Inference with Graphical Models – Propagation Algorithms

Kenji Fukumizu The Institute of Statistical Mathematics

Computational Methodology in Statistical Inference II

Assumption in this part

Every variable takes values in a finite set.

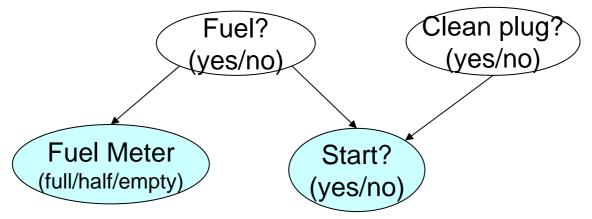
Probabilistic Inference

 $p(Y \mid X)$

X: observed (evidence)

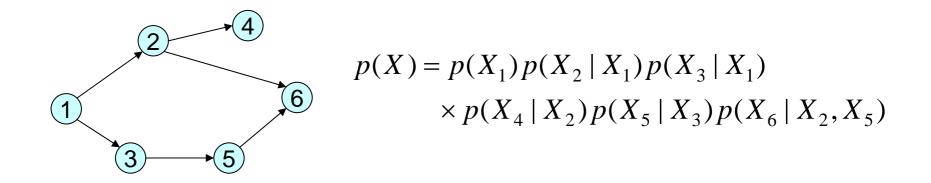
Y: variable for inference

• Example: diagnosis for car start



P(Clean plug = no | No start, Fuel meter = half)

Probabilistic inference with graphical model



Given a value of $X_6 = e$, compute the probability of X_1

$$p(X_1 | X_6 = e) = \frac{p(X_1, X_6 = e)}{p(X_6 = e)}$$

Assume each variable takes K values

Naïve method

$$\begin{split} p(X_1, X_6 = e) &= \sum_{X_2} \sum_{X_3} \sum_{X_4} \sum_{X_5} p(X_1, X_2, X_3, X_4, X_5, X_6 = e) \\ & (\text{K}^5 \text{ operations}) \\ p(X_6 = e) &= \sum_{X_1} p(X_1, X_6 = e) \\ p(X_1 \mid X_6 = e) &= \frac{p(X_1, X_6 = e)}{p(X_6 = e)} \end{split}$$
 (K operations)

In total: $K^5 + 2K$ operations are needed.

• Efficient method:

Elimination or successive marginalization

$$p(X_1, X_6 = e) = \sum_{X_2, X_3, X_4, X_5} p(X_1) p(X_2 \mid X_1) p(X_3 \mid X_1) p(X_4 \mid X_2) \times p(X_5 \mid X_3) p(X_6 = e \mid X_2, X_5)$$

$$= p(X_1)\sum_{X_2} p(X_2 \mid X_1) \sum_{X_3} p(X_3 \mid X_1) \sum_{X_4} p(X_4 \mid X_2) \sum_{X_5} p(X_5 \mid X_3) p(X_6 = e \mid X_2, X_5)$$

$$= p(X_1)\sum_{X_2} p(X_2 \mid X_1) \sum_{X_3} p(X_3 \mid X_1) m_5(X_2, X_3, X_6 = e) \sum_{X_4} p(X_4 \mid X_2)$$

$$= p(X_1)\sum_{X_2} p(X_2 \mid X_1) \sum_{X_3} p(X_3 \mid X_1) m_5(X_2, X_3, X_6 = e)$$

$$= p(X_1)\sum_{X_2} p(X_2 \mid X_1) m_3(X_1, X_2, X_6 = e)$$

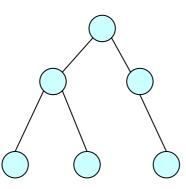
In total: $K^3 (+ K) + K^3 + K^2 + 2K$ operations are needed.

The efficiency depends on the number of variables in the factors.⁵

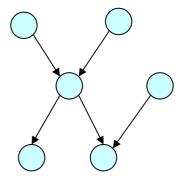
Tree

The previous elimination method works most efficiently for trees.

