# Inference with Graphical ModelsPropagation Algorithms (2)

Kenji Fukumizu

The Institute of Statistical Mathematics

Computational Methodology in Statistical Inference II

#### Inference on Hidden Markov Model

#### Inference on Hidden Markov Model

#### Review: HMM model

$$p(X,Y) = p(X_0)p(Y_0 \mid X_0) \prod_{t=1}^T p(X_t \mid X_{t-1})p(Y_t \mid X_t)$$

$$X_t: \text{ hidden state, finite}$$

$$X_t : \text{ hidden state, finite}$$

#### Inference

Compute

$$p(X_t | Y_1,...,Y_T)$$
 for any  $t$ 

Naïve computation requires  $O(K^T)$  operations, exponential on the sequence length.

K: number of hidden states

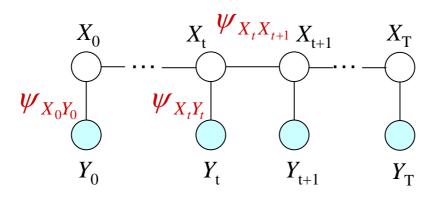
- BP for undirected tree representation
  - Clique potentials

$$\psi_{X_{0}Y_{0}}(X_{0}, Y_{0}) = p(X_{0})p(Y_{0} | X_{0}) = p(X_{0}, Y_{0})$$

$$\psi_{X_{t}Y_{t}}(X_{t}, Y_{t}) = p(Y_{t} | X_{t}) \qquad (1 \le t \le T)$$

$$\psi_{X_{t-1}X_{t}}(X_{t-1}, X_{t}) = p(X_{t} | X_{t-1}) \qquad (1 \le t \le T)$$

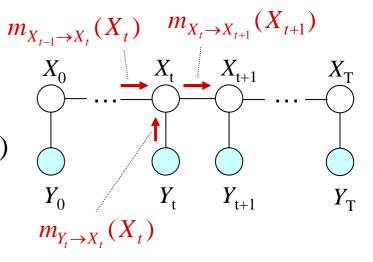
$$p(X, Y) = \psi_{X_{0}Y_{0}}(X_{0}, Y_{0}) \prod_{t=1}^{T} \psi_{X_{t-1}X_{t}}(X_{t-1}, X_{t}) \psi_{X_{t}Y_{t}}(X_{t}, Y_{t})$$



Upward message passing

$$m_{X_{t} \to X_{t+1}}(X_{t+1}) = \sum_{X_{t}} \psi_{X_{t}X_{t+1}}(X_{t}, X_{t+1}) \times m_{X_{t-1} \to X_{t}}(X_{t}) m_{Y_{t} \to X_{t}}(X_{t})$$

$$m_{Y_t \to X_t}(X_t) = p(Y_t \mid X_t)$$
 ( $Y_t$  is given.)





$$m_{X_{t} \to X_{t+1}}(X_{t+1}) = \sum_{X_{t}} p(X_{t+1} \mid X_{t}) m_{X_{t-1} \to X_{t}}(X_{t}) p(Y_{t} \mid X_{t})$$

$$= \sum_{X_{t}} A_{X_{t}, X_{t+1}} m_{X_{t-1} \to X_{t}}(X_{t}) p(Y_{t} \mid X_{t})$$

$$\alpha(X_{t})$$
(A: transition matrix)



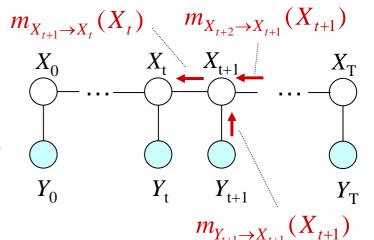
$$\alpha(X_{t+1}) = \sum_{X_t} A_{X_t, X_{t+1}} \alpha(X_t) p(Y_{t+1} \mid X_{t+1})$$
 update rule

