Structure Learning

How to give a network?

Prior knowledge

A graphical model may given by the prior knowledge on the problem.

The problem is to estimate the probabilities (parameters).

Structure learning

If it is difficult to assume an appropriate model, the graph structure must be learned from given data.

Structure Learning

Variables: $X_1, ..., X_m$ Data: $(X_1^{(1)}, ..., X_m^{(1)}), ..., (X_1^{(N)}, ..., X_m^{(N)})$

Output of structure learning = a directed / undirected graph associated with the probability of $(X_1, ..., X_m)$.

Difficulty: the number of possible directed graphs = 3^m The search space is very large.

Learning of Directed Graph

Constraint-based method

- Determine the conditional independence of the underlying probability by statistical tests.
- Many statistical tests are required.
- Often referred to as causal learning.

Score-based method

- Use a global score to match a graph and data.
- Optimization in huge search space.
- Able to use informative prior on graphs.
- Usually, discrete variables are assumed.
- Often referred to as Bayesian structure learning

Score-based Structure Learning

Discrete variables: $X_1, ..., X_m$ Data: $D = \{(X_1^{(1)}, ..., X_m^{(1)}), ..., (X_1^{(N)}, ..., X_m^{(N)})\}$

Model:

When a directed graph G is specified, multinomial distribution is assumed with Dirichlet prior.

$$p(X \mid \theta) = \prod_{b=1}^{m} p(X_b \mid X_{pa(b)}, \theta_b)$$

$$\theta_b = (\theta_{b,i}^j) \quad i: \text{ multi-index for } pa(b)$$

$$\theta_{b,i}^j = P(X_b = j \mid X_{pa(b)} = i) \quad \theta_{b,i}^j \ge 0, \sum_{j=1}^{K_b} \theta_{b,i}^j = 1.$$

$$p(D \mid \theta) = \prod_{n=1}^{N} \prod_{b=1}^{m} p(X_b^{(n)} \mid X_{pa(b)}^{(n)}, \theta_b)$$

Dirichlet prior:

$$\theta_{b,i} = (\theta_{b,i}^{1}, \dots, \theta_{b,i}^{K_{b}}) \sim \text{Dir}(\theta_{b,i} \mid \alpha_{b,i}^{1}, \dots, \alpha_{b,i}^{K_{b}}) = \frac{\Gamma(\sum_{j} \alpha_{b,i}^{j})}{\prod_{j} \Gamma(\alpha_{b,i}^{j})} \prod_{j=1}^{K_{b}} (\theta_{b,i}^{j})^{\alpha_{b,i}^{j}-1}$$

Score-based Structure Learning

• Marginal likelihood:

 $Score(G) \equiv Marginal \log likelihood of G$

 $= \log \int P(D \mid \theta, G) p(\theta \mid G, \alpha) d\theta \qquad \qquad \alpha = (\alpha_{b,i}^{j})$ $= \log \int \prod_{b=1}^{m} \prod_{i=1}^{\#pa(b)} \prod_{j=1}^{K_{b}} (\theta_{b,i}^{j})^{N_{b,i}^{j}} \frac{\Gamma(\sum_{j} \alpha_{b,i}^{j})}{\prod_{j} \Gamma(\alpha_{b,i}^{j})} \prod_{j=1}^{K_{b}} (\theta_{b,i}^{j})^{\alpha_{b,i}^{j}-1} d\theta_{b,i}$ $= \sum_{b=1}^{m} \sum_{i=1}^{\#pa(b)} \left[\log \Gamma(\sum_{j} \alpha_{b,i}^{j}) - \sum_{j=1}^{K_{b}} \Gamma(\alpha_{b,i}^{j}) - \log \Gamma(\sum_{j} \widetilde{\alpha}_{b,i}^{j}) + \sum_{j=1}^{K_{b}} \Gamma(\widetilde{\alpha}_{b,i}^{j}) \right]$ where $\widetilde{\alpha}_{b,i}^{j} = N_{b,i}^{j} + \alpha_{b,i}^{j}$

Score-based Structure Learning

Prior to the models

We can use a prior distribution P(G) on the graphs.

 $Score(G) = \log P(D | G) + \log P(G)$

Optimization over the graphs

The space is very huge \rightarrow greedy search.

Start from a graph G

Repeat the following process:

Update the graph by deleting, inserting, or reversing an edge. Accept the new graph G' if Score(G') > Score(G).

- Many others
 - MDL / BIC, MCMC, etc.

See D. Heckerman "A tutorial on learning with Bayesian networks" in Learning in Graphical Models (M. Jordan ed.) 1998.