 Tree: a (directed or undirected) graph such that for any two nodes there is a unique (undirected) path connecting them.
 Tree is connected, and has no loop.



undirected tree



directed tree

□ |E| = |V|-1

Propagation in a tree

Marginalization in an undirected tree

$$p(X_1) = \frac{1}{Z} \sum_{X_2, X_3, X_4, X_5, X_6} \psi_{12}(X_1, X_2) \psi_{13}(X_1, X_3) \psi_{24}(X_2, X_4) \\ \times \psi_{35}(X_3, X_5) \psi_{36}(X_3, X_6)$$

$$= \frac{1}{Z} \sum_{X_{2}} \psi_{12}(X_{1}, X_{2}) \sum_{X_{3}} \psi_{13}(X_{1}, X_{3}) \sum_{X_{4}} \psi_{24}(X_{2}, X_{4}) \sum_{X_{5}} \psi_{35}(X_{3}, X_{5}) \sum_{X_{6}} \psi_{36}(X_{3}, X_{6}) \sum_{M_{42}(X_{2})} w_{35}(X_{3}, X_{5}) \sum_{X_{6}} \psi_{36}(X_{3}, X_{6}) \sum_{M_{42}(X_{2})} w_{12}(X_{1}, X_{2}) \sum_{X_{3}} \psi_{13}(X_{1}, X_{3}) m_{42}(X_{2}) m_{53}(X_{3}) m_{63}(X_{3})$$

$$= \frac{1}{Z} \sum_{X_{2}} \psi_{12}(X_{1}, X_{2}) m_{42}(X_{2}) \sum_{X_{3}} \psi_{13}(X_{1}, X_{3}) m_{53}(X_{3}) m_{63}(X_{3}) \sum_{M_{21}(X_{1})} w_{13}(X_{1}, X_{3}) m_{53}(X_{3}) m_{63}(X_{3})$$

$$= \frac{1}{Z} m_{21}(X_{1}) m_{31}(X_{1}) m_{3$$

Propagate messages from the bottom nodes to an upper level.

$$m_{i \to j}(X_j) = \sum_{X_i} \psi_{ji}(X_j, X_i) \prod_{k \in ne(i) \setminus \{j\}} m_{k \to i}(X_i)$$

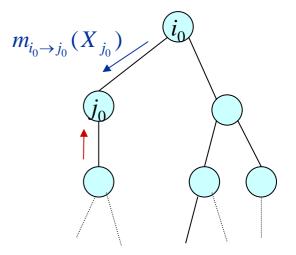
K² operations

When all the messages are propagated to i_0 , the marginal of X_{i_0} is given by

$$p(X_{i_0}) = \frac{b(X_{i_0})}{\sum_{X_{i_0}} b(X_{i_0})}, \qquad b(X_{i_0}) = \prod_{j \in ne(i_0)} m_{j \to i_0}(X_{i_0})$$

Note: normalization factor 1/Z in the joint probability is not needed.

- Computation of all the marginals
 - □ We DO NOT need to repeat the process for every node.
 - Propagate the messages downward after the upward propagations are done.
 - When all the upward and downward messages are computed, every marginal can be obtained.



- Belief propagation algorithm for undirected tree (sum-product algorithm)
 - (1) Fix a root of the tree

(2) [Upward] Propagate the messages from to bottom nodes to the root according to

$$m_{i \to j}(X_j) = \sum_{X_i} \psi_{ji}(X_j, X_i) \prod_{k \in ne(i) \setminus \{j\}} m_{k \to i}(X_i)$$

(3) [Downward] Propagate the messages from the root to the bottom nodes by the same rule.(4) The marginals are obtained by

$$p(X_i) = \frac{b(X_i)}{\sum_{X_i} b(X_i)}, \qquad b(X_i) = \prod_{j \in ne(i)} m_{j \to i}(X_i)$$

$$(b(X_i): \text{ belief })$$

k

Message passing protocol

The order of updates may be different, but should keep the following message passing protocol:

"The message to a node must be propagated after the messages from all the other neighbors are received".