Downward message passing

$$m_{X_{t+1} \to X_t}(X_t) = \sum_{X_{t+1}} \psi_{X_t X_{t+1}}(X_t, X_{t+1})$$

$$\times m_{X_{t+2} \to X_{t+1}}(X_{t+1}) m_{Y_{t+1} \to X_{t+1}}(X_{t+1})$$

$$(X_t, X_{t+1}) = \sum_{X_{t+1}} \psi_{X_t X_{t+1}}(X_t, X_{t+1})$$





$$\begin{split} m_{X_{t+1} \to X_t}(X_t) &= \sum_{X_{t+1}} p(X_{t+1} \mid X_t) m_{X_{t+2} \to X_{t+1}}(X_{t+1}) p(Y_{t+1} \mid X_{t+1}) \\ &= \sum_{X_{t+1}} A_{X_t, X_{t+1}} m_{X_{t+2} \to X_{t+1}}(X_{t+1}) p(Y_{t+1} \mid X_{t+1}) \\ \beta(X_t) &\equiv m_{X_{t+1} \to X_t}(X_t) \end{split}$$



$$\beta(X_t) = \sum_{X_{t+1}} A_{X_t, X_{t+1}} \beta(X_{t+1}) p(Y_{t+1} \mid X_{t+1}) \quad \text{update rule}$$

Marginals

$$p(X_{t}, Y_{0}, \dots, Y_{T}) = m_{Y_{t} \to X_{t}}(X_{t}) m_{X_{t-1} \to X_{t}}(X_{t}) m_{X_{t+1} \to X_{t}}(X_{t})$$

$$= p(Y_{t} \mid X_{t}) m_{X_{t-1} \to X_{t}}(X_{t}) m_{X_{t+1} \to X_{t}}(X_{t})$$

$$\alpha(X_{t}) \beta(X_{t})$$



$$p(X_t, Y_0, \dots, Y_T) = \alpha(X_t) \beta(X_t)$$
 (Y's are given.)

Hence,

$$p(Y_0,\dots,Y_T) = \sum_{X_t} \alpha(X_t) \beta(X_t)$$

and

$$p(X_t | Y_0, \dots, Y_T) = \frac{\alpha(X_t)\beta(X_t)}{\sum_{X_t} \alpha(X_t)\beta(X_t)}$$

#### Summary

 $\Box$  Forward-backward algorithm ( $\alpha$ – $\beta$  algorithm)

$$\alpha(X_{t+1}) = \sum_{X_t} A_{X_t, X_{t+1}} \alpha(X_t) p(Y_{t+1} | X_{t+1})$$

$$\beta(X_t) = \sum_{X_{t+1}} A_{X_t, X_{t+1}} \beta(X_{t+1}) p(Y_{t+1} | X_{t+1})$$

$$\alpha(X_0) = p(X_0, Y_0), \quad \beta(X_T) = 1$$

Marginals

$$p(X_{t}, Y_{0}, \dots, Y_{T}) = \alpha(X_{t})\beta(X_{t})$$

$$p(Y_{0}, \dots, Y_{T}) = \sum_{X_{t}} \alpha(X_{t})\beta(X_{t}) - \text{likelihood of } Y \text{ (any } t)$$

$$p(X_{t} | Y_{0}, \dots, Y_{T}) = \frac{\alpha(X_{t})\beta(X_{t})}{\sum_{T} \alpha(X_{t})\beta(X_{t})} - \text{smoothing}$$

Meaning of  $\alpha$  and  $\beta$ 

$$\alpha(X_t) = p(Y_0, \dots, Y_t, X_t) \qquad (0 \le t \le T)$$

$$\beta(X_t) = p(Y_{t+1}, \dots, Y_T \mid X_t)$$
  $(0 \le t \le T - 1)$ 

#### Proof: Forward-Backward Algorithm

#### Proof by induction

$$\alpha(X_0) = p(X_0, Y_0)$$
 by definition.