Marginal Log Likelihood / ABIC

Bayesian method for model selection

Maximum a posteriori model given data

 $\hat{G} = \arg \max P(G \mid D)$

Note:

$$P(G \mid D) = \frac{P(D \mid G)P(G)}{P(D)} \propto P(D \mid G)P(G) \text{ as a function of model}$$

 $\hat{G} = \arg \max \left[\log P(D \mid G) + \log P(G) \right]$

If P(G) is uniform over the models,

$$\hat{G} = \arg \max \log P(D | G) \qquad --- \qquad \text{Marginal log}$$
$$= \arg \max \log \int P(D | \theta, G) P(\theta | G) d\theta \qquad (ABIC: Akz)$$
infor

Aarginal log likelihood (ABIC: Akaike's Bayesian information criterion)

Mini-Summary on score-based method

- Use a global score to match a graph and data.
 Marginal log likelihood (ABIC), MDL, etc.
- Optimization in huge search space.
 Some techniques are needed. e.g. greedy search.
- Able to use informative prior on graphs.
- Usually, discrete or Gaussian variables are assumed.
 For non-Gaussian continuous variables, we need some techniques such as discretization.
- Also known as Bayesian structure learning

Causal Learning

Directed graph as causal graph

 A directed graph can be regarded as the expression of causal relationships among variables.

Causal direction = Edge-direction

$$p(X) = p(X_a) p(X_b) p(X_c | X_a, X_b)$$

$$\times p(X_d | X_b, X_c) p(X_e | X_c, X_d)$$

Causal learning: learning of the directed graph from data.

Assumption: the data is given by the probability factorizing w.r.t. the directed graph.

Causal Leaning from Data

With manipulation – intervention

X is a cause of Y?

Easier. (do-calculus, Pearl 1995)

No manipulation / with temporal information X(t) = Y(t) : observed time series

X(1), ..., X(t) are a cause of Y(t+1)?

No manipulation / no temporal information

Causal inference is harder.

Causal Learning without Manipulation

Difficulty of causal inference from nonexperimental data

- Widely accepted view till 80's
 - Causal inference is impossible without manipulating some variables.
 - e.g.) "No causation without manipulation" (Holland 1986, JASA)
- Temporal information is very helpful, but not decisive.
 - e.g.) The barometer falls before it rains, but it does not cause the rain.
- Many philosophical discussions, but not discussed here.
 See Pearl (2000) and the references therein.

Addendum: Causality and Correlation

Correlation (dependence) and causality

Do not confuse causality with dependence (or correlation)!

- Example)
 - A study shows:

Young children who sleep with the light on are much more likely to develop myopia in later life. (*Nature* 1999)

Parental myopia

light on short-sight (*Nature* 2000)

Hidden common cause

Causal Learning without Manipulation

Fundamental assumptions

Causal Markov condition

The probability generating data is associated with a DAG.

$$p(X) = \prod_{i=1}^{n} p(X_i | \operatorname{pa}(i))$$

$$p(X) = p(X_a) p(X_b) p(X_c | X_a, X_b) p(X_d | X_c)$$

Causal Faithfulness Condition

The inferred DAG (causal structure) must express all the independence relations.

This includes the true probability as a special case, but the structure does not express $a \perp b$

Causal Learning without Manipulation

- This is the only detectable directed graph of three variables.
- The following structures cannot be distinguished from the probability.

Constraint-based Causal Learning

IC algorithm (Verma&Pearl 90)

Input – V: set of variables, D: dataset of the variables.

Output – Partial DAG (specifies an equivalence class, directed partially)

1. For each $(a,b) \in V \times V$ $(a \neq b)$, search for $S_{ab} \subset V \setminus \{a,b\}$ such that $X_a \coprod X_b \mid S_{ab}$

Construct an undirected graph (skeleton) by making an edge between a and b if and only if no set S_{ab} can be found.

- 2. For each nonadjacent pair (a,b) with a c b, direct the edges by $a \rightarrow c \leftarrow b$ if $c \notin S_{ab}$
- 3. Orient as many of undirected edges as possible on condition that neither new v-structures nor directed cycles are created.
- Implemented in PC algorithm (Spirtes & Glymour) efficiently.

Constraint-based Causal Learning

Example

Direction of some edges may be left undetermined.

 $S_{bc} = \{a\}$

Mini-summary on constraint-based method

- Determine the conditional independence of the underlying probability by statistical tests.
- Many statistical tests are required.
 - Problems:
 - Errors in statistical tests.
 - Computational costs.
 - Multiple comparison difficult to set critical regions
- Effects of hidden variables are important to consider (not discussed here).
- Often discussed in the context of causal learning.

Summary: Structure learning

- Two major approaches
 - Score-based Bayesian structure learning
 - There are many methods how to define score function. Marginal likelihood, MDL, etc.
 - Constraint-based causal learning Testing conditional independence.
- More recent approach
 - Sparse network by Lasso
 Meinshausen and Buhlmann [*Ann. Statist.* 34 (2006) 1436–1462]
- Further readings
 - D. Heckerman. A tutorial on learning with Bayesian networks. in *Learning in Graphical Models*. (ed. M.Jordan) pp.301-354. MIT Press (1999)
 This book contains various advanced topics.
 - J. Pearl. *Causality*. Cambridge University Press (2000)
 - 宮川雅巳「統計的因果推論」朝倉書店(2004)
 - 宮川雅巳「グラフィカルモデリング」朝倉書店(1997)