Efficient algorithm

- Reuse of messages to compute all the marginals.
- The cost for computing all the marginals

= (Upward + Downward) x $K^2 = 2|E| \times K^2 = 2(|V|-1) \times K^2$

Linear in the number of nodes or edges

Use of evidence

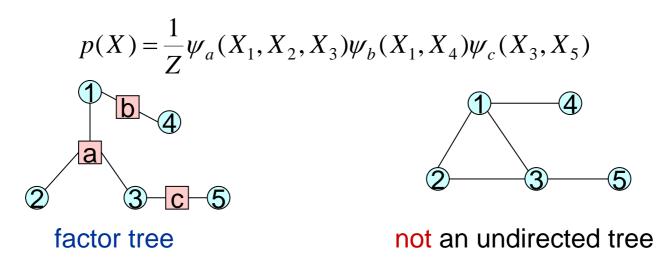
If some nodes have evidence, just fix the values in computing the messages. 12

Inference with Factor Tree

Factor Tree

□ Factor tree: tree as a bipartite graph

$$p(X) = \frac{1}{Z} \psi_a(X_1, X_2) \psi_b(X_1, X_3) \psi_c(X_3, X_4) \\ \times \psi_d(X_3, X_5) \\ \times \psi_d(X_3, X_5)$$



Marginalization for Factor tree eExample $p(X) = \frac{1}{7} f_e(X_1) f_a(X_1, X_2, X_3) f_b(X_2, X_4) f_c(X_3, X_5) f_d(X_3, X_6)$ $p(X_1) = \frac{1}{Z} \sum_{X_2, X_3, X_4, X_5, X_6} f_e(X_1) f_a(X_1, X_2, X_3) f_b(X_2, X_4) f_c(X_3, X_5) f_d(X_3, X_6)$ $= \frac{1}{Z} \sum_{X_2, X_3, X_4, X_5, X_6} \frac{m_{b \to 2}(X_2)}{\sum_{X_4} f_e(X_1) f_a(X_1, X_2, X_3)} \sum_{X_4} \frac{m_{b \to 2}(X_2)}{\sum_{X_5} f_c(X_3, X_5)} \sum_{X_6} \frac{m_{d \to 3}(X_3)}{\sum_{X_6} f_d(X_3, X_6)}$ $= \frac{1}{Z} \sum_{X_2, X_3} f_e(X_1) f_a(X_1, X_2, X_3) \underbrace{m_{b \to 2}(X_2)}_{\mu_{2 \to a}(X_2)} \underbrace{m_{c \to 3}(X_3) m_{d \to 3}(X_3)}_{\mu_{2 \to a}(X_2)}$ $= \frac{1}{Z} \frac{m_{e \to 1}(X_1)}{\int_{X_2, X_3}} \sum_{X_2, X_3} f_a(X_1, X_2, X_3) \mu_{2 \to a}(X_2) \mu_{3 \to a}(X_3) m_{a \to 1}(X_1)$ $=\frac{1}{7}m_{e\to 1}(X_1)m_{a\to 1}(X_1)$

Belief Propagation for Factor Tree

Propagate messages from the bottom nodes to an upper level. Separate the 'sum' process and 'product' process.