Suppose 
$$\alpha(X_t) = p(Y_0, \dots, Y_t, X_t),$$

$$X_{0}$$
  $X_{t-1}$   $X_{t}$   $X_{t+1}$   $X_{T}$   $X_{T}$   $X_{T}$   $Y_{0}$   $Y_{t-1}$   $Y_{t}$   $Y_{t+1}$   $Y_{T}$ 

(a) 
$$\alpha(X_{t+1}) = \sum_{X_t} p(X_{t+1} | X_t) \alpha(X_t) p(Y_{t+1} | X_{t+1})$$

$$= \sum_{X_t} p(X_{t+1} | X_t) p(Y_0, \dots, Y_t | X_t) p(X_t) p(Y_{t+1} | X_{t+1})$$
(Markov) 
$$= \sum_{X_t} p(Y_0, \dots, Y_t, X_{t+1} | X_t) p(X_t) p(Y_{t+1} | X_{t+1})$$

$$= p(Y_0, \dots, Y_t, X_{t+1}) p(Y_{t+1} | X_{t+1})$$

$$= p(Y_0, \dots, Y_t | X_{t+1}) p(Y_{t+1} | X_{t+1}) p(X_{t+1})$$

$$X_0$$
 $X_{t-1}$ 
 $X_t$ 
 $X_{t+1}$ 
 $Y_0$ 
 $Y_{t-1}$ 
 $Y_t$ 
 $Y_{t+1}$ 

(Markov)  
= 
$$p(Y_0, \dots, Y_t, Y_{t+1} | X_{t+1}) p(X_{t+1}) = p(Y_0, \dots, Y_t, Y_{t+1}, X_{t+1})$$

#### Proof: Forward-Backward Algorithm

$$\beta(X_{T-1}) = \sum_{X_T} p(X_T \mid X_{T-1}) \underline{\beta(X_T)} p(Y_T \mid X_T) = p(Y_T \mid X_{T-1})$$
For  $t \le T - 2$ ,

If  $\beta(X_{t+1}) = p(Y_{t+2}, \dots, Y_T \mid X_{t+1})$ ,

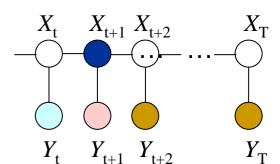
(b)  $\beta(X_t) = \sum_{X_{t+1}} p(X_{t+1} \mid X_t) \beta(X_{t+1}) p(Y_{t+1} \mid X_{t+1})$ 

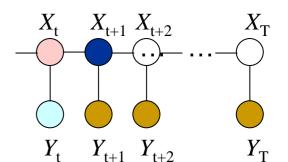
$$= \sum_{X_{t+1}} p(X_{t+1} \mid X_t) \underline{p(Y_{t+2}, \dots, Y_T \mid X_{t+1})} p(Y_{t+1} \mid X_{t+1})$$
(Markov)
$$= \sum_{X_{t+1}} \underline{p(X_{t+1} \mid X_t)} \underline{p(Y_{t+1}, Y_{t+2}, \dots, Y_T \mid X_{t+1})}$$

$$= \sum_{X_{t+1}} \underline{p(Y_{t+1}, Y_{t+2}, \dots, Y_T, X_{t+1} \mid X_t)}$$

$$= p(Y_{t+1}, Y_{t+2}, \dots, Y_T \mid X_t)$$
Q.E.D.

$$- \underbrace{ \begin{array}{c} X_{\text{T-1}} X_{\text{T}} \\ \\ Y_{\text{T-1}} Y_{\text{T}} \end{array}}_{X_{\text{T}}}$$





f The ordinary derivation of lpha-eta algorithm uses

$$\alpha(X_t) = p(Y_0, \dots, Y_t, X_t), \qquad \beta(X_t) = p(Y_{t+1}, \dots, Y_T \mid X_t)$$

as definitions, and derives the update rules by tracing back (a) and (b).

Confirm again

$$p(X_t, Y_0, \dots, Y_T) = \alpha(X_t)\beta(X_t)$$
by
$$p(X_t, Y_0, \dots, Y_T)$$

$$= p(X_t)p(Y_1, \dots, Y_T \mid X_t)$$

$$= p(X_t)p(Y_1, \dots, Y_t \mid X_t)p(Y_{t+1}, \dots, Y_T \mid X_t)$$

$$\frac{\alpha(X_t)}{\beta(X_t)}$$

$$Y_0$$
 $Y_{t-1}$ 
 $Y_t$ 
 $Y_t$ 
 $Y_{t+1}$ 
 $Y_t$ 
 $Y_{t+1}$ 
 $Y_t$ 

- □ Computational cost of the forward-backward algorithm cost is  $O(K^2T)$ , which is linear to the sequence length.
- Smoothing, filtering, and prediction are done by the algorithm;
  - smoothing:

