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Inference on Hidden Markov Model



Inference on Hidden Markov Model

Review: HMM model
Xo Xi X X X,
T ..
POX,Y) = P(Xo) PYo | Xo)IT P(Xc | X )P(Y: | Xo) i i i i | @
t=1
X.: hidden state, finite
Y, Y, Y, Y, Y,

Inference

o Compute
P(X, | Yy Y7) for any t

Naive computation requires O(K") operations, exponential on the

sequence length.
K: number of hidden states



Belief Propagation on HMM

BP for undirected tree representation
o Clique potentials

Wy, (X0 Yo) = P(Xo) P(Yo | Xo) = P(X,,Yo)
Wy, (X, Y) = (Y [ X) (1<t<T)
Yx. X (X0 X)) = p(X¢ | X y) (1<t<T)

.
POXLY) =wy v (Xo, Yo Twx, x, (Xees X)Wy (X, Yy)
t=1

Xo X Wxtx”l X1 Xt
VX, Wxtvtg g i
Yo Yi Yirt Y1



Belief Propagation on HMM

My x,, (Xei)

o Upward message passing My x, (X})

X
My x,  (Xg) = ;‘//xtxm(xt’ Xi1) i

XMy x (X)my Ly (X;)

Yo

My (X)= PG IX) (Yisgiven) ¢
t—> At t

—
th—>Xt+1(Xt+1) = Z p(xt+1 | Xt)mxt_l—>xt (Xt) p(Yt | Xt)
X

t

= Z Axt,xt+1mxt_1—>xt (X)) p(Yy [ X¢)
Xt
X))

(A: transition matrix)

a(Xy,) =D Ax, x, ., (X)) PV | Xiag) update rule
X

t



Belief Propagation on HMM

. m X
o Downward message passing mxtmxt(xt)aﬁa‘xﬁ Xt+ﬁ>s<t+1( t41)

X ) D X
My x, (X)) = 2 Wxx., (Xes Xii1) e OYTOY O
Xt+1
XMy 5%, (Xt1) My x. (Xt1)
Yo Y Yieg Y1
= th+1—>Xt+1 (Xt+1)
mXt+1—>Xt (Xt) = Z p(Xt+1 | Xt)mXHZ—)XH(XtH) p(Yt+1 | Xt+1)
Xt+1
= XZ A, x My xe (Ken) P | X )
B(X)=my o (Xy)
—>

B(X) =2 A x  B(Xe) Py | Xy)  update rule
X

t+1



Belief Propagation on HMM

o Marginals

PCX¢ Yo, Yr) =My x (Xdmy  x (Xpmy  x (X¢)

— p(Yt | Xt)th_l—>Xt (Xt)rnxm—)Xt (Xt)

a(X,) AX)
=)
P(X, Yo, Yr) = (X ) B(X,) (Ys are given.)
Hence,
P(Yo, -+, Yr) =X2a(Xt)ﬁ(Xt)
and

D(X, Yy, Yo ) = a(X,)B(X,)
¢l Vo ;a(xt)ﬂ(xt)




Forward-Backward Algorithm

Summary
o Forward-backward algorithm (a—£ algorithm)

a(Xig) =2 Axt,xma(xt) PV | Xi1)
X

ﬂ(xt) = Z AXt,Xt+1IB(Xt+1) p(Yt+1 | ><t+1)

Xt+1

a(Xy)=p(Xo,Yp), B(X7)=1

o Marginals
P(Xi: Yo, o+ Y7 ) = a(X,) B(X,)

P(Yy, -+, Y7 ) =D a(X,)B(X,) — likelihood of Y (any t)
Xy

P(X, Yy, -+, Y1) = a(X,)B(X,)
thfor" " lT ;a(xt)ﬂ(xt)

— smoothing



Forward-Backward Algorithm

= Meaning of ¢ and f

a(Xy)=p(Yo, Y, Xy) (0<t<T)

/B(Xt): p(Yt+1”"’YT |Xt) (OStST_l)




Proof: Forward-Backward Algorithm
Proof by induction

t+1
a(X,) = p(X,.Y,) by definition. g m @
Suppose  a(X,)=p(Yy,:--,Y;, X,),

t+1

(a) a(xt+1) Z p(xt+1| X )a(X )p(Yt+1| Xt+1)

— X | X PXo, Y [ X)) p(X) P(Yeon | Xy
Z p( t+1 | ) p( t | t) p( t) p( t+1 | t 1) XO Xt_l Xt Xt+1
_Z p(Y Yt’Xt+1| Xt)p(xt)p(Yt+1| Xt+1)
= p(Yo’ Yo X)) PYeag | Xiin)
Yo Yt-l Yt Yt+1