Message from a factor node to a variable node:

$$m_{a \to i}(X_i) = \sum_{X_{N(a) \setminus \{i\}}} f_a(X_{N(a)}) \prod_{j \in N(a) \setminus \{i\}} \mu_{j \to a}(X_j)$$

Message from a variable node to a factor node:

$$\mu_{j \to a}(X_j) = \prod_{b \in N(j) \setminus \{a\}} m_{b \to j}(X_j)$$

N(i): the factor nodes connected to the variable node *i* N(a): the variable nodes connected to the factor node *a*

 $m_{a \to i}(X_i)$

 $\mu_{j\to a}(X_i)$

Belief Propagation for Factor Tree

Belief propagation algorithm for factor tree

- (1) Fix a root variable node of the tree
- (2) [Upward] Propagate the messages from bottom nodes to the root. Factor to variable:

$$m_{a \to i}(X_i) = \sum_{X_{N(a) \setminus \{i\}}} f_a(X_{N(a)}) \prod_{j \in N(a) \setminus \{i\}} \mu_{j \to a}(X_j)$$

Variable to factor

$$\mu_{j \to a}(X_j) = \prod_{b \in N(j) \setminus \{a\}} m_{b \to j}(X_j)$$

(3) [Downward] Propagate the messages from the root to the bottom nodes by the same rules.

(4) The marginals are obtained by

$$p(X_i) \propto \prod_{a \in N(i)} m_{a \to i}(X_i)$$

Belief Propagation for Factor Tree

Message passing protocol

 The order of updates may be different, but should keep the following message passing protocol:

"The message to a node must be propagated after the messages from all the other neighbors are received".

Efficient algorithm

- Reuse of messages to compute all the marginals.
- The computational cost = 2|E| x K^m = 2(|V|-1) x K^m m = max #(variables in a factor)

Linear in the number of nodes or edges.

Use of evidence

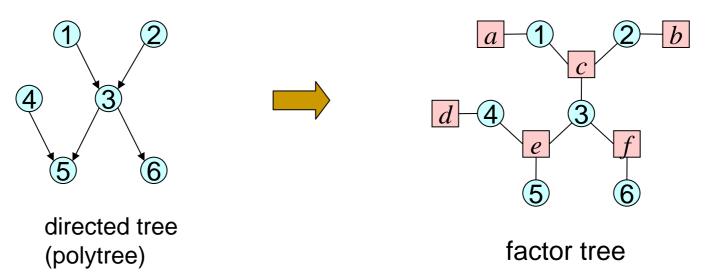
 If some nodes have evidence, just fix the values in computing the messages.

Factor Tree Representation

Directed tree to factor tree

A directed tree (polytree) can be converted to a factor tree
 Example

 $p(X) = p(X_1)p(X_2)p(X_3 | X_1, X_2)p(X_4)p(X_5 | X_3, X_4)p(X_6 | X_3)$



■ Note: in the factor tree representation, each factor node is connected to a unique child node, since the factor is of the form $p(X_i | X_{pa(i)})$.

- Belief propagation for directed tree
 - BP in the factor tree representation

Factor nodes can be indexed by the corresponding child nodes.

Parent to child (\leftarrow variable to factor)

$$\mu_{i \to b}(X_i) = \prod_{c \in N(i) \setminus \{b\}} m_{c \to i}(X_i) \equiv \pi_{i \to k}(X_i)$$

Child to parent (← factor to variable)

$$m_{a \to j}(X_j) = \sum_{X_{N(a) \setminus \{j\}}} f_a(X_{N(a)}) \prod_{n \in N(a) \setminus \{j\}} \mu_{n \to a}(X_n)$$
$$\equiv \lambda_{i \to j}(X_j)$$

$$\begin{array}{c}
 j \\
 \lambda_{i \rightarrow j}(X_i) \\
 b \\
 \overline{x_{i \rightarrow k}(X_i)} \\
 k \\
\end{array}$$