$$p(X_t | Y_0, \dots, Y_T) = \frac{\alpha(X_t)\beta(X_t)}{\sum_{X_t} \alpha(X_t)\beta(X_t)}$$

filtering:

$$\alpha(X_t) = p(Y_0, \dots, Y_t, X_t),$$

prediction:

$$p(X_{t+1} | Y_0, \dots, Y_t) = \sum_{X_t} p(X_{t+1} | X_t) p(X_t | Y_0, \dots, Y_t) = \frac{\sum_{X_t} A_{X_t, X_{t+1}} \alpha(X_t)}{\sum_{X_t} \alpha(X_t)}$$

Prediction and filtering are computed sequentially.

For each time step, the update of  $\alpha(X_t)$  with the new observation  $Y_t$  is sufficient.

We do not need to access the older variables of  $Y_s$ .

#### Mini-Summary

- Belief propagation is applicable to the inference of HMM
  - □ HMM is a tree → BP is applicable.
  - BP for smoothing derives the forward-backward algorithm.
    - Smoothing for all the hidden variables is done by the computation of the cost linear in the length.
  - BP for prediction and filtering derive sequential (forward) algorithm.

## Inference on Non-Tree Graphs

#### Methods for Non-tree Graphs

#### Loopy Belief Propagation

- Application of BP updates to general graphs, though they have loops.
- An approximation algorithm.
- There is no theoretical guarantee for convergence or correctness.

#### Junction Tree Algorithm

- Propagation algorithm on the "clique tree".
- Exactness of the resulting marginals are guaranteed, while the marginals are obtained only for the cliques.
- Efficiency of the algorithm depends on the clique tree derived from the original graph.

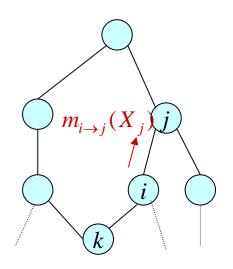
## Loopy Belief Propagation

(Murphy, K., Weiss, Y., and Jordan, M. 1999).

#### **ALGORITHM**

The update rule is the same as the BP for trees.

$$m_{i \to j}(X_j) = \sum_{X_i} \psi_{ji}(X_j, X_i) \prod_{k \in ne(i) \setminus \{j\}} m_{k \to i}(X_i)$$



- The order of updates is arbitrary:
   an arbitrary ordering, simultaneous updates, etc.
- Repeat the updates until some convergence criterion is satisfied.
- Compute all the (approximated) marginals by

$$p(X_i) = \frac{b(X_i)}{\sum_{X_i} b(X_i)}, \qquad b(X_i) = \prod_{j \in ne(i)} m_{j \to i}(X_i)$$

### Loopy Belief Propagation

- There are no theoretical guarantees for convergence or correctness.
  - → Current research issue.
- In many practical examples, loopy BP shows fast convergence and high accuracy.
  - Decoding method of error correcting codes (turbo-code)

## Junction Tree Algorithm

Basic idea: marginalization by elimination
 Example

$$p(X_{1}, X_{6} = e) = \sum_{X_{2}, X_{3}, X_{4}, X_{5}, X_{6}} p(X_{1}) p(X_{2} | X_{1}) p(X_{3} | X_{1}) p(X_{4} | X_{2})$$

$$\times p(X_{5} | X_{3}) p(X_{6} = e | X_{2}, X_{5})$$

$$= \sum_{X_{2}, X_{3}, X_{5}} p(X_{1}) p(X_{2} | X_{1}) p(X_{3} | X_{1}) p(X_{5} | X_{3}) \sum_{X_{6}} p(X_{6} = e | X_{2}, X_{5}) \sum_{X_{4}} p(X_{4} | X_{2})$$

$$= \sum_{X_{2}, X_{3}} p(X_{1}) p(X_{2} | X_{1}) p(X_{3} | X_{1}) \sum_{X_{5}} p(X_{5} | X_{3}) m_{6}(X_{2}, X_{5})$$

