_t, Y_s] = R(t, s) + \sigma^2 \delta(t - s), \quad E[Y_t, X_s] = R(t, s)$ 

- Bayesian estimation = LSE estimation

$$E[X_{t_0} | Y_t] = r^{T} (K + \sigma^2 I_n)^{-1} Y_t$$

### Gaussian process and regularization

### LSE estimation of a process = Regularization with **RKHS**

 Linear LSE estimator of a process (Bayesian estimator of Gaussian process)

$$\min E |X_{t_0} - \hat{X}_{t_0}|^2 = \min_{\alpha} E |X_{t_0} - \sum_{j=1}^n \alpha_j Y_{t_j}|^2$$
Sol.  $\hat{X}_{t_0} = r^T (K + \sigma^2 I_n)^{-1} Y_t$ 
- Ridge regression on RKHS
$$\min_{t \in H} \sum_{i=1}^N (Y_i - f(t_i))^2 + \lambda \| f \|_H^2$$
identical
 $\sigma^2 \Leftrightarrow \lambda$ 

Sol. 
$$f(t) = r(t)^{T} (K + \lambda I_{N})^{-1} Y$$

 $f \in H$ 

## Correspondence between RKHS and random process



Pos. def. kernel K(t,s)  $\sum c_i K(\cdot, t_i)$   $\lim \sum c_i K(\cdot, t_i) \quad \text{(completion)}$ Regularization (smoothing)  $\min_{f \in H} \sum_{i=1}^{N} (Y_i - f(t_i))^2 + \lambda \| f \|_{H}^2$   $f(t) = r(t)^T (K + \lambda I_N)^{-1} Y$ 

Shift-invariant kernel K(t,s) = K(t-s)Bochner's theorem random processCovariance fun. $K(t,s) = E[X_t, X_s]$  $\sum c_i X_{t_i}$  $\lim \sum c_i X_{t_i}$  (closure)Linear estimation

$$\min_{\alpha} E |X_{t_0} - \sum_{j=1}^{n} \alpha_j Y_{t_j}|^2$$
$$\hat{X}_{t_0} = r^T (K + \sigma^2 I_n)^{-1} Y_{\mathbf{t}}$$

Cov. fun. of a statinary process K(t,s) = K(t-s)Wiener-Khinchine's theorem

### Iterative random functions

#### ■ m-IRF

A random process  $\{X_t\}_{t\in\Omega}$  is said to be an *m*-iterative random functions (*m*-IRF) if for any finite subset  $\mathbf{t} = (t_1, ..., t_n)$  of  $\Omega$  and any generalized increment  $c_1, ..., c_n$  of order *m*, the process  $\{\sum_{i=1}^n c_i X_{t+t_i}\}_{t\in\Omega}$ 

is second-order stationary.

- A stationary process is called (-1)-IRF in convention.

#### Modeling by non-stationary process

- Kriging is a modeling by 0-IRF. The generalized covariance function G(t-s) is used instead of covariance function K(t, s) for the modeling.

### Generalized covariance

 $\begin{array}{l} \underline{\text{Theorem}} \text{ (Matheron 1973)} \\ \{X_t\}_{t\in\Omega} \text{ : continuous m-IRF.} \\ \text{There is a continuous function } G_K \text{ such that for any finite subset} \\ \mathbf{t} = (t_1, \ldots, t_n) \text{ of } \Omega \text{ and any two generalized increments } (c_1, \ldots, c_n) \\ \text{ and } (d_1, \ldots, d_n) \text{ of order } m, \\ \\ \text{Cov} \left[\sum_{i=1}^n c_i X_{t_i}, \sum_{i=1}^n d_i X_{t_i}\right] = \sum_{i,j=1}^n c_i d_i G_K(t_i - t_j). \end{array}$ 

- The function  $G_K$  is called generalized covariance.
- The generalized covariance is conditionally positive definite of order m (obvious by definition and above theorem).
- Matheron (1973) proves the converse, also. There is a correspondence between m-IRF and conditionally positive definite functions of order m.
   (Generalization of the correspondence between the stationary processes and positive definite functions.)

### References

- Ramsay, J. and B. W. Silverman. *Functional Data Analysis* (2nd ed.). Springer, 2005.
- Green, P.J. and Silverman, B.W. *Nonparametric Regression and Generalized Linear Models*. A Roughness Penalty Approach. Chapman & Hall. 1994.
- Wahba, G. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM. 1990.
- Meinguet, J. (1979) Multivariate Interpolation at Arbitrary Points Made Simple. J. Applied Mathematics and Physics (ZAMP) 30, 292-304.
- Matheron, G. (1973) The intrinsic random functions and their applications. *Adv. Appl. Prob.*, 5, pp.439-468.
- Berlinet, A. and C. Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics.* Kluwer Academic Publishers, 2003.
- Gel'fand, I.M. and Vilenkin, N.Ya. *Generalized Functions Vol.4: Applications of Harmonic Analysis*. Academic Press. 1964.