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Structure Learning
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How to give a network?

Prior knowledge
A graphical model may given by the prior knowledge on the problem.

e.g.1) Diagnosis system 

e.g.2) HMM 

Structure learning
If it is difficult to assume an appropriate model, 

the graph structure must be learned from given data. 

Plug

Ignition 

Battery

The problem is to estimate
the probabilities (parameters). 

…
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Structure Learning
Variables:  X1, ..., Xm

Data: (X1
(1), ..., Xm

(1)), ..., (X1
(N), ..., Xm

(N))
Output of structure learning = a directed / undirected graph associated 

with the probability of (X1, ..., Xm).

Difficulty:  the number of possible directed graphs = 3m

The search space is very large. 

b

c
d

e

ab

c
d

e

a

Data
structure learning
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Learning of Directed Graph

Constraint-based method
Determine the conditional independence of the underlying 
probability by statistical tests.
Many statistical tests are required.
Often referred to as causal learning.

Score-based method
Use a global score to match a graph and data.
Optimization in huge search space. 
Able to use informative prior on graphs. 
Usually, discrete variables are assumed.
Often referred to as Bayesian structure learning
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Score-based Structure Learning
Discrete variables:  X1, ..., Xm

Data: D = {(X1
(1), ..., Xm

(1)), ..., (X1
(N), ..., Xm

(N))}
Model: 
When a directed graph G is specified, multinomial distribution is 
assumed with Dirichlet prior.  

Dirichlet prior:
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Score-based Structure Learning
Marginal likelihood:
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Score-based Structure Learning
Prior to the models
We can use a prior distribution P(G) on the graphs.

Optimization over the graphs
The space is very huge greedy search.

Start from a graph G
Repeat the following process:

Update the graph by deleting, inserting, or reversing an edge.
Accept the new graph G’ if Score(G’) > Score(G). 

Many others
MDL / BIC, MCMC, etc.   
See D. Heckerman “A tutorial on learning with Bayesian networks” in 

Learning in Graphical Models (M. Jordan ed.) 1998.

)(log)|(log)( GPGDPG +=Score
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Marginal Log Likelihood / ABIC

Bayesian method for model selection
Maximum a posteriori model given data

Note:

If P(G) is uniform over the models,

)()|(
)(

)()|()|( GPGDP
DP

GPGDPDGP ∝=

)|(maxargˆ DGPG =

as a function of model

[ ])(log)|(logmaxargˆ GPGDPG +=

θθθ dGPGDP )|(),|(logmaxarg ∫=

)|(logmaxargˆ GDPG = Marginal log likelihood
(ABIC: Akaike’s Bayesian 

information criterion)
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Mini-Summary on score-based method

Use a global score to match a graph and data.
Marginal log likelihood (ABIC), MDL, etc.

Optimization in huge search space. 
Some techniques are needed.  e.g. greedy search.

Able to use informative prior on graphs. 

Usually, discrete or Gaussian variables are assumed.
For non-Gaussian continuous variables, we need some 

techniques such as discretization. 

Also known as  Bayesian structure learning
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Causal Learning

Directed graph as causal graph
A directed graph can be regarded as the expression of causal 
relationships among variables.

Causal learning:  learning of the directed graph from data.

Assumption: the data is given by the probability factorizing  
w.r.t. the directed graph. 

b

c
d

e

a Causal direction = Edge-direction

),|()()()( bacba XXXpXpXpXp =
),|(),|( dcecbd XXXpXXXp×
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Causal Leaning from Data

With manipulation – intervention

No manipulation / with temporal information

No manipulation / no temporal information

manipulate observation

X is a cause of Y?

)(tX )(tY : observed time series

X(1), …, X(t) are a cause of Y(t+1)?

Easier.  (do-calculus, Pearl 1995)

Causal inference is harder.
X

Y

X
Y
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Causal Learning without Manipulation

Difficulty of causal inference from non-
experimental data 

Widely accepted view till 80’s
Causal inference is impossible without manipulating some 

variables.
e.g.)   “No causation without manipulation” (Holland 1986, JASA)

Temporal information is very helpful, but not decisive.
e.g.)  The barometer falls before it rains, but it does not cause 

the rain. 

Many philosophical discussions, but not discussed here. 
See Pearl (2000) and the references therein.
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Addendum: Causality and Correlation

Correlation (dependence) and causality
Do not confuse causality with dependence (or correlation)!

Example)
A study shows: 

Young children who sleep with the light on are much more likely 
to develop myopia in later life. (Nature 1999)

light on short-sight

light on short-sight

Parental myopia

(Nature 2000)

Hidden common cause



50

Causal Learning without Manipulation

Fundamental assumptions
Causal Markov condition
The probability generating data is associated with a DAG.

Causal Faithfulness Condition
The inferred DAG (causal structure) must express all the 

independence relations. 
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This includes the true probability 
as a special case, but the structure
does not express 
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Causal Learning without Manipulation

Why is it possible?
DAG of chain  X – Z – Y 

This is the only detectable directed graph of three variables. 
The following structures cannot be distinguished from the 
probability.

X Y
and 

| ZX Y

V-structure

p(x,y,z)  =  p(x|z)p(y|z)p(z)  =  p(x|z)p(z|y)p(y)   =    p(x|z)p(z|y)p(x)

X Y

Z
YX ZYX Z

| ZX Y

X Y

Z
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Constraint-based Causal Learning

IC algorithm (Verma&Pearl 90)
Input  – V: set of variables,     D: dataset of the variables. 
Output – Partial DAG (specifies an equivalence class, directed partially)

1. For each                                    ,  search for 
such that 

Construct an undirected graph (skeleton) by making an edge 
between a and b if and only if no set Sab can be found.  

2. For each nonadjacent pair (a,b) with a – c – b,  direct the edges 
by                     if

3. Orient as many of undirected edges as possible on condition that 
neither new v-structures nor directed cycles are created. 

– Implemented in PC algorithm (Spirtes & Glymour) efficiently. 

)(),( baVVba ≠×∈ },{\ baVSab ⊂

| SabXa Xb

bca ←→ abSc ∉
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Constraint-based Causal Learning

Example
True structure

a

d

e

cb

a

d

e

cb

a

d

e

cb

a

d

e

cb

The output from each step of IC algorithm 

},{ cbSad =
}{dSae =
}{aSbc =

}{dSS cebe ==
For other pairs,
S does not exist.

For (b,c),

1) 2) 3)

bcSd ∉

Direction of some edges 
may be left undetermined.
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Mini-summary on constraint-based 
method

Determine the conditional independence of the underlying 
probability by statistical tests.

Many statistical tests are required.
Problems: 

Errors in statistical tests.
Computational costs.
Multiple comparison – difficult to set critical regions 

Effects of hidden variables are important to consider (not 
discussed here).

Often discussed in the context of causal learning.
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Summary: Structure learning
Two major approaches

Score-based Bayesian structure learning
There are many methods how to define score function.
Marginal likelihood, MDL, etc.

Constraint-based causal learning
Testing conditional independence.

More recent approach
Sparse network by Lasso
Meinshausen and Buhlmann [Ann. Statist. 34 (2006) 1436–1462]

Further readings
D. Heckerman. A tutorial on learning with Bayesian networks. in Learning in 

Graphical Models.  (ed. M.Jordan) pp.301-354. MIT Press (1999)
This book contains various advanced topics. 

J. Pearl. Causality.  Cambridge University Press (2000)
宮川雅巳 「統計的因果推論」 朝倉書店(2004)
宮川雅巳 「グラフィカルモデリング」 朝倉書店(1997)