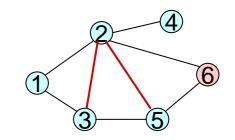
$$= \sum_{X_{2}, X_{3}} p(X_{1}) p(X_{2} | X_{1}) p(X_{3} | X_{1}) m_{5}(X_{2}, X_{3})$$

$$= \sum_{X_{2}, X_{3}} p(X_{1}) p(X_{2} | X_{1}) p(X_{3} | X_{1}) m_{5}(X_{2}, X_{3})$$

$$= \sum_{X_{2}, X_{3}} p(X_{1}, X_{2}, X_{3}) \qquad \longleftarrow \text{ marginalization is easy}$$

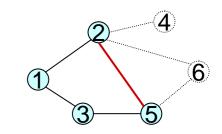
## Junction Tree Algorithm

New cliques appears in the process of successive eliminating variables.



$$p(X_1, X_6 = e) = \sum_{X_2, X_3, X_4, X_5, X_6} p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1) p(X_4 \mid X_2)$$

$$\times p(X_5 \mid X_3) p(X_6 = e \mid X_2, X_5)$$

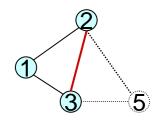


$$= \sum_{X_2, X_3, X_5} p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1) p(X_5 \mid X_3) \sum_{X_6} p(X_6 = e \mid X_2, X_5) \sum_{X_4} p(X_4 \mid X_2)$$

marginalizing out 6 connects 2 and 5



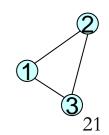
$$= \sum_{X_2,X_3} p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1) \sum_{X_5} p(X_5 \mid X_3) \underline{m_6(X_2,X_5)}$$



marginalizing out 5 connects 2 and 3

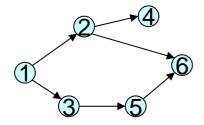


$$= \sum_{X_2,X_3} p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1) \underline{m_5(X_2,X_3)} = \sum_{X_2,X_3} \psi(X_1,X_2,X_3)$$

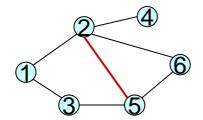


## Junction Tree Algorithm

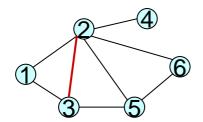
Sketch of JT algorithm



1. Moralization



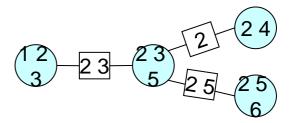
2. Triangulation.



3. Find all the cliques

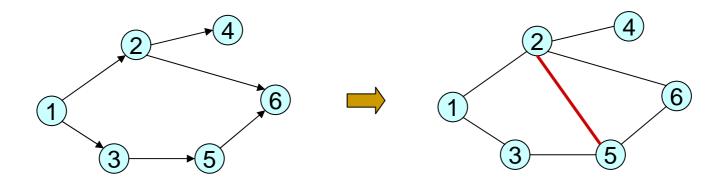


4. Make a junction tree.



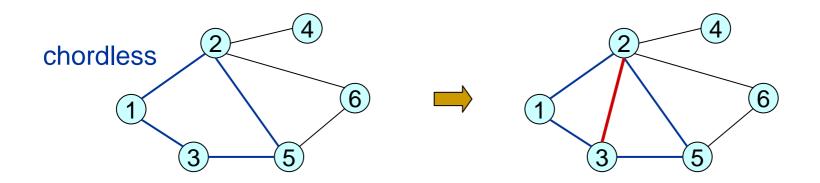
 Propagate messages →
 Marginal probabilities of all the cliques.

#### Moralization



- Moralization: connect parents for each node.
- Make an undirected graph by removing the directions.
- No additional conditional independence relations are suggested by moralization.

## Triangulation



- Triangulation: make a graph such that there are no loops of length larger than 3 without chord.
  - A chord is an edge that connects non-consecutive two nodes in a loop.
- Triangulation guarantees the running intersection property of the junction tree.

