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Inference on Hidden Markov Model
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Inference on Hidden Markov Model

Review: HMM model

Inference
Compute

Naïve computation requires O(KT) operations, exponential on the 
sequence length.
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Belief Propagation on HMM

BP for undirected tree representation
Clique potentials
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Belief Propagation on HMM
Upward message passing
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Belief Propagation on HMM
Downward message passing
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Belief Propagation on HMM
Marginals
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Forward-Backward Algorithm

Summary 
Forward-backward algorithm (α−β algorithm)

Marginals
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Forward-Backward Algorithm

Meaning of α and β
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Proof: Forward-Backward Algorithm

Proof by induction
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Proof: Forward-Backward Algorithm

For 
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Forward-Backward Algorithm
The ordinary derivation of α−β algorithm uses 

as definitions, and derives the update rules by tracing back (a)
and (b). 

Confirm again 

by 
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Forward-Backward Algorithm
Computational cost of the forward-backward algorithm cost is 
O(K2T), which is linear to the sequence length. 

Smoothing, filtering, and prediction are done by the algorithm;
smoothing:

filtering:

prediction: 
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Forward-Backward Algorithm
Prediction and filtering are computed sequentially.

For each time step, the update of α(Xt) with the new observation 
Yt is sufficient.

We do not need to access the older variables of Ys .
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Mini-Summary

Belief propagation is applicable to the inference 
of HMM

HMM is a tree  BP is applicable.

BP for smoothing derives the forward-backward algorithm.
Smoothing for all the hidden variables is done by the 
computation of the cost linear in the length.

BP for prediction and filtering derive sequential (forward) algorithm.
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Inference on Non-Tree Graphs
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Methods for Non-tree Graphs

Loopy Belief Propagation
Application of BP updates to general graphs, though they have 
loops. 
An approximation algorithm.
There is no theoretical guarantee for convergence or correctness. 

Junction Tree Algorithm
Propagation algorithm on the “clique tree”. 
Exactness of the resulting marginals are guaranteed, while the 
marginals are obtained only for the cliques.
Efficiency of the algorithm depends on the clique tree derived from 
the original graph. 
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Loopy Belief Propagation
(Murphy, K., Weiss, Y., and Jordan, M. 1999).

ALGORITHM

The update rule is the same as the BP for trees.

The order of updates is arbitrary:
an arbitrary ordering, simultaneous updates, etc.

Repeat the updates until some convergence criterion is satisfied. 

Compute all the (approximated) marginals by 
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Loopy Belief Propagation
There are no theoretical guarantees for convergence or 
correctness. 

Current research issue.

In many practical examples, loopy BP shows fast convergence 
and high accuracy.

Decoding method of error correcting codes (turbo-code)
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Junction Tree Algorithm
Basic idea: marginalization by elimination
Example
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Junction Tree Algorithm
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Junction Tree Algorithm
Sketch of JT algorithm

1.  Moralization

2.  Triangulation.

3.  Find all the cliques

4.  Make a junction tree.

5.  Propagate messages 
Marginal probabilities of all the 
cliques.
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Moralization

Moralization: connect parents for each node.
Make an undirected graph by removing the directions. 

No additional conditional independence relations are suggested 
by moralization. 

2

1 6

3 5

4
2

1 6

3 5

4



24

Triangulation

Triangulation: make a graph such that there are no loops of length 
larger than 3 without chord. 

A chord is an edge that connects non-consecutive two nodes in 
a loop. 

Triangulation guarantees the running intersection property of the 
junction tree. 
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Junction Tree

Find all the cliques

Make a junction tree
Junction tree

Tree of the cliques
Each edge has a separator
(intersection of connected nodes)

Running intersection property:
if a variable appears in multiple nodes, it must appears in all 
intermediate nodes in the tree. 
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Junction Tree Propagation

Initial potentials

Run belief propagation on the junction tree

After the upward and downward updates, the marginals are given by
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Junction Tree Propagation
Remarks:

The running intersection property of the junction tree ensures that 
the propagation procedure gives marginal-out.

The computational cost of JT depends on the size of cliques.
If the original graph is complete, there is no gain.
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General Propagation Algorithm
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General Propagation Algorithm

Distribution law
Belief propagation = successive marginalization on a tree.

The mathematical source of efficiency is simply the distribution law
of sum and product.

Essentially,
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General Propagation Algorithm

Operations that satisfy distribution law
In general, for two operations    and    , the distribution law is

Sum-product

Max-product (for non-negative values)

Max-sum

For each pair of operations, BP-type algorithms are derived. 
BP for max-product is applicable for combinatorial maximization 
problems.
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Mini-Summary

Propagation algorithms for non-tree graphs
Loopy BP: approximation algorithm
Direct application of the BP update rule for general graphs.

Junction tree algorithm:  exact marginalization for cliques.

Extension of propagation algorithm
BP-type algorithms are obtained if the two operations satisfy the 
distribution law.
e.g. max-product, max-sum
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