- p(YO"”’Yt | xt+1) p(Yt+1 | Xt+1) p(xt+1)

= p(YO’”"Yt1Yt+1| Xt+1)p(xt+1) = p(YO"“’Yt’YHl’ Xt+1)

(Markov)

10



Proof: Forward-Backward Algorithm

B(X:4)= XZ P(X: | X74)

For t<T -2,

It B( X)) = PN Yo [ Xeap),
(b) ﬂ(xt) = Z p(Xt+1 | Xt)IB(XHl) p(Yt+1 | Xt+1)

Xt+l

= 2 P(Xet [ X)) PVeazoe Yo [ X)) PO | X 1)

Xt+1

= 2 P(Xpa | X)) PVias Yoo Yo [ Xia)

(Markov) X

= 2 P(Vea Yoo Yo Xg | X))

Xt+1

= P(Yes1s Yeo2om o Yo | X))

Q.E.D.

)P [ X:) = p(Ys [ Xqy) o
1

XT-1 XT

YT-1 YT
xt xt+1 xt+2 XT
Yt Yt+1 Yt+2 YT
Xt Xt+1 Xt+2 xT
Yt Yt+1 Yt+2 YT

11



Forward-Backward Algorithm

o The ordinary derivation of o—/f algorithm uses

a(xt) — p(YO,---,Yt, Xt)’ IB(Xt) — p(Yt+1’”°’YT | xt)

as definitions, and derives the update rules by tracing back (a)

and (b).
o Confirm again Xo Xia Ao Au Xy
P(Xy, Yo, Y7) = a(Xy) B(X,)
by
p(Xt’YO’.“’YT) Y0 Yt-l Yt Yt+1 YT

= p(xt) p(Yl"”’YT | Xt)

— p(xt) p(Y 1”'1Yt | Xt) p(Yt+1"”’YT | Xt)
a(X,) B(X,)

12



Forward-Backward Algorithm

o Computational cost of the forward-backward algorithm cost is
O(K?T), which is linear to the sequence length.

o Smoothing, filtering, and prediction are done by the algorithm;

smoothing:
(X, Yy, Y;) = a(X,)B(X,)

;a(xt)ﬂ(xt)

filtering:
a(Xy)=p, Y Xy),

P(Yg: s Y, Xy) _ a(X,)
P(Yo, -+, Y;) ;a(xt)

> p(Xt Y ’”"Yt):

prediction: 2 A xa(Xy)

p(Xt+1|Y ""’Yt):% p(xt+1| Xt)p(xt |Y ”"1Yt): : ;a(xt)

13



Forward-Backward Algorithm

o Prediction and filtering are computed sequentially.

For each time step, the update of o(X,) with the new observation
Y, Is sufficient.

We do not need to access the older variables of Y..

14



Mini-Summary

Belief propagation is applicable to the inference

of HMM
2 HMMis atree - BP is applicable.

o BP for smoothing derives the forward-backward algorithm.

Smoothing for all the hidden variables is done by the
computation of the cost linear in the length.

o BP for prediction and filtering derive sequential (forward) algorithm.

15



Inference on Non-Tree Graphs

16



Methods for Non-tree Graphs

Loopy Belief Propagation

o Application of BP updates to general graphs, though they have
loops.

o An approximation algorithm.

o There is no theoretical guarantee for convergence or correctness.

Junction Tree Algorithm

o Propagation algorithm on the “clique tree”.

o Exactness of the resulting marginals are guaranteed, while the
marginals are obtained only for the cligues.

o Efficiency of the algorithm depends on the clique tree derived from
the original graph.

17



Loopy Belief Propagation

(Murphy, K., Weiss, Y., and Jordan, M. 1999).

ALGORITHM

o The update rule is the same as the BP for trees.

|—>J(X) ZWJl(X X) Hmk—>|(x)

kene(i)\{j}

The order of updates is arbitrary:
an arbitrary ordering, simultaneous updates, etc.

o Repeat the updates until some convergence criterion is satisfied.

o Compute all the (approximated) marginals by

_ b(X3) _
p(Xi)_inb(xi)’ b(xi)_,-ge[(gn“‘(x‘)

18



Loopy Belief Propagation

o There are no theoretical guarantees for convergence or
correctness.

—> Current research issue.

o In many practical examples, loopy BP shows fast convergence
and high accuracy.