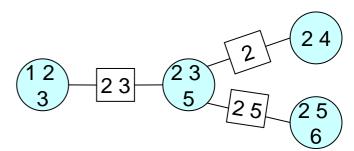
#### Junction Tree

Find all the cliques



- Make a junction tree
  - Junction tree
    - Tree of the cliques
    - Each edge has a separator (intersection of connected nodes)
  - Running intersection property:

if a variable appears in multiple nodes, it must appears in all intermediate nodes in the tree.



# Junction Tree Propagation

$$p(X) = \prod_{C: \text{ clique}} \psi_C(X_C)$$

$$\frac{12}{3} = 23$$

$$\frac{23}{5} = 25$$

Initial potentials

$$\psi_{\mathcal{C}}(X_{\mathcal{C}})$$
 given by the product of potentials in C

Run belief propagation on the junction tree

$$\begin{split} m_{A \to B}(X_{A \cap B}) & & \\ &= \sum_{X_{A \setminus B}} \psi_A(X_A) \prod_{C \in N(A)} m_{C \to A}(X_{C \cap A}) & & \psi_A & \\ & & \psi_A & \\ & & m_{A \to B}(X_{A \cap B}) & \psi_B & \end{split}$$

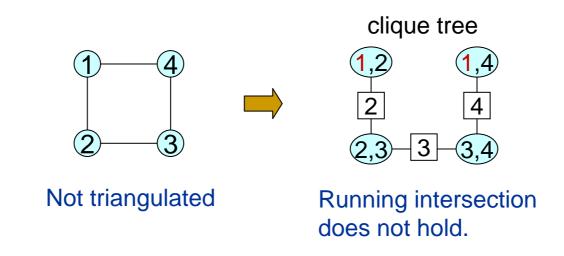
After the upward and downward updates, the marginals are given by

$$p(X_C) = \psi_C(X_C), \quad p(X_S) = \phi_S(X_S).$$

## Junction Tree Propagation

#### Remarks:

 The running intersection property of the junction tree ensures that the propagation procedure gives marginal-out.



The computational cost of JT depends on the size of cliques.
 If the original graph is complete, there is no gain.

# General Propagation Algorithm

## General Propagation Algorithm

#### Distribution law

Belief propagation = successive marginalization on a tree.

$$\sum_{X_2, X_3, X_4} p(X) = \sum_{X_2, X_3, X_4} f(X_1, X_2) g(X_2, X_3) h(X_3, X_4)$$

$$= \sum_{X_2} f(X_1, X_2) \sum_{X_3} g(X_2, X_3) \sum_{X_4} h(X_3, X_4)$$

The mathematical source of efficiency is simply the distribution law of sum and product.

$$\sum_{\ell=1}^K a_{ijk} h_{k\ell} = a_{ijk} \sum_{\ell=1}^K h_{k\ell},$$

$$h_{k\ell} := h(X_3 = k, X_4 = \ell)$$
  
 $a_{ijk} := fg(X_1 = i, X_2 = j, X_3 = k)$ 

Essentially,

$$ab + ac = a(b + c)$$
 distribution law 
$$\sum_{i=1}^{K} ab_i = a\left(\sum_{i=1}^{K} b_i\right)$$

2K operations K+1 operations

#### General Propagation Algorithm

Operations that satisfy distribution law

In general, for two operations o and \*, the distribution law is

$$(a*b)\circ(a*c)=a*(b\circ c)$$

Sum-product ab + ac = a(b+c)  $(\circ = +, *=\times)$ 

Max-product (for non-negative values)

$$\max\{ab, ac\} = a \max\{b, c\} \qquad (\circ = \max, * = \times)$$

Max-sum

$$\max\{a+b, a+c\} = a + \max\{b, c\}$$
  $(\circ = \max, *=+)$ 

- For each pair of operations, BP-type algorithms are derived.
- BP for max-product is applicable for combinatorial maximization problems.

#### Mini-Summary

#### Propagation algorithms for non-tree graphs

- Loopy BP: approximation algorithm
   Direct application of the BP update rule for general graphs.
- Junction tree algorithm: exact marginalization for cliques.

#### Extension of propagation algorithm

- BP-type algorithms are obtained if the two operations satisfy the distribution law.
  - e.g. max-product, max-sum