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Inference with Graphical Model

Assumption in this part
Every variable takes values in a finite set. 

Probabilistic Inference

Example: diagnosis for car start

)|( XYp X: observed (evidence)
Y: variable for inference

Fuel?
(yes/no)

Start?
(yes/no)

Clean plug?
(yes/no)

Fuel Meter
(full/half/empty)

P(Clean plug = no | No start, Fuel meter = half)
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Inference with Graphical Model

Probabilistic inference with graphical model
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Given a value of X6 = e, compute the probability of X1
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Inference with Graphical Model
Assume each variable takes K values

Naïve method

In total:  K5 + 2K operations are needed.
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Inference with Graphical Model
Efficient method: 

Elimination or successive marginalization

In total: K3 (+ K) + K3 + K2 + 2K operations are needed. 
The efficiency depends on the number of variables in the factors. 
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Tree
The previous elimination method works most efficiently for trees. 

Tree: a (directed or undirected) graph such that for any two
nodes there is a unique (undirected) path connecting them. 

Tree is connected, and has no loop.

|E| = |V|-1

undirected tree directed tree
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Inference with Undirected Tree
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Inference with Undirected Tree

Propagation in a tree
Marginalization in an undirected tree
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Inference with Undirected Tree
Propagate messages from the bottom nodes to an upper level. 

When all the messages are propagated to i0, 
the marginal of        is given by
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Note: normalization factor 1/Z in the joint probability is not needed.
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Inference with Undirected Tree

Computation of all the marginals
We DO NOT need to repeat the process for every node.
Propagate the messages downward
after the upward propagations are done.

When all the upward and downward 
messages are computed, every marginal
can be obtained. 
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i0)(
000 jji Xm →
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Belief Propagation for Undirected Tree

Belief propagation algorithm for undirected tree
(sum-product algorithm)

(1) Fix a root of the tree
(2) [Upward] Propagate the messages from to bottom nodes to the

root according to

(3) [Downward] Propagate the messages 
from the root to the bottom nodes by the same rule.

(4) The marginals are obtained by 
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Belief Propagation for Undirected Tree

Message passing protocol
The order of updates may be different, but should keep the 
following message passing protocol:

“The message to a node must be propagated after the 
messages from all the other neighbors are received”.  

Efficient algorithm
Reuse of messages to compute all the marginals.
The cost for computing all the marginals

=  (Upward + Downward) x K2 = 2|E| x K2 = 2(|V|-1) x K2

Linear in the number of nodes or edges

Use of evidence
If some nodes have evidence, just fix the values in computing the 
messages. 
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Inference with Factor Tree
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Factor Tree
Factor tree: tree as a bipartite graph

An undirected graph, which is not a tree, may be represented by 
a factor tree.       {factor tree}      {undirected tree}
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Marginalization for Factor tree

Example
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Belief Propagation for Factor Tree
Propagate messages from the bottom nodes to an upper level.
Separate the ‘sum’ process and ‘product’ process. 

Message from a factor node to a variable node:

Message from a variable node to a factor node:
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N(i) : the factor nodes connected to the variable node i
N(a) : the variable nodes connected to the factor node a
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Belief Propagation for Factor Tree

Belief propagation algorithm for factor tree
(1) Fix a root variable node of the tree
(2) [Upward] Propagate the messages from bottom nodes to the root.

Factor to variable:

Variable to factor

(3) [Downward] Propagate the messages from the root to the bottom
nodes by the same rules.

(4) The marginals are obtained by 
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Belief Propagation for Factor Tree

Message passing protocol
The order of updates may be different, but should keep the 
following message passing protocol:

“The message to a node must be propagated after the 
messages from all the other neighbors are received”.  

Efficient algorithm
Reuse of messages to compute all the marginals.
The computational cost  =  2|E| x Km = 2(|V|-1) x Km

m = max #(variables in a factor)
Linear in the number of nodes or edges.

Use of evidence
If some nodes have evidence, just fix the values in computing the 
messages. 
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Inference with Directed Tree
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Factor Tree Representation

Directed tree to factor tree
A directed tree (polytree) can be converted to a factor tree
Example

Note: in the factor tree representation, each factor node is connected 
to a unique child node, since the factor is of the form p(Xi | Xpa(i)). 
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Belief Propagation for Directed Tree

Belief propagation for directed tree
BP in the factor tree representation
Factor nodes can be indexed by the corresponding child nodes. 

Parent to child ( variable to factor)

Child to parent ( factor to variable)
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Belief Propagation for Directed Tree
Parent to child
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Belief Propagation for Directed Tree
Child to parent nj
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Belief Propagation for Directed Tree

πλ-algorithm (Kim & Pearl 1983)
Parent to child:

Child to parent:

Marginal:

πλ-algorithm is the first general belief propagation algorithm.
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Mini Summary

Belief propagation / sum-product algorithm
All the marginals are exactly calculated for trees.

Undirected tree, factor tree, polytree.
Non-tree cases will be discussed later. 

The computational cost is linear w.r.t. the tree size (number of 
variables).

Basic idea is successive marginal-out, but the messages are 
reused to compute all the marginals. 
Messages are passed upward and then downward.
In general, the order of the message passing should keep the 
message passing protocol. 

The equations of message passing is local: 
product of the messages from the neighbors and sum over local 

variables. 



26

Mini Summary
Constant factor is not necessary.
To given the joint probability density, the form

is sufficient to apply the belief propagation.
Just normalize after the unnormalized marginal is computed.  

Normalization factor can be computed by belief propagation.
For 

Normalization factor Z is given by marginal-out:
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