Decoding method of error correcting codes (turbo-code)

19



Junction Tree Algorithm

o Basic idea: marginalization by elimination
Example

p(X1’ Xe = €)= Z p(xl) p(xz | Xl) p(xa | Xl)p(X4 | Xz)

X2 X3, X4, X5, Xg

x P(Xg | X5)p(Xg =e] X,, X5)

= ;E(Xl) POX, [ X)P(X5 | Xp) p(Xs | X3); p(Xs=¢€|X,, X5); P(X,4 | X,)

X

= xzx p(Xl) p(xz | X1)p(X3 | Xl)XZ p(X5 | XB)mG(XZ’ X5)

B xz;< p(Xl) p(X2 | Xl) p(X3 | Xl)m5(X2, X3)

= Yw(X. X,,X;) € marginalization is easy
Xy, X5

20



Junction Tree Algorithm

New cliques appears in the process of
successive eliminating variables.

p(xl’ XG :e) = . x ;E(}l) p(xz | Xl) p(X3 | Xl)p(x4 | xz)
x p(X5 | X5) p(Xg =e] X,, X5)

— ;E(Xl) p(xz | Xl)p(x3 | X1) p(X5 | X3); p(Xe =e| le X5); p(X4 | Xz)

X2 31735

marginalizing out 6 connects 2 and 5

3
= 2 P(X)P(X, [ X)P(X5] X )20 p(Xs | X5)Mg (X5, Xs)

Xy, X Xq

marginalizing out 5 connects 2 and 3

1
= 2 P(X)P(X, [ X)) P(Xg [ XM (X5, X3) = S (X, X,, X;)

X5, X5 X5, X5

21



Junction Tree Algorithm

Sketch of JT algorithm
@y

3. Find all the cliques

& &

4. Make a junction tree.

-

5. Propagate messages -
Marginal probabilities of all the
cliques.

22



Moralization

o —@
@

—E

o Moralization: connect parents for each node.
o Make an undirected graph by removing the directions.

o No additional conditional independence relations are suggested
by moralization.

23



Triangulation

chordless (2 = (2) @
(13 ‘@ =) 9“‘@
3—5 (— 5

o Triangulation: make a graph such that there are no loops of length
larger than 3 without chord.

A chord is an edge that connects non-consecutive two nodes in
a loop.

o Triangulation guarantees the running intersection property of the
junction tree.

24



Junction Tree

Find all the cliques

Make a junction tree

a Junction tree
Tree of the cliques 3

Each edge has a separator
(intersection of connected nodes)

o Running intersection property:

e

23

ey &

Eﬁ

if a variable appears in multiple nodes, it must appears in all

intermediate nodes in the tree.

25



Junction Tree Propagation

_ pad)
p(x)—c:gg:{c(xc) @—23 @m @
o Initial potentials

we(X:) given by the product of potentials in C

o Run belief propagation on the junction tree

mA—)B(XAﬁB)
= > walXa) TIMe a(Xcnn) >@; (

X nB CeN(A) Va mA—)B(XAmB) Ve

o After the upward and downward updates, the marginals are given by
P(Xc)=wc(Xe), P(Xs)=4s(Xs).

26



Junction Tree Propagation

Remarks:

o The running intersection property of the junction tree ensures that
the propagation procedure gives marginal-out.

clique tree
b4
23-3-64

Not triangulated Running intersection
does not hold.

o The computational cost of JT depends on the size of cligues.
If the original graph is complete, there is no gain.

27



General Propagation Algorithm

28



General Propagation Algorithm

Distribution law
o Belief propagation = successive marginalization on a tree.

2. P(X) = > F(X, X,)a(X,, X3)h(X3, X,)

X,, X3, X, X, X3, X4

= ; f(Xq, Xz);g(xz’ X3)§, h(X3, Xy)

o The mathematical source of efficiency is simply the distribution law

of sum and product.
" K h, =h(X;=k, X, =/)
Laqh, =a. > . h,, K¢ 3 S :
Zf_l Ik ke ijé_l ke aijk = fg(X1=|,X2 — J,ngk)

Essentially,
ab+ac=a(b+c) distribution law

Sk ab =a(XK b))

2K operations  K+1 operations 29



General Propagation Algorithm

Operations that satisfy distribution law
In general, for two operations o and *, the distribution law is

(a*b)o(axc)=ax(boc)

Sum-product ab+ac=a(b+c) (o =+, *=X)

Max-product (for non-negative values)
max{ab, ac} =amax{b,c} (c =max, *=x)

Max-sum
max{a+b,a+c}=a+max{b,c} (c=max, *=+)

o For each pair of operations, BP-type algorithms are derived.

o BP for max-product is applicable for combinatorial maximization

problems.
30



Mini-Summary

Propagation algorithms for non-tree graphs

o Loopy BP: approximation algorithm
Direct application of the BP update rule for general graphs.

o Junction tree algorithm: exact marginalization for cliques.

Extension of propagation algorithm

o BP-type algorithms are obtained if the two operations satisfy the
distribution law.

e.g. max-product, max-sum

31
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