Parent to child

$$\pi_{i \to k}(X_{i}) = \prod_{c \in N(i) \setminus \{b\}} m_{c \to i}(X_{i})$$

$$= m_{a \to i}(X_{i}) \prod_{\substack{r \in ch(i) \setminus \{k\} \\ child-side}} \lambda_{r \to i}(X_{i})$$

$$= \sum_{X_{pa(i)}} p(X_{i} \mid X_{pa(i)}) \prod_{j \in pa(i)} \mu_{j \to a}(X_{j}) \prod_{r \in ch(i) \setminus \{k\}} \lambda_{r \to i}(X_{i})$$

$$= \sum_{X_{pa(i)}} p(X_{i} \mid X_{pa(i)}) \prod_{j \in pa(i)} \mu_{j \to i}(X_{j}) \prod_{r \in ch(i) \setminus \{k\}} \lambda_{r \to i}(X_{i})$$

n

Child to parent $\lambda_{i \to i}(X_i)$ $= \sum p(X_i | X_{pa(i)}) \prod \mu_{n \to a}(X_n)$ b $X_{N(a)\setminus\{j\}}$ $n \in N(a) \setminus \{i\}$ $= \sum p(X_i | X_{pa(i)}) \mu_{i \to a}(X_i) \quad \prod \mu_{n \to a}(X_n)$ $X_{N(a)\setminus\{j\}}$ $n \in pa(i) \setminus \{j\}$ child-side parent-side $= \sum_{X_{N(a)\setminus\{j\}}} p(X_i \mid X_{pa(i)}) \prod_{b \in N(i)\setminus\{a\}} m_{b \to i}(X_i) \prod_{n \in pa(i)\setminus\{j\}} \pi_{n \to a}(X_n)$ $= \sum p(X_i | X_{pa(i)}) \prod \lambda_{k \to i}(X_i) \prod \pi_{n \to a}(X_n)$ $X_i, X_{pa(i)\setminus\{i\}}$ $k \in ch(i)$ $n \in pa(i) \setminus \{i\}$

• $\pi\lambda$ -algorithm (Kim & Pearl 1983) Parent to child:

$$\pi_{i \to k}(X_i) = \sum_{X_{pa(i)}} p(X_i \mid X_{pa(i)}) \prod_{j \in pa(i)} \pi_{j \to i}(X_j) \prod_{r \in ch(i) \setminus \{k\}} \lambda_{r \to i}(X_i)$$

Child to parent:

$$\lambda_{i \to j}(X_j) = \sum_{X_i, X_{pa(i) \setminus \{j\}}} p(X_i \mid X_{pa(i)}) \prod_{k \in ch(i)} \lambda_{k \to i}(X_i) \prod_{n \in pa(i) \setminus \{j\}} \pi_{n \to a}(X_n)$$

Marginal:

$$p(X_i) \propto \lambda(X_i) \pi(X_i)$$
$$\lambda(X_i) = \prod_{k \in ch(i)} \lambda_{k \to i}(X_i), \quad \pi(X_i) = \sum_{X_{pa(i)}} p(X_i \mid X_{pa(i)}) \prod_{j \in pa(i)} \pi_{j \to i}(X_j)$$

 \square $\pi\lambda$ -algorithm is the first general belief propagation algorithm.

Mini Summary

Belief propagation / sum-product algorithm

- □ All the marginals are exactly calculated for trees.
 - Undirected tree, factor tree, polytree.
 - Non-tree cases will be discussed later.
- The computational cost is linear w.r.t. the tree size (number of variables).
 - Basic idea is successive marginal-out, but the messages are reused to compute all the marginals.
 - Messages are passed upward and then downward.
 - In general, the order of the message passing should keep the message passing protocol.
- The equations of message passing is local: product of the messages from the neighbors and sum over local variables.

Mini Summary

• Constant factor is not necessary.

To given the joint probability density, the form

 $p(X) \propto \prod f_a(X_a)$

is sufficient to apply the belief propagation.

Just normalize after the unnormalized marginal is computed.

• Normalization factor can be computed by belief propagation. For $p(X) \propto \prod f(X)$

 $p(X) \propto \prod f_a(X_a)$

Normalization factor Z is given by marginal-out:

$$Z = \sum_{X} \prod f_a(X_